
Methodological reference guide for Uranie v4.9.0

July 30, 2024

THE URANIE TEAM, support-uranie@cea.fr

page 2

Contents

I Glossary 11

II Basic statistical elements 13

II.1 Random variable modelisation . 13

II.1.1 The probability distributions . 13

II.2 Statistical treatments and operations . 28

II.2.1 Normalising the variable . 29

II.2.2 Computing the ranking . 29

II.2.3 Computing the elementary statistic . 29

II.2.4 The quantile computation . 30

II.2.5 Correlation matrix . 32

II.3 Combining these aspects: performing PCA . 32

II.3.1 Theoretical introduction . 32

III The Sampler module 35

III.1 Introduction . 35

III.2 The Stochastic methods . 36

III.2.1 Introduction . 36

III.2.2 Correlating samples drawn from different marginals . 38

III.2.3 The maximin LHS . 40

III.2.4 The constrained LHS . 42

III.3 QMC method . 45

page 3

CONTENTS CONTENTS

IV Generating surrogate models 47

IV.1 Introduction . 47

IV.1.1 Quality criteria definition . 48

IV.1.2 Adapting the fitting strategy . 49

IV.2 The linear regression . 51

IV.3 Chaos polynomial expansion . 52

IV.3.1 Introduction . 52

IV.3.2 Nisp in a nutshell . 54

IV.4 The artificial neural network . 55

IV.4.1 Introduction to the formal neuron . 55

IV.4.2 The working principle . 56

IV.5 The kriging method . 58

IV.5.1 Theoretical introduction . 58

IV.5.2 Running a kriging . 63

V Sensitivity analysis 65

V.1 Brief reminder of theoretical aspects . 65

V.1.1 Theoretical aspects . 65

V.1.2 List of available methods . 70

V.2 The finite differences method . 70

V.2.1 General presentation of finite difference sensitivity indices 70

V.3 The regression method . 71

V.3.1 General presentation of regression’s coefficients . 71

V.3.2 Getting a confidence-interval estimation . 71

V.4 The Morris screening method . 72

V.4.1 Principle of the Morris’ method . 72

V.5 The Sobol method . 74

V.5.1 Sobol’s sensitivity indices . 74

V.6 Fourier-based methods . 76

V.6.1 Introducing the method . 76

V.6.2 Implementation of methods . 77

V.7 The Johnson relative weight . 78

V.7.1 Introducing the method . 78

V.8 Sensitivity Indices based on HSIC . 79

V.8.1 Introducing the method . 79

page 4

CONTENTS CONTENTS

VI Dealing with optimisation issues 81

VI.1 Introduction . 81

VI.1.1 Single criterion case . 81

VI.1.2 The pareto concept in a nutshell . 82

VI.2 Multicriteria optimisation . 83

VI.2.1 Hitchhiker’s guide to genetic algorithms . 83

VI.2.2 General discussion on multi and many criteria problem. 85

VII The Calibration module 89

VII.1 Brief reminder of theoretical aspects . 89

VII.1.1 The distance used to compare observations and model predictions 90

VII.1.2 Discussing assumptions and theoretical background . 91

VII.2 Using minimisation techniques . 93

VII.3 Analytical linear Bayesian estimation . 93

VII.3.1 Prediction values . 94

VII.4 The Approximation Bayesian Computation techniques (ABC) . 94

VII.4.1 Rejection ABC algorithm . 95

VII.5 The Markov-chain approach . 96

VII.5.1 Markov-chain principle . 96

VII.5.2 The Metropolis-Hasting algorithm . 96

VIII The Uncertainty modeler module 99

VIII.1 Introduction . 99

VIII.2 Tests based on the Empirical Distribution Function ("EDF tests") 99

VIII.3 The Circe method . 100

VIII.3.1 Main principle of the CIRCE method . 100

IX References 103

page 5

CONTENTS CONTENTS

page 6

List of Figures

II.1 Principle of the truncated PDF generation (right-hand side) from the orginal one (left-hand side). . . 14

II.2 Example of PDF, CDF and inverse CDF for Uniform distribution. 16

II.3 Example of PDF, CDF and inverse CDF for LogUniform distributions. 16

II.4 Example of PDF, CDF and inverse CDF for Triangular distributions. 17

II.5 Example of PDF, CDF and inverse CDF for Logtriangular distributions. 18

II.6 Example of PDF, CDF and inverse CDF for Normal distributions. 18

II.7 Example of PDF, CDF and inverse CDF for LogNormal distributions. 19

II.8 Example of PDF, CDF and inverse CDF for Trapezium distributions. 20

II.9 Example of PDF, CDF and inverse CDF for UniformByParts distributions. 20

II.10 Example of PDF, CDF and inverse CDF for Exponential distributions. 21

II.11 Example of PDF, CDF and inverse CDF for Cauchy distributions. 22

II.12 Example of PDF, CDF and inverse CDF for GumbelMax distributions. 22

II.13 Example of PDF, CDF and inverse CDF for Weibull distributions. 23

II.14 Example of PDF, CDF and inverse CDF for Beta distributions. 24

II.15 Example of PDF, CDF and inverse CDF for GenPareto distributions. 24

II.16 Example of PDF, CDF and inverse CDF for Gamma distributions. 25

II.17 Example of PDF, CDF and inverse CDF for InvGamma distributions. 26

II.18 Example of PDF, CDF and inverse CDF for Student distribution. 26

II.19 Example of PDF, CDF and inverse CDF for generalized normal distributions. 27

II.20 Example of PDF, CDF and inverse CDF for a composed distribution made out of three normal
distributions with respective weights. 28

II.21 Illustration of the results of 100000 quantile determinations, applied to a reduced centered gaussian
distribution, comparing the usual and Wilks methods. The number of points in the reduced centered
gaussian distribution is varied, as well as the confidence level. 31

III.1 Schematic view of the input/output relation through a code . 35

III.2 Comparison of the two sampling methods SRS (left) and LHS (right) with samples of size 8. 37

III.3 Comparison of deterministic design-of-experiments obtained using either SRS (left) or LHS (right)
algorithm, when having two independent random variables (uniform and normal one) 37

page 7

LIST OF FIGURES LIST OF FIGURES

III.4 Transformation of a classical LHS (left) to its corresponding maximin LHS (right) when considering
a problem with two uniform distributions between 0 and 1. 41

III.5 Matrix of distribution of three uniformly distributed variables on which three linear constraints are
applied. The diagonal are the marginal distributions while the off-diagonal are the two-by-two scatter
plots. 43

III.6 Comparison of both quasi Monte-Carlo sequences with both LHS and SRS sampling when dealing
with two uniform variables. 46

III.7 Comparison of design-of-experiments made with Petras algorithm, using different level values, when
dealing with two uniform variables. 46

IV.1 Sketch of the evolution of the bias, the variance and their sum, as a function of the complexity of the
model. 49

IV.2 Sketches of under-trained (left), over-trained (middle) and properly trained (right) surrogate models,
given that the black points show the training database, while the yellow ones show the testing database 50

IV.3 Evolution of the different kinds of error used to determine when does one start to over-train a model 50

IV.4 Schematical view of the projection of the original value from the code onto the subspace spanned
by the column of H (in blue). 51

IV.5 Schematic view of the Nisp methodology . 54

IV.6 Schematic description of a formal neuron, as seen in McCulloch and Pitts [21]. 55

IV.7 Example of transfer functions: the hyperbolic tangent (left) and the logistical one (right) 56

IV.8 Schematic description of the working flow of an artificial neural network as used in Uranie 57

IV.9 Influence of the variance parameter in the Matern function once fix at 0.5, 1 and 2 (from left to right).
The correlation length is set to 1 while the smoothness is set to 3/2. 60

IV.10 Influence of the correlation length parameter in the Matern function once fix at 0.5, 1 and 2 (from
left to right). The variance is set to 1 while the smoothness is set to 3/2. 60

IV.11 Influence of the smoothness parameter in the Matern function once fix at 0.5, 1.5 and 2.5 (from left
to right). Both the variance and the correlation length are set to 1. 60

IV.12 Evolution of the different covariance functions implemented in Uranie. 61

IV.13 Example of kriging method applied on a simple uni-dimensional function, with a training site of six
points, and tested on a basis of about hundred points, with either a gaussian correlation function
(left) or a matern3/2 one (right). 63

IV.14 Schematic description of the kriging procedure as done within Uranie 64

V.1 Schematic view of two trajectories drawn randomly in the discretised hyper-volume (with p=6) for
two different values of the elementary variation (the optimal one in black and the smallest one in
pink, as detailed on the figure itself). 73

VI.1 Naive example of an imaginary optimisation case relying on two objectives that only depend on a
single input variable. 82

VI.2 Description of the children production process in the Uranie implementation of the genetic algorithm 85

VI.3 Comparison of two Pareto sets (left) and fronts (right) from vizir (blue) and MOEAD (ref) when the
hollow bar case is studied with very low number of points, i.e. about 20 (simulating higher dimensions). 86

page 8

List of Tables

II.1 List of Uranie classes representing the probability laws . 15

III.1 Proposed list of parameters value for simulated annealing algorithm, depending on the number of
points requested (N) and the number of inputs under consideration (d) 42

IV.1 List of best adapted polynomial-basis to develop the corresponding stochastic law 52

page 9

LIST OF TABLES LIST OF TABLES

page 10

Chapter I

Glossary

Analysis of variance or ANOVA (Analyse de variance): decomposition of the variance (as a breakdown) to elementary
pieces (also know as HDMR, Hoeffding’s decomposition, Sobol’s decomposition... c.f. Section V.1.1.3).

Cumulative distribution function or CDF (Fonction de répartition): function of a real-valued random variable X which,
once evaluated at x, gives the probability that X will take a value less than or equal to x (c.f. Section II.1.1).

Kriging or Gaussian process (Krigeage ou processus gaussien): is a family of interpolation methods that uses
information about the "spatial" correlation between observations to make predictions with a confidence interval at new
locations (c.f. Section IV.5).

Latin hypercube sampling or LHS (Échantillonage par hypercube latin): sampling methods that stratifies the proba-
bility space by dividing it in equal probabilities (c.f. Section III.2.1).

Leave-one-out or LOO (validation croisée un contre tous): type of cross-validation for which a surrogate model is
re-train on the learning database removing just one point, in order to obtain an estimation of this new model on this
precise point (c.f. Section IV.1.2).

Likelihood (vraisemblance): is the hypothetical probability that an event that has already occurred would yield a
specific outcome. The concept differs from that of a probability in that a probability refers to the occurrence of future
events, while a likelihood refers to past events with known outcomes [2].

Low discrepancy sequence: (Suite à faible discrépance): sequence for which the discrepancy is low, meaning the
proportion of points in the sequence falling into an arbitrary set B is close to proportional to the measure of B (c.f.
Section III.3).

Pareto front (front de Pareto): a set of nondominated solutions, being chosen as optimal, if no objective can be
improved without sacrificing at least one other objective (c.f. Section VI.1.2).

Pearson coefficient (Coefficient de Pearson): it is the linear correlation coefficient (c.f. Section V.1.1.2).

Principal component analysis or PCA (Analyse en conclusion principale): the process of computing the principal
components and using them to perform a change of basis on the data, sometimes using only the first few principal
components and ignoring the rest (c.f. Section II.3).

Probability density function or PDF (Densité de probabilité): function whose value at any given sample (or point) in
the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative
likelihood that the value of the random variable would equal that sample (c.f. Section II.1.1).

Quantile (Quantile): the quantile xp, for a probability p ∈ [0,1], is the lowest value of a random variable X so that
P{X ≤ xp}= p (c.f. Section II.2.4).

Screening method (méthode de criblage): process that extracts, isolates and identifies a compound or group of
components in a sample with the minimum number of steps and the least manipulation of the sample (c.f. Chapter V).

page 11

CHAPTER I. GLOSSARY

Simple random sampling or SRS (Échantillonage simple aléatoire): independent generation of samples following
provided PDFs (c.f. Section III.2.1).

Sparse grids: numerical techniques to represent, integrate or interpolate high dimensional functions.

page 12

Chapter II

Basic statistical elements

This chapter introduces the various probability laws implemented in Uranie and illustrates, for each every one of them,
with a few sets of parameters, the resulting shape of three of their characteristic functions. Some of the basic statistical
operations are also described in a second part.

II.1 Random variable modelisation

II.1.1 The probability distributions

There are several already-implemented statistical laws in Uranie, that can be called marginal laws as well, used to de-
scribed the behaviour of a chosen input variable. They are usually characterised by two functions which are intrinsically
connected: the PDF (probability density function) and CDF (cumulative distribution function). One can recap briefly the
definition of these two functions for every random variable X : Ω → IR:

• PDF: if the random variable X has a density fX , where fX is a non-negative Lebesgue-integrable function, then

P{a ≤ X ≤ b}=
∫ b

a
fX(s)ds

• CDF: the function FX : IR → [0,1], given by

FX(x) =
∫ x

−∞

fX(s)ds, x ∈ IR

For some of the distributions discussed later on, the parameters provided to define them are not limiting the range of
their PDF and CDF: these distributions are said to be infinite-based ones. It is however possible to set boundaries in
order to truncate the span of their possible values. One can indeed define an lower bound L and or an upper bound
U so that the resulting distribution range is not infinite anymore but only in [L,U]. This truncation step affects both the
PDF and CDF: once the boundaries are set, the CDF of these two values are computed to obtain PL (the probability
to be lower than the lower edge) and PU (the probability to be lower than the upper edge). Two new functions, the
truncated PDF f [L,U]

X and the truncated CDF F [L,U]
X are simply defined as

f [L,U]
X (x) =

fX(x)
PU −PL

, F [L,U]
X (x) =

FX(x)−PL

PU −PL
.

These steps to produce a truncate distribution are represented in Figure II.1 where the original distribution is shown on
the left along with the definition of L (the blue shaded part) and U (the green shaded part). The right part of the plot is
the resulting truncated PDF.

page 13

The probability distributions CHAPTER II. BASIC STATISTICAL ELEMENTS

Figure II.1: Principle of the truncated PDF generation (right-hand side) from the orginal one (left-hand side).

It is possible to combine different probability law, as a sum of weighted contributions, in order to create a new law. This
approach, which is further discussed and illustrated in Section II.1.1.19, leads to a new probability density function that
would look like

f (x) =
N

∑
j=1

ω j f j(x) where ∀ j ∈ [1,N], ω j ∈ R+.

These distributions can be used to model the behaviour of variables, depending on chosen hypothesis, probability
density function being used as a reference more oftenly by physicist, whereas statistical experts will generally use the
cumulative distribution function [3].

Table II.1 gathers the list of implemented statistical laws, along with the list of parameters used to define them. For
every possible law, a figure is displaying the PDF, CDF and inverse CDF for different sets of parameters (the equation of
the corresponding PDF is reminded as well on every figure). The inverse CDF is basically the CDF whose x and y-axis
are inverted (it is convenient to keep in mind what it looks like, as it will be used to produce design-of-experiments,
later-on).

//Uniform law

TUniformDistribution *pxu = new TUniformDistribution("x1", -1.0 , 1.0); x1 [1]
// Gaussian Law

TNormalDistribution *pxn = new TNormalDistribution("x2", -1.0 , 1.0); x2 [2]
x1 Allocation of a pointer pxu to a random uniform variable x1 in interval [-1.0, 1.0].x2 Allocation of a pointer pxn to a random normal variable x2 with mean value µ=-1.0 and standard deviation

σ=1.0.

Uniform law

pxu = DataServer.TUniformDistribution("x1", -1.0 , 1.0) x1 [1]
Gaussian Law

pxn = DataServer.TNormalDistribution("x2", -1.0 , 1.0) x2 [2]
x1 Allocation of a pointer pxu to a random uniform variable x1 in interval [-1.0, 1.0].x2 Allocation of a pointer pxn to a random normal variable x2 with mean value µ=-1.0 and standard deviation

σ=1.0.

page 14

CHAPTER II. BASIC STATISTICAL ELEMENTS The probability distributions

Law Class Uranie Parameter 1 Parameter 2 Parameter 3 Parameter 4
Uniform TUniformDistribution Min Max

Log-Uniform TLogUniformDistribution Min Max
Triangular TTriangularDistribution Min Max Mode

Log-Triangular TLogTriangularDistribution Min Max Mode
Normal (Gauss) TNormalDistribution Mean (µ) Sigma (σ)

Log-Normal TLogNormalDistribution Mean (M)
Error factor

(E f)
Min

Trapezium TTrapeziumDistribution Min Max Low Up
UniformByParts TUniformByPartsDistribution Min Max Median

Exponential TExponentialDistribution Rate (λ) Min
Cauchy TCauchyDistribution Scale (γ) Median

GumbelMax TGumbelMaxDistribution Mode (µ) Scale (β)
Weibull TWeibullDistribution Scale (λ) Shape (k) Min

Beta TBetaDistribution alpha (α) beta (β) Min Max
GenPareto TGenParetoDistribution Location (µ) Scale (σ) Shape (ξ)

Gamma TGammaDistribution Shape (α) Scale (β) Location (ξ)
InvGamma TInvGammaDistribution Shape (α) Scale (β) Location (ξ)

Student TStudentDistribution DoF (k)
GeneralizedNormal TGeneralizedNormalDistributionLocation (µ) Scale (α) Shape (β)

Table II.1: List of Uranie classes representing the probability laws

II.1.1.1 Uniform Law

The Uniform law is defined between a minimum and a maximum, as

f (x) =
1

(xmax − xmin)
1I[xmin,xmax](x)

The property of the law lies on the fact that all points of the interval [xmin,xmax] have the same probability. The mean

value of the uniform law can then be computed as µ =
xmax + xmin

2
while its variance can be written as σ2 = (xmax−xmin)

2

12 .

The mode is not really defined as all points have the same probability.

Figure II.2 shows the PDF, CDF and inverse CDF generated for a given set of parameters.

page 15

The probability distributions CHAPTER II. BASIC STATISTICAL ELEMENTS

Figure II.2: Example of PDF, CDF and inverse CDF for Uniform distribution.

II.1.1.2 Log Uniform Law

The LogUniform law is well adapted for variations of high amplitudes. If a random variable x follows a LogUniform
distribution, the random variable ln(x) follows a Uniform distribution, so

f (x) =
1

(x× ln(xmax/xmin))
1I[xmin,xmax](x)

From the statistical point of view, the mean value of the LogUniform law can then be computed as µ =
xmax − xmin

ln(xmax/xmin)

while its variance can be written as σ2 =
x2

max−x2
min

2ln(xmax/xmin)
−
(xmax−xmin

ln(xmax/xmin)

)2
. By definition, the mode is equal to xmin.

Figure II.3 shows the PDF, CDF and inverse CDF generated for different sets of parameters.

Figure II.3: Example of PDF, CDF and inverse CDF for LogUniform distributions.

page 16

CHAPTER II. BASIC STATISTICAL ELEMENTS The probability distributions

II.1.1.3 Triangular law

This law describes a triangle with a base between a minimum and a maximum and a highest density at a certain point
xmode, so

f (x) =
2× (x− xmin)

(xmax − xmin)× (xmode − xmin)
1I[xmin,xmode](x) and f (x) =

2× (xmax − x)
(xmax − xmin)× (xmax − xmode)

1I[xmode,xmax](x)

The mean value of the triangular law can then be computed as µ =
xmax + xmin + xmode

3
while its variance can be

written as σ2 =
(x2

max + x2
min + x2

mode − xmaxxmin − xmaxxmode − xmodexmin)

18
.

Figure II.4 shows the PDF, CDF and inverse CDF generated for different sets of parameters.

Figure II.4: Example of PDF, CDF and inverse CDF for Triangular distributions.

II.1.1.4 LogTriangular law

If a random variable x follows a LogTriangular distribution, the random variable ln(x) follows a Triangular distribution,
so

f (x) =
2× ln(x/xmin)

x× ln(xmax/xmin)× ln(xmode/xmin)
1I[xmin,xmode](x)

and

f (x) =
2× ln(xmax/x)

x× ln(xmax/xmin)× ln(xmax/xmode)
1I[xmode,xmax](x)

Figure II.5 shows the PDF, CDF and inverse CDF generated for different sets of parameters.

page 17

The probability distributions CHAPTER II. BASIC STATISTICAL ELEMENTS

Figure II.5: Example of PDF, CDF and inverse CDF for Logtriangular distributions.

II.1.1.5 Normal law

A normal law is defined with a mean µ (which coincide with the mode) and a standard deviation σ , as

f (x) = e
−(x−µ)2

2σ2 × 1√
2πσ2

Figure II.6 shows the PDF, CDF and inverse CDF generated for different sets of parameters.

Figure II.6: Example of PDF, CDF and inverse CDF for Normal distributions.

page 18

CHAPTER II. BASIC STATISTICAL ELEMENTS The probability distributions

II.1.1.6 LogNormal law

If a random variable x follows a LogNormal distribution, the random variable ln(x) follows a Normal distribution (whose
parameters are µ and σ), so

f (x) =
1

(x− xmin)σ
√

2π
× e

−(ln(x−xmin)−µ)2

2σ2 1I[xmin,+∞[(x)

In Uranie, it is parametrised by default using M, the mean of the distribution, E f , the Error factor that represents the ra-
tion of the 95% quantile and the median (E f = q0.95/q0.50) and the minimum xmin. One can go from one parametrisation
to the other following those simple relations

M = eµ+σ2/2 + xmin ⇔ µ = ln(M− xmin)−σ2/2
EF = e1.645×σ ⇔ σ = ln(E f)/1.645.

The variance of the distribution can be estimated as Var = (eσ2 − 1)e2µ+σ2
= (e(

ln(E f)
1.645)2 − 1)× (M − xmin)

2 while its
mean is eµ+σ2/2 and its mode is eµ−σ2

.

Figure II.7 shows the PDF, CDF and inverse CDF generated for different sets of parameters.

Figure II.7: Example of PDF, CDF and inverse CDF for LogNormal distributions.

II.1.1.7 Trapezium law

This law describes a trapezium whose large base is defined between a minimum and a maximum and its small base
lies between a low and an up value, as

f (x) =
2

(xup − xlow)+(xmax − xmin)
×Y

where Y = 1 for x ∈ [xlow,xup], Y =
(x− xmin)

(xlow − xmin)
for x ∈ [xmin,xlow] and Y =

(xmax − x)
(xmax − xup)

for x ∈ [xup,xmax].

For this distribution, the mean can be estimated through µ = 1
3(xmax+xup−xlow−xmin)

(
x3

max−x3
up

xmax−xup
− x3

low−x3
min

xlow−xmin

)
while the vari-

ance is σ2 = 1
6(xmax+xup−xlow−xmin)

(
x4

max−x4
up

xmax−xup
− x4

low−x4
min

xlow−xmin

)
− µ2. The mode is not properly defined as all probability are

equals in [xlow,xup].

page 19

The probability distributions CHAPTER II. BASIC STATISTICAL ELEMENTS

Figure II.8 shows the PDF, CDF and inverse CDF generated for different sets of parameters.

Figure II.8: Example of PDF, CDF and inverse CDF for Trapezium distributions.

II.1.1.8 UniformByParts law

The UniformByParts law is defined between a minimum and a median and between the median and a maximum, as

f (x) =
0.5

(xmed − xmin)
1I[xmin,xmed](x) and f (x) =

0.5
(xmax − xmed)

1I[xmed,xmax](x)

For this distribution, the mean value is µ = 0.25∗ (xmax + xmin +2xmed) while the variance is σ2 = 1
6 ∗ (x

2
max + x2

min +
xmed(xmax + xmin +2xmed)).

Figure II.9 shows the PDF, CDF and inverse CDF generated for different sets of parameters.

Figure II.9: Example of PDF, CDF and inverse CDF for UniformByParts distributions.

page 20

CHAPTER II. BASIC STATISTICAL ELEMENTS The probability distributions

II.1.1.9 Exponential law

This law describes an exponential with a rate parameter λ and a minimum xmin, as

f (x) = λ × e−λ×(x−xmin) 1I[xmin,+∞[(x)

The rate parameter λ should be positive. The mean value of the exponential law can then be computed as µ =
λ−1 + xmin while its variance can be written as σ2 = λ−2. The mode is the chosen minimum value.

Figure II.10 shows the PDF, CDF and inverse CDF generated for different sets of parameters.

Figure II.10: Example of PDF, CDF and inverse CDF for Exponential distributions.

II.1.1.10 Cauchy law

This law describes a Cauchy-Lorentz distribution with a location parameter x0 and a scale parameter γ , as

f (x) =
γ

π × (γ2 +(x− x0)2)

The mean and standard deviation of this distribution are not properly defined.

Figure II.11 shows the PDF, CDF and inverse CDF generated for different sets of parameters.

page 21

The probability distributions CHAPTER II. BASIC STATISTICAL ELEMENTS

Figure II.11: Example of PDF, CDF and inverse CDF for Cauchy distributions.

II.1.1.11 GumbelMax law

This law describes a Gumbel max distribution depending on the mode µ and the scale β , as

f (x) = z× e−z

β
, where z = e

−(x−µ)
β

The mean value of the Gumbel max law can then be computed as mean = µ +βγ , where γ is the Euler Mascheroni

constant and its variance can be written as σ2 =
π2

6
β 2.

Figure II.12 shows the PDF, CDF and inverse CDF generated for different sets of parameters.

Figure II.12: Example of PDF, CDF and inverse CDF for GumbelMax distributions.

page 22

CHAPTER II. BASIC STATISTICAL ELEMENTS The probability distributions

II.1.1.12 Weibull law

This law describes a weibull distribution depending on the location xmin, the scale λ and the shape k, as

f (x) =
k
λ
×
(

x− xmin

λ

)k−1

× e−(
x−xmin

λ)
k

1I[xmin,+∞[(x)

The mean value of the Weibull law can then be computed as µ = λΓ(1+1/k)+ xmin while its variance can be written
as σ2 = λ [Γ(1+2/k)− (Γ(1+1/k))2].

Figure II.13 shows the PDF, CDF and inverse CDF generated for different sets of parameters.

Figure II.13: Example of PDF, CDF and inverse CDF for Weibull distributions.

II.1.1.13 Beta law

Defined between a minimum and a maximum, it depends on two parameters α and β , as

f (x) =
Y α−1 × (1−Y)β−1

B(α,β)
1I[xmin,xmax](x)

where Y =
(x− xmin)

(xmax − xmin)
and B(α,β) is the beta function.

Figure II.14 shows the PDF, CDF and inverse CDF generated for different sets of parameters.

page 23

The probability distributions CHAPTER II. BASIC STATISTICAL ELEMENTS

Figure II.14: Example of PDF, CDF and inverse CDF for Beta distributions.

II.1.1.14 GenPareto law

This law describes a generalised Pareto distribution depending on the location µ , the scale σ and a shape ξ , as

f (x) =
1
σ
×
(

1+ξ

(
x−µ

σ

))−(1/ξ+1)

In this formula, σ should be greater than 0. The resulting mean for this distribution can be estimated as µ +σ/(1−ξ)

(for ξ < 1) while its variance can be computed as
σ2

(1−ξ)2(1−2ξ)
(for ξ < 0.5).

Figure II.15 shows the PDF, CDF and inverse CDF generated for different sets of parameters.

Figure II.15: Example of PDF, CDF and inverse CDF for GenPareto distributions.

page 24

CHAPTER II. BASIC STATISTICAL ELEMENTS The probability distributions

II.1.1.15 Gamma law

The Gamma distribution is a two-parameter family of continuous probability distributions. It depends on a shape
parameter α and a scale parameter β . The function is usually defined for x greater than 0, but the distribution can be
shifted thanks to the third parameter called location (ξ) which should be positive. This parametrisation is more common
in Bayesian statistics, where the gamma distribution is used as a conjugate prior distribution for various types of laws:

f (x) =
(x−ξ)α−1e−(x−ξ)/β

Γ(α)β α
1I]ξ ,+∞](x)

The mean value of the Gamma law can then be computed as µ = αβ + ξ while its variance can be written as
σ2 = αβ 2.

Figure II.16 shows the PDF, CDF and inverse CDF generated for different sets of parameters.

Figure II.16: Example of PDF, CDF and inverse CDF for Gamma distributions.

II.1.1.16 InvGamma law

The inverse-Gamma distribution is a two-parameter family of continuous probability distributions. It depends on a shape
parameter α and a scale parameter β . The function is usually defined for x greater than 0, but the distribution can be
shifted thanks to the third parameter called location (ξ) which should be positive.

f (x) =
β α(x−ξ)−α−1e−β/(x−ξ)

Γ(α)
1I]ξ ,+∞](x)

The mean value of the Inverse-Gamma law can then be computed as µ = β/(α −1)+ξ (for α > 1) while its variance

can be written as σ2 =
β 2

(α −1)2(α −2)
(for α > 2).

Figure II.17 shows the PDF, CDF and inverse CDF generated for different sets of parameters.

page 25

The probability distributions CHAPTER II. BASIC STATISTICAL ELEMENTS

Figure II.17: Example of PDF, CDF and inverse CDF for InvGamma distributions.

II.1.1.17 Student Law

The Student law is simply defined with a single parameter: the degree-of-freedom (DoF). The probability density
function is then set as

f (x) =
1√
kπ

Γ
(k+1

2

)
Γ
(k

2

) (1+
t2

k

)− k+1
2

where Γ is the Euler’s gamma function. This distribution is famous for the t-test, a test-hypothesis developed by Fisher
to check validity of the null hypothesis when the variance is unknown and the number of degree-of-freedom is limited.
Indeed, when the number of degree-of-freedom grows, the shape of the curve looks more and more like the centered-
reduced normal distribution. The mean value of the student law is 0 as soon as k > 1 (and is not determined otherwise).
Its variance can be written as σ2 = k

k−2 as soon as k > 2, infinity if 1 < k ≤ 2, and is not determined otherwise.

Figure II.18 shows the PDF, CDF and inverse CDF generated for different sets of parameters.

Figure II.18: Example of PDF, CDF and inverse CDF for Student distribution.

page 26

CHAPTER II. BASIC STATISTICAL ELEMENTS The probability distributions

II.1.1.18 Generalized normal law

This law describes a generalized normal distribution depending on the location µ , the scale α and the shape β , as

f (x) =
β

2αΓ(1/β)
××e−(

x−µ

α)
β

The mean value of the generalized normal law is µ while its variance can be written as σ2=α2Γ(3/β)
Γ(1/β) .

Figure II.19 shows the PDF, CDF and inverse CDF generated for different sets of parameters.

Figure II.19: Example of PDF, CDF and inverse CDF for generalized normal distributions.

II.1.1.19 Composing law

It is possible to imagine a new law, hereafter called composed law, by combining different pre-existing laws in order to
model a wanted behaviour. This law would be defined with N pre-existing laws whose densities are noted { f j}1≤ j≤N ,
along with their relative weights {ω j}1≤ j≤N ∈ (R+)N and the resulting density is then written as

f (x) =
N

∑
j=1

ω j f j(x).

The mean value of this newly generated law can be expressed, assuming that all pre-existing laws have a finite and
defined expectation denoted {µ j}1≤ j≤N , as µ = ∑

N
j=1

ω jµ j
S where the sum of all weights is S = ∑

N
j=1 ω j. As for the

mean value, the variance of this newly generated law can be expressed, assuming that all pre-existing laws have a
finite and defined expectation and variance, as done below in a very generic way.

page 27

Statistical treatments and operations CHAPTER II. BASIC STATISTICAL ELEMENTS

Var f = E f (x2)− (E f (x))2

=
∫

x2 f (x)dx−
(∫

x f (x)dx
)2

, with f (x) =
N

∑
j=1

ω j f j(x) where {ωj}1≤j≤N ∈ (R+)N

=
∫ N

∑
j=1

x2 ω j f j(x)
S

dx−
(∫ N

∑
j=1

x
ω j f j(x)

S
dx
)2

, where S =
N

∑
j=1

ωj

=
1
S

N

∑
j=1

ω j

∫
x2 f j(x)dx︸ ︷︷ ︸

Var f j (x)+(E f j (x))
2

− 1
S2

(N

∑
j=1

ω j

∫
x f j(x)dx︸ ︷︷ ︸
E f j (x)

)2

=
1
S

N

∑
j=1

ω j(σ
2
j +µ

2
j)−

1
S2

(N

∑
j=1

δ j

)2

, where δ j = ω jµ j ∀ j ∈ [1,N]

=
1
S

N

∑
j=1

ω jσ
2
j +

N

∑
j=1

δ 2
j

Sω j
− 1

S2

[N

∑
j=1

δ
2
j +2 ∑

1≤i< j≤N
δiδ j

]

=
1
S

N

∑
j=1

ω jσ
2
j +

N

∑
j=1

S−ω j

S2ω j
δ

2
j −

2
S2 ∑

1≤i< j≤N
δiδ j.

In the case of unweighted composition, this can be written as Var f =
1
N

N

∑
j=1

σ
2
j +

N −1
N2

N

∑
j=1

µ
2
j −

2
N2 ∑

1≤i< j≤N
µiµ j

Figure II.20 shows the PDF, CDF and inverse CDF generated for different sets of parameters.

Figure II.20: Example of PDF, CDF and inverse CDF for a composed distribution made out of three normal distributions
with respective weights.

II.2 Statistical treatments and operations

There are many different kinds of operations that can be applied on an existing set of data (disregarding their origin,
i.e. whether they come from experiments, simulations...). They are all listed below and the main ones are described in
more details in the following subsections. For the sake of simplicity, the input variable is called x leading to an output
variable called y. The dataset contains N points and i is be an iterator that goes from 0 to N − 1. In few words, here
what’s easily calculable with Uranie:

page 28

CHAPTER II. BASIC STATISTICAL ELEMENTS Normalising the variable

• The normalisation of variable, in Section II.2.1

• The ranking of variable, in Section II.2.2

• The elementary statistic computation, in Section II.2.3

• The quantile estimation, in Section II.2.4

• The correlation matrix determination, in Section II.2.5

II.2.1 Normalising the variable

The normalisation function can be called to create new variables, for every requested normalisation, whose range
and dispersion depend on the chosen normalisation method. Up to now, there are four different ways to perform this
normalisation:

• centered-reducted: the new variable values are computed as x̃ =
x−µx

σx

• centered: the new variable values are computed as x̃ = x−µx

• reduced to [−1,1]: the new variable values are computed as x̃ = 2.0× x− xMin

xMax − xMin
−1.0

• reduced to [0,1]: the new variable values are computed as x̃ =
x− xMin

xMax − xMin

II.2.2 Computing the ranking

The ranking of variable is used in many methods that are focusing more on monotony than on linearity (this is discussed
throughout this documentation when coping with regression, correlation matrix, c.f. for instance Section V.1.1.2). The
way this is done in Uranie is the following: for every variable considered, a new variable is created, whose name is
constructed as the name of the considered variable with the prefix "Rk_". The ranking consists in assigning to each
variable entry an integer, that goes from 1 to the number of patterns, following an order relation (in Uranie it is chosen
so that 1 is the smallest value and N is the largest one).

II.2.3 Computing the elementary statistic

When considering an existing set of points, it exists a method to determine the four simplest statistical notions: the
minimum, maximum, average and standard deviation. The minimum and maximum are trivially estimated by running
over all the possible values. The average and standard deviation are estimated on the fly, using the following recursive
formulae (where ζi represents the value of ζ using all data points up to i for i = 1, . . . ,nS):

• average: µx0 is set to 0 and then

µxi = µxi−1 ×
i

i+1
+

xi

i+1

• standard deviation: σx0 is set to 0 and then, for i strictly greater than 0,

σxi = σxi−1 ×
i−1

i
+

i+1
i

× (xi −µxi)
2

i

page 29

The quantile computation CHAPTER II. BASIC STATISTICAL ELEMENTS

II.2.4 The quantile computation

There are several ways of estimating the quantiles implemented in Uranie. This part describes the most commonly
used and starts with a definition of quantile.

A quantile xp, as discussed in the following parts, for p a probability going from 0 to 1, is the lowest value of the
random variable X leading to P{X ≤ xp} = p. This definition holds equally if one is dealing with a given probability
distribution (leading to a theoretical quantile), or a sample, drawn from a known probability distribution or not (leading
to an empirical quantile). In the latter case, the sample is split into two sub-samples: one containing pN points, the
other one containing (1− p)N points.

II.2.4.1 Empirical computation

For a given probability p, the corresponding quantile q is given by:

q = (1− p)xk + pxk+1

where xk is the k-Th smallest value of the variable set-of-value (whose size is N). The way the index k is computed
depends on how conservative one wants to be, but also on the case under consideration. For discontinuous cases,
one can choose amongst the following list:

• k = ⌊p×N⌋; if p×N = k, q = xk. q = xk+1 otherwise.

• k = ⌊p×N⌋; if p×N = k, q = 1/2× (xk + xk+1). q = xk+1 otherwise.

• k = ⌊p×N −0.5⌋; if p×N −0.5 = k and k is even, q = xk. q = xk+1 otherwise.

For piece-wise linear interpolations, the estimation of k can be done in Uranie amongst the following cases:

• k = ⌊p×N⌋

• k = ⌊p×N −0.5⌋

• k = ⌊p× (N +1)⌋

• k = ⌊p× (N −1)+1⌋

• k = ⌊p× (N +1/3)+1/3⌋, approximately median unbiased.

• k = ⌊p× (N +1/4)+3/8⌋, approximately unbiased if x is normally distributed.

II.2.4.2 Wilks-quantile computation

The Wilks quantile computation is an empirical estimation, based on order statistic which allows to get an estimation
on the requested quantile, with a given confidence level β , independently of the nature of the law, and most of the time,
requesting less estimations than a classical estimation. Going back to the empirical way discussed in Section II.2.4.1:
it consists, for a 95% quantile, in running 100 computations, ordering the obtained values and taking the one at either
the 95-Th or 96-Th position (see the discussion on how to choose k in Section II.2.4.1). This can be repeated several
times and will result in a distribution of all the obtained quantile values peaking at the theoretical value, with a standard
deviation depending on the number of computations made. As it peaks on the theoretical value, 50% of the estimation
are larger than the theoretical value while the other 50% are smaller (see Figure II.21 for illustration purpose).

Wilks computation on the other hand request not only a probability value but also a confidence level. The quantile
xβ

p represents the xp quantile given the p probability but this time, the value is provided with a β% confidence level,

page 30

CHAPTER II. BASIC STATISTICAL ELEMENTS The quantile computation

meaning that β% of the obtain value is larger than the theoretical quantile. This is a way to be conservative and to be
able to quantify how conservative one wants to be. To do this, the size of the sample must follow a necessary condition:

n >
ln(1−β)

ln p

This is the smallest sample size to get an estimation, and, in most cases, the accuracy reached (for a given sample
size) is better than the one achieved with the simpler solution provided above. It is also possible to increase the sample
size to get a better description of the quantile estimation.

Figure II.21: Illustration of the results of 100000 quantile determinations, applied to a reduced centered gaussian dis-
tribution, comparing the usual and Wilks methods. The number of points in the reduced centered gaussian distribution
is varied, as well as the confidence level.

Figure II.21 shows a simple case: the estimation of the value of the 95% quantile of a centered-reduced normal
distribution. The theoretical value (red dashed line) is compared to the results of 100000 empirical estimation, following
the simple recipe (black and blue curves) or the Wilks method (red, green and magenta curves). Several conclusions
can be drawn:

• The simpler quantile estimation average is slightly biased with respect to the theoretical value. This is due to the
choice of k, discussed in Section II.2.4.1 which can lead to under or over estimation of the quantile value. The bias
becomes smaller with the increasing sample size.

• The standard deviation of the distributions (whatever method is considered) is becoming smaller with the increasing
sample size.

• When using the Wilks method, the fraction of event below the theoretical value is becoming smaller with the increas-
ing confidence level.

page 31

Correlation matrix CHAPTER II. BASIC STATISTICAL ELEMENTS

II.2.5 Correlation matrix

The computation of the correlation matrix can be done either on the values (leading to the Pearson coefficients) or on
the ranks (leading to the Spearmann coefficients).

Correlation matrices are computed in a 3 steps procedure detailed below:

1. An overall M matrix is created and filled, every line being a new entry while every column is a variable

2. This matrix is centred and reduced: for every variable under consideration µx is subtracted and the results is
divided by σx.

3. The resulting correlation matrix is obtained from the product tM×M

II.3 Combining these aspects: performing PCA

This part is introducing an example of analysis that combines all the aspects discussed up to now: handling data,
perform a statistical treatment and visualise the results. This analysis is called PCA for Principal Component Analysis
and is often used to

• gather event in a sample that seem to have a common behaviour;

• reduce the dimension of the problem under study.

There is a very large number of articles, even books, discussing the theoretical aspects of principal component analysis
(for instance one can have a look at [45]).

II.3.1 Theoretical introduction

II.3.1.1 Purpose

The principle of this kind of analysis is to analyse a provided ensemble, called hereafter D, whose size is nS, and which
can be written as

D = {xi}i=1,...,nS

where xi is the i-Th input vector, written as xi = (xi
1, . . . ,x

i
nX
) where nX is the number of quantitative variable. It is

basically a set of realisation of nX random variables whose properties are completely unknown.

The aim is then to summarise (project/reduce) this sample into a smaller dimension space q (with 1 ≤ q ≤ nX) these q
factors being chosen in order to maximise the inertia and being orthogonal one to another1. By doing so, the goal is to
be able to reduce the dimension of our problem while loosing as few information as possible.

II.3.1.2 Implementation in a nutshell

If one calls X the original sample whose dimension is (nX ,nS), the idea behind PCA is to find the projection matrix P,
whose dimension is (nX ,nX), that would re-express the data optimally as a new sample, called hereafter Y, with the
same dimension (nX ,nS). The rows of P are forming a new basis to represent the column of X and this new basis will
later become our principal component directions.

Now recalling the aim of PCA, the way to determine this projection matrix is crucial and should be designed as to

1As a reminder, the dispersion of a quantitative variable is usually represented with its variance (or standard deviation), the inertia criteria
is, for multi-dimension problems, the sum of all the variable’s variance.

page 32

CHAPTER II. BASIC STATISTICAL ELEMENTS Theoretical introduction

• find out the best linear combinations between variables so that the minimum number of rows (principal components)
of P are considered useful to carry on as much inertia as possible;

• rank the principal component so that, if not satisfy with the new representation, it would be simple to add an extra
principal component to improve it.

This can be done by investigating the covariance matrix CX of X that, by definition, describes the linear combination
between variables and that could be computed from the centered matrix sample XC

2as

CX =
1

nS −1
XCXC

T

If one consider the resulting covariance matrix CY, the aim is to maximise the signal measured by variance (diagonal
entries that represents the variance of the principal components) while minimising the covariance between them. As
the lowest covariance value reachable is 0, if the desired covariance matrix CY would append to be diagonal, this
would mean our objectives are achieved. From the very definition of the covariance matrix, one could see that

CY =
1

nS −1
YCYC

T =
1

nS −1
(PXC)(PXC)

T =
1

nS −1
PXCXC

T PT = PCXPT

As CX is symmetric, it is orthogonal diagonalisable, and can be written CX = ESET . In this equation, E is an or-
thonormal matrix whose columns are the orthonormal eigenvectors of CX, and S is a diagonal matrix which has the
eigenvalues of CX. Given this, if we choose P = ET , this leads to

CY = PCXPT = ET ESET E = S

At this level, there is no unicity of the S matrix as one can have many permutations of the eigenvalues along the
diagonal, as long as one changes E accordingly.

Finally, an interesting link can be drawn between this protocol and a very classical method of linear algebra, already
mentioned in other places of this document, called the Singular Value Decomposition (SVD3) leading to

XC
T = UΣVT where XC

T (nS,nX), U(nS,nS), V(nX ,nX) and Σ(nS,nX)

EQUATION II.1: General form of a SVD

In this context U and V are unitary matrices (also known as respectively the left singular vectors and right singular
vectors of XC

T) while Σ is a diagonal matrix storing the singular values of XC
T in decreasing order. The last step is

then to state the linear algebra theorem which says that the non-zero singular values of XC
T are the square roots of

the nonzero eigenvalues of XCXC
T and XC

T XC (the corresponding eigenvectors being the columns of respectively V
and U).

Gathering all this, one can see that by doing the SVD on the centered original sample matrix, the resulting projection
matrix can be identified as P = VT and the resulting covariance matrix will be proportional to Σ

2. The final interesting
property is coming from the SVD itself: as Σ

2 gathers the eigenvalues in decreasing order, it assures the unicity of the
transformation and give access to the principal component in a hierarchical way.

2The centered matrix is defined as XC = X− x̄T 1nS where x̄ is the vector of mean value for every variable and 1nS is a vector of 1 whose
dimension is nS.

3SVD is applied to matrix whose number of rows should be greater than its number of columns.

page 33

Theoretical introduction CHAPTER II. BASIC STATISTICAL ELEMENTS

II.3.1.3 Limitation of PCA

From what has been discussed previously it can appear very appealing, but there are few drawbacks or at least
limitations that can be raised:

• This method is very sensitive to extreme points: correlation coefficient can be perturbed by them.

• In the case of non-linear phenomenon, the very basic concept of PCA collapses. Imagine a simple circle-shaped
set of points, there are no correlation between the two variables, so no smaller space can be found using linear
combinations.

• Even if the PCA is working smoothly, one has to be able to find an interpretation of the resulting linear combinations
that have been defined to create the principle component. Moreover, it might not be possible to move along on more
refined analysis, such as sensitivity analysis for instance.

page 34

Chapter III

The Sampler module

III.1 Introduction

The Uranie-sampling module is used to produce design-of-experiments knowing the expected behaviour of the input
variables for the problem under consideration. The framework of our approach can be illustrated in the following
schematic view:

Figure III.1: Schematic view of the input/output relation through a code

• We will denote as C the studied computational code which, generally, has two types of inputs:

– The constant parameters which are gathered in the vector c ∈ IRnC . They represent constants.

– The uncertain parameters which are gathered in the vector X ∈ IRnX

It shall be noticed that these parameters are supposed to be uncertain either because of a lack of knowledge on
their actual value or because of their intrinsic random nature.

• The result of the code C for a given set of parameters (c,X) gives the vector y ∈ IRnY = C(c,X) which contains all
the output variables of the analysis.

Most of the time, the code C implies solving equations with partial derivatives in more or less complex configurations.
The most well-known method to handle this is to generate a sample, as representative as possible of the behaviour of all
input variables, in order to fully cover the input parameter phase space. This is the definition of a design-of-experiments
which can be generated in many different ways (depending on the analysis purpose, the laws under consideration...).
The rest of this section mainly introduces concepts used throughout this documentation; more details can be found
either in the user manual or in references.

Different methods exist to obtain a design-of-experiments from uncertain parameters which can be classified into two
categories:

page 35

The Stochastic methods CHAPTER III. THE SAMPLER MODULE

1. stochastic methods (see Section III.2). These methods consist in using a random number generator to produce
new samples. This is also called Monte-Carlo.

2. deterministic methods (see Section III.3). Two distinct calls with the same parameters will always give the
same point in a design-of-experiments. Some of these methods (those discussed below) are sequences which
are sometimes called quasi-Monte Carlo (qMC).

III.2 The Stochastic methods

III.2.1 Introduction

In these methods the knowledge (or mis-knowledge) of the model is encoded in the choice of probability law used to
describe the inputs xi, for i ∈ [0, nX]. These laws are usually defined by:

• a range that describes the possible values of xi

• the nature of the law, which has to be taken in the list of pre-defined laws already presented in Section II.1.1

A choice has frequently to be made between two implemented methods of drawing:

SRS (Simple Random Sampling): This method consists in independently generating the samples for each param-
eter following its own probability density function. The obtained parameter variance is rather high, meaning that
the precision of the estimation is poor leading to a need for many repetitions in order to reach a satisfactory
precision. An example of this sampling when having two independent random variables (uniform and normal
one) is shown in Figure III.3-left. In order to get this drawing, the variable are normalised from 0 to 1 and a
random drawing is performed in this range. The obtained value is computed calling the inverse CDF function
corresponding to the law under study (that one can see from Figure II.2 until Figure II.18).

LHS (Latin Hypercube Sampling): this method [11] consists in partitioning the interval of each parameter so as to
obtain segments of equal probabilities, and afterwards in selecting, for each segment, a value representing this
segment. An example of this sampling when having two independent random variables (uniform and normal one)
is shown in Figure III.3-right. In order to get this drawing, the variable are normalised from 0 to 1 and this range
is split into the requested number of points for the design-of-experiments. Thanks to this, a grid is prepared,
assuring equi-probability in every sub-space. Finally, a random drawing is performed in every sub-range. The
obtained value is computed calling the inverse CDF function corresponding to the law under study (that one can
see from Figure II.2 until Figure II.18).

The first method is fine when the computation time of a simulation is "satisfactory". As a matter of fact, it has the
advantage of being easy to implement and to explain; and it produces estimators with good properties not only for
the mean value but also for the variance. Naturally, it is necessary to be careful in the sense to be given to the term
"satisfactory". If the objective is to obtain quantiles for extreme probability values α (i.e. α = 0.99999 for instance),
even for a very low computation time, the size of the sample would be too large for this method to be used. When a
computation time becomes important, the LHS sampling method is preferable to get robust results even with small-size
samples (i.e. Ncalc = 50 to 200) [12]. On the other hand, it is rather trivial to double the size of an existing SRS sampling,
as no extra caution has to be taken apart from the random seed.

In Figure III.2, we present two samples of size Ncalc = 8 coming from these two sampling methods for two random
variables U1 according to a gaussian law, and U2 a uniform law. To make the comparison easier, we have represented
on both figures the partition grid of equiprobable segments of the LHS method, keeping in mind that it is not used by
the SRS method. These figures clearly show that for LHS method each variable is represented on the whole domain of

page 36

CHAPTER III. THE SAMPLER MODULE Introduction

variation, which is not the case for the SRS method. This latter gives samples that are concentrated around the mean
vector; the extremes of distribution being, by definition, rare.

Concerning the LHS method (right figure), once a point has been chosen in a segment of the first variable U1, no other
point of this segment will be picked up later, which is hinted by the vertical red bar. It is the same thing for all other
variables, and this process is repeated until the Ncalc points are obtained. This elementary principle will ensure that
the domain of variation of each variable is totally covered in a homogeneous way. On the other hand, it is absolutely
not possible to remove or add points to a LHS sampling without having to regenerate it completely. A more realistic
picture is draw in Figure III.3 with the same laws, both for SRS on the left and LHS on the right which clearly shows the
difference between both methods when considering one-dimensional distribution.

Figure III.2: Comparison of the two sampling methods SRS (left) and LHS (right) with samples of size 8.

Figure III.3: Comparison of deterministic design-of-experiments obtained using either SRS (left) or LHS (right) algo-
rithm, when having two independent random variables (uniform and normal one)

page 37

Correlating samples drawn from different marginals CHAPTER III. THE SAMPLER MODULE

There are two different sub-categories of LHS design-of-experiments discussed here and whose goal might slightly
differs from the main LHS design discussed above:

• the maximin LHS: this category is the result of an optimisation whose purpose is to maximise the minimal distance
between any sets of two locations. This is discussed later-on in Section III.2.3.

• the constrained LHS: this category is defined by the fact that someone wants to have a design-of-experiments fulfilling
all properties of a Latin Hypercube Design but adding one or more constraints on the input space definition (generally
inducing correlation between varibles). This is also further discussed in Section III.2.4.

Once the nature of the law is chosen, along with a variation range, for all inputs xi, the correlation between these
variables has to be taken into account. It is doable by defining a correlation coefficient but the way it is treated from
one sampler to the other is tricky and is further discussed in the next section.

III.2.2 Correlating samples drawn from different marginals

This section is introducing the way Uranie classes are introducing correlation between random variables when con-
sidering either the Pearson of Spearman correlation coefficients. The idea is to better explain the expected behaviour
while remaining at this level of correlation description (not going deep into the copula notion).

III.2.2.1 Notation convention

Let start by discussing the definition of a correlation matrix that connect (or not) a variable with the others. For a given
problem with nX variables, the covariance between two variables (denoted Cov(Xi,X j)) and their linear correlation
(denoted ρXiX j) can be estimated as

Cov(Xi,X j) = IE [(xi −µi)(x j −µ j)] and ρXiX j =
Cov(Xi,X j)

σXiσX j

EQUATION III.1: Covariance and correlation between two variables

In the equation above µ and σ are respectively the mean and standard deviation of the random variable under con-
sideration. The coefficients that should be provided by the user are the correlation one, called the Pearson ones (as
they’ve been estimated using values of the random variables, but this is further discussed at the end of this section and
also in Section V.1.1). The idea is to gather all these coefficients in matrix, called hereafter the correlation matrix, that
can be written as

C(nX ,nX) =

1 ρX1X2 . . . ρX1XnX

ρX2X1 1 . . . ρX2XnX
...

...
. . .

...
ρXnX X1 ρXnX X2 . . . 1

 .

Depending on the reference, one can discuss either the correlation matrix (C) or the covariance matrix (Co). Going
from one to the other is trivial if one defines D the diagonal matrix of dimension nX whose coefficients are the standard
deviation of the random variables, then

C = D−1 Co D−1 ⇔ Co = D CD

page 38

CHAPTER III. THE SAMPLER MODULE Correlating samples drawn from different marginals

III.2.2.2 Correlation / de-correlation

Let’s assume we have a random drawing X(nS,nX), where every column is the drawing of a given random variable of
size nS. On can then compute the following matrix T= n−1

S XT X which is the correlation matrix (respectively covariance
matrix) of our sample, if the columns have been centered and reduced (respectively only centered). If nS were to be
infinite, we would be able to state that the resulting empirical correlation of the drawn marginal would asymptotically be
the identity matrix of dimension nX , noted 1nX .

The next step is then to correlate the variable so that T is not the identity anymore but the target correlation matrix C∗.
Knowing that when one multiplies a matrix of random samples by a matrix W to get Y = WX, the resulting variance is
estimated as [6]

C∗ = Var[Y] = WVar[X]WT

= WWT , when Var[X]→ 1nX

EQUATION III.2: Simple correlation / de-correlation principle

This leads to the fact that the transformation matrix that provides such a correlation matrix in the end should satisfy
the last line of previous equation which is the definition of the Cholesky decomposition of an hermitian positive-definite
matrix (W being a lower triangular matrix)

C∗ = WWT

EQUATION III.3: General form of a Cholesky decomposition with lower triangular matrix

These steps are the one used to correlate the variables in both in the TBasicSampling and TGaussianSampling
classes. Let’s call this method the simple decomposition.

The implementation done in the TSampling class, is far more tricky to understand and the aim is not to explain the
full concept of the method, called the Iman and Conover method [13]. The rest of this paragraph will just provide insight
on what’s done specifically to deal with the correlation part which is different from what’s been explained up to now. The
main difference is coming from the underlying hypothesis, written in the second line of Equation III.2: in a perfect world,
for a given random drawing of uncorrelated variables the correlation matrix should satisfy the relation T = 1nX . This is
obviously not the case1, so one of the proposal to overcome this is to perform a second Cholesky decomposition, on
the drawn sample correlation matrix, to get the following decomposition: T = KKT . As K is lower triangular, it is rather
trivial to invert, we can then consider to transform the generated sample using this relation: Y = X(K−1)T WT . If one
consider that these multiplication does not change the fact that columns are centered and reduced, then one can write
the following equations

n−1
S YT Y = n−1

S WK−1XT X(K−1)T WT but as n−1
S XT X = T = KKT

= W(K−1K)(KT (K−1)T)WT

= WWT

= C∗

.

Thanks to this procedure (and many more technicalities such as, for instance, working with Spearman coefficient to be
able to handle correlation with stratified samples) the resulting correlation matrix is designed to be as close as possible
to the target one.

1Just considering statistical fluctuation should convince people, see for instance the discussion about Fisher’s z-transformation and confi-
dence interval on correlation factors developped later on in Section V.3.2

page 39

The maximin LHS CHAPTER III. THE SAMPLER MODULE

The final part of this discussion is a limitation of both methods: relying on Cholesky decomposition to decompose the
target correlation matrix. If one considers the case where C∗ is a singular matrix, then two important points can be
raised:

• this case means that one or more variables can be completely defined thanks to the others. The number of properly
defined variable can then be estimated by the rank of the correlation matrix. This situation can occur, as in some
complicated problem variables can be highly-intricated leading to this kind of situation.

• with this kind of correlation matrix, the Cholesky decomposition is not doable anymore so both methods are meant
to stop brutally.

In order to overcome this situation we propose to use a workaround based on the Singular Value Decomposition (SVD)
which leads to, knowing that C∗ is real symmetric, C∗ = UΣUT . This writing emphasise the connection between SVD
and eigenvalue decomposition (for a more general form and SVD, see for instance Equation II.1). In this context,
U(nX ,nX) is an unitary matrices while Σ(nX ,nX) is a diagonal matrix storing the singular values of C∗ in decreasing
order. In our case, where the correlation is singular, it means that one or more of the singular values are very close or
equal to 0. By rewriting our decomposition as below

C∗ = UΣ
1/2

Σ
1/2UT = UΣ

1/2(UΣ
1/2)T

one can redefine the matrix W = UΣ
1/2 and get the usual formula discussed above (see Equation III.3). This decom-

position can then be used instead of the Cholesky decomposition in both method (as it is either for the simple form
or along with another Cholesky to decompose the correlation matrix of the drawn sample, in our modified Iman and
Conover algorithm).

The usage of an SVD instead of a Cholesky decomposition for the target correlation matrix relies on the underlying
hypothesis that the left singular vectors (U) can be used instead of the right singular vectors (V) in the general SVD
formula shown for instance in Equation II.1. This holds even for the singular case, as the only differences seen
between both singular vector basis arise for the singular values close to zero. Since in this method we are always
using the singular vector matrix weighted by the square roots of the singular values, these differences are vanishing by
construction.

III.2.3 The maximin LHS

III.2.3.1 Introduction

Considering the definition of a LHS sampling, introduced in Section III.2.1, it is clear that permutating a coordinate of
two different points, will create a new sampling. If one looks at the x-coordinate (corresponding to a normal distribution)
in Figure III.2, one could put the point in the second equi-probable range, in the sixth one, and move the point which was
in the sixth equi-probable range into the second one, without changing the y-coordinate. The results of this permutation
is a new sampling with the interesting property of remaining a LHS sampling. A follow-up question can then be: what
is the difference between these two samplings, and would there be any reason to try many permutations ?

This is a very brief introduction to a dedicated field of research: the optimisation of a design-of-experiments with
respect to the goals of the ongoing analysis. In Uranie, a new kind of LHS sampling has been recently introduced,
called maximin LHS, whose purpose is to maximise the minimal distance between two points. The distance under
consideration is the mindist criterion: let D = [x1, · · · ,xN] ⊂ [0,1]d be a design-of-experiments with N points. The
mindist criterion is written as:

min
i, j

||xi −x j||2 (III.1)

where ||.||2 is the euclidian norm. The designs which maximise the mindist criterion are referred to as maximin LHS,
but generally speaking, a design with a large value of the mindist criterion is referred to as maximin LHS as well.

page 40

CHAPTER III. THE SAMPLER MODULE The maximin LHS

It has been observed that the best designs in terms of maximising (III.1) can be constructed by minimising its Lp

regularisation instead. It is written as

φp :=
[
∑
i< j

||xi −x j||−p
2

] 1
p

Figure III.4 shows, on the left, an example of a LHS when considering a problem with two uniform distributions between
0 and 1 but also, on the right, its transformation through the maximin optimisation. The mindist criterion is displayed on
top for comparison purpose.

Figure III.4: Transformation of a classical LHS (left) to its corresponding maximin LHS (right) when considering a
problem with two uniform distributions between 0 and 1.

From a theoretical perspective, using a maximin LHS to build a Gaussian process (GP) emulator can reduce the
predictive variance when the distribution of the GP is exactly known. However, it is not often the case in real applications
where both the variance and the range parameters of the GP are actually estimated from a set of learning simulations
run over the maximin LHS. Unfortunately, the locations of maximin LHS are far from each other, which is not a good
feature to estimate these parameters with precision. That is why maximin LHS should be used with care. Relevant
discussions dealing with this issue can be found in [16].

III.2.3.2 The simulated annealing method

The Simulated Annealing (SA) algorithm is a probabilistic metaheuristic which can solve a global optimisation problem.
It is here applied to the construction of maximin Latin Hypercube Designs (maximin LHS). The SA algorithm consists in
exploring the space of LHS through elementary random perturbations of both rows and columns in order to converge
to maximin ones. We have implemented in Uranie the algorithm of Morris and Mitchell [14, 15], which is driven by the
following parameters

• T0 is the initial temperature

• the decreasing of the temperature is controlled by c

• the number of iterations in the outer loop I

• the number of iterations in the inner loop Iinner

page 41

The constrained LHS CHAPTER III. THE SAMPLER MODULE

It is important to keep in mind that the performances of the simulated annealing method can strongly depend on c and
thus changing parametrisation can lead to disappointing results. Below, in Table III.1, we provide some parametrisation
examples working well with respect both to the number of the input variables d and the size of the requested design N.

d N = 10×d N = 20×d N = 30×d

2,3,4

c 0.99 c 0.99 c 0.99
T0 0.1 T0 0.1 T0 0.1
I 300 I 300 I 300

Iinner 300 Iinner 300 Iinner 300

5,6,7

c 0.99 c 0.99 c 0.99
T0 0.001 T0 0.001 T0 0.001
I 300 I 300 I 300

Iinner 300 Iinner 300 Iinner 300

8,9,10

c 0.99 c 0.99 c 0.99
T0 0.0001 T0 0.0001 T0 0.0001
I 300 I 300 I 300

Iinner 300-1000 Iinner 300-1000 Iinner 300-1000

Table III.1: Proposed list of parameters value for simulated annealing algorithm, depending on the number of points
requested (N) and the number of inputs under consideration (d)

III.2.4 The constrained LHS

III.2.4.1 Introduction

Considering the definition of a LHS sampling, introduced in Section III.2.1 and also discussed in Section III.2.3.1, it
is clear that permutating a coordinate of two different points, will create a new sampling. The idea here is to use
this already discussed property to create fulfill requested constraints on the design-of-experiments to be produced.
Practically, the constraint will have one main limitation: it should only imply two variables. This limitation is set, so far,
for simplicity purpose, as the constraint matrix might blow up and the solutions in term of permutation will also become
very complicated (see the heuristic description below in Section III.2.4.2 to get a glimpse at the possible complexity).

Before this algorithm, the solution to be sure to fulfill a constraint was to generate a large sample and apply the
constraint as a cut, meaning that no control on the final number of locations in the design-of-experiments and on the
marginal distribution shape was possible. From a theoretical perspective, using a constrained LHS is allowing both
to have the correct expected marginal distributions and to have precisely the requested number of locations to be
submitted to a code or function. This is shown in Figure III.5, where in a simple case with only three variables uniformly
distributed, it is possible to apply three linear constraints: two of them are applied on the (x0,x1) plane while the last
one is applied on the (x1,x2) one.

page 42

CHAPTER III. THE SAMPLER MODULE The constrained LHS

Figure III.5: Matrix of distribution of three uniformly distributed variables on which three linear constraints are applied.
The diagonal are the marginal distributions while the off-diagonal are the two-by-two scatter plots.

III.2.4.2 The heuristic

The idea behing this empirical heuristic is to rely on permutations and to decide on the best permutation to be done
thanks to the content of the constraint matrix and also the distributions of solutions along the row and columns. This
will be discussed further in the rest of this section but first a focus is done on the definition of a constraint. If one
considerers a simple constraint, its implementation can be decompose in the following steps:

1. define it simply with an equation, for instance one wants to reject all locations for which x0 < x1;

2. define a constraint function that can compute the margin of success, for instance in our simple case c(x0,x1) =
x0 − x1;

3. define a characteristic constraint function that only states whether the constraint is fulfilled, for instance in our

simple case 1c(x0,x1) =

{
0 ifx0 < x1

1 ifx0 > x1

If formally the constraint function can provide more information when reading it (in terms of margin), one needs to know
the way to apply a selection on these results which is not the simplest aspect to provide which explains why in the rest
of this section the focus will be put on the characteristic contraint function. In order to illustrate our method, one can
start from a provided LHS design-of-experiments, called hereafter L= {xi, i = 1, . . . ,nS} where xi is the i-Th location

page 43

The constrained LHS CHAPTER III. THE SAMPLER MODULE

which can be written as xi = (xi
1, . . . ,x

i
nX
): it is a sample of size nS in the nX input space. From there, the constraint

matrix is indeed defined as done below:

C(nS,nS) =

1c(x1

row,x
1
col) 1c(x1

row,x
2
col) . . . 1c(x1

row,x
nS
col)

1c(x2
row,x

1
col) 1c(x2

row,x
2
col) . . . 1c(x2

row,x
nS
col)

...
...

. . .
...

1c(xnS
row,x

1
col) 1c(xnS

row,x
2
col) . . . 1c(xnS

row,x
nS
col)

 .

The constraint matrix is, as visible from the definition above, a (nS,nS) matrix which only contains 0 and 1 depending on
whether the current configuratio of the (xrow,xcol) plane fulfill the constraint. This shows why restraining the constraint
to only two-variables function is a reasonable approach: for a given configuration the number of permutations will blow
up if one will considerer larger dimension constraint. Giving this object, one can introduces more useful objects:

• the constraint row solution vector, that sums up for every row the number of solutions, i.e. the number of columns
that allow to fulfill the constraint {ci

row = ∑
nS
j=1 Ci j,∀i ∈ [1,nS]};

• the constraint column solution vector, that sums up for every column the number of solutions, i.e. the number of row
that allow to fulfill the constraint {ci

col = ∑
nS
i=1 C ji,∀i ∈ [1,nS]};

• the constraint diagonal vector i.e. the diagonal of the constraint matrix {ci
diag(nS) = Cii,∀i ∈ [1,nS]}

Bearing in mind that the objective is to have a constraint fulfilled, the heuristic will use the following criterion as a
stopping signal: cstop = ∑

nS
i=1 ci

diag = nS. This heuristic starts from a provided LHS design-of-experiments for which one
can consider three cases:

A it cannot fulfill the constraint, meaning that there is no sets of permutation to have cstop = nS;

B it can fulfill the constraint with only one set of permutation leading to the only solution Lconstr;

C it can fulfill the constraint with many different sets of permutation leading to a very large number of configurations
and so to a very large number of constrained design-of-experiments.

Practically, the heuristic is organised in a step-by-step approach in which the variable used as first argument in the
constraint definition will be used as row indicator (it will be called xrow) and it is considered fixed. This implies that the
permutation will be done by reorganising the second variable, called xcol . The heuristic is then described below:

1. The constraint matrix is estimated along with all the objects discussed above (C,crow,ccol,cdiag).

• If crow contains one 0, it means that the design-of-experiments cannot fulfill the constaint. If this design-of-
experiments, has been provided, the method stops, on the other hand if it was generated on-the-fly, then
another attempt is done (up to 5 times).

• A bipartite graph method is called to check that there can be at least one solution for every row. If not, if the
design-of-experiments has been provided, the method stops, on the other hand if it was generated on-the-fly,
then another attempt is done (up to 5 times).

This step allows to sort out the design-of-experiments that will fall into the category A (defined above) from those
that might fall either in the B or C ones.

2. If cstop < nS, then all the rows for which the diagonal elements is 0 are kept aside and sorted out by increasing
number of solutions over all the columns (their value of crow), which defines Ωrow = {i ∈ [1,nS],ci

diag = 0}. The
row considered, whose index will be written k for kept hereafter, is the one with the lowest number of solutions
(the most urgent one in a way), so it can be written k = mincrow Ωrow

3. For xk
row the chosen value, all the columns that provide a solution are kept aside and sorted out by increasing

order2 of solutions over all rows (their value of ccol), which defines Ωk
col = {i ∈ [1,nS],Cki = 1}. This sorting

2the decreasing order has also been tested, but it has show a lower discrepancy in the resulting design-of-experiments.

page 44

CHAPTER III. THE SAMPLER MODULE QMC method

provides information on the marging, as the highest values of solutions over the rows means that this value of
xcol is compatible with many other xrow instances. A loop is performed over all these solutions, so that ∀t ∈ Ωk

col :

• By definition we know that Ckk = 0 and Ckt = 1, so if Ctk = 1 then the permutation will only increase the
stopping criterion (cstop), as the actual column k, will become the new column t after permutation. In this case,
one can move to the permutation step. This can be written, by calling s the actual index of the column (for
selected), s = minccol{t ∈ Ωk

col,C
tk = 1}. From there, one moves to the permutation step.

• If none of the solution t under investigation can satisfy the requirement Ctk = 1, then s = minccol{t ∈ Ωk
col, t ̸∈

Ωk
col,perm}. In this definition, the ensemble Ωk

col,perm is the ensemble of column index which has already been
used previously (as this is an interative heuristic) in a permutation for the row k under investigation. This
precaution has been introduced in order to prevent from having a loop in the permutation process. From there,
one moves to the permutation step.

• If {t ∈ Ωk
col, t ̸∈ Ωk

col,perm}=∅, meaning that all possible solutions have been tested, then the selected column

index is the result of a random drawing in the nsemble of solutions, meaning that s = rand(Ωk
col). From there,

one moves to the permutation step.

4. Now that both k and s are known, the permutation will be done, it consists in:

• changing content of the design-of-experiments, meaning doing xk
col ↔ xs

col ;

• changing the columns in the constraint matrix, meaning doing Cik ↔ Cis,∀i ∈ [1,nS];

• changing the content of the constraint column solution vector, meaning doing ck
col ↔ cs

col ;

• fill once more the constraint diagonal vector (cdiag) and compute once more the stopping criterion (cstop) to
check whether the permutation process has to be continued. If so, then one moves to the second step.

This presentation has been simplified as, here, there is only one constraint applied to the design-of-experiments.
Indeed, when there are more than one constraint, let’s call (C,crow,ccol,cdiag) and (D,drow,dcol,ddiag) the objects
associated to two constraints defined in both planes (xc

row,x
c
col) and (xd

row,x
d
col), few cautions and extra steps have

to be followed as long as both stopping criteria, cstop or dstop are different from nS depending on the variables in the
constraint plane definition:

• if planes (xc
row,x

c
col) and (xd

row,x
d
col) have no common variable, or if xc

row = xd
row but xc

col ̸= xd
col then the constraints

can be considered orthogonal;

• if xc
col is the same variable as xd

row then any permutations for the constraint c have to be propagated to the objects of
the constraint d, meaning that on top of the list in step 4, the extra steps consist in:

– changing the rows in the constraint matrix for the constraint d, meaning doing Dki ↔ Dsi,∀i ∈ [1,nS];

– changing the content of the constraint row solution vector for constraint d, meaning doing dk
row ↔ ds

row;

– fill also the constraint diagonal vector (ddiag) and compute once more the stopping criterion (dstop) to check whether
the permutation process has to be continued.

• if xc
col = xd

col , then any permutations from on the constraint can undo a previous one defined from the other one,
meaning that one can create a loop that will (thanks to our heuristic definition) will end up into the random permutation
area. To prevent this, so far, one can not create a second constraint using the same variable as second argument.

III.3 QMC method

The deterministic samplings can produce design-of-experiments with well defined properties, that can be very useful
in specific cases such as:

page 45

QMC method CHAPTER III. THE SAMPLER MODULE

• to cover at best the space of the input variables

• to explore the extreme cases

• to study combined or non-linearity effect

There are two kinds of quasi Monte-Carlo sampling methods implemented in Uranie: the regular ones and the sparse
grid ones. On the first hand, the former can be generated using two different sequences:

1. Sequences of Sobol [17]

2. Sequences of Halton [19]

Figure III.6 shows a comparison of the design-of-experiments obtained with both sequences, along with the ones
produced with a basic stochastic sampling, following the LHS and SRS "recipes", all when dealing with two uniform
variables. The coverage is clearly more regular in the case of quasi Monte-Carlo sequences which is the origin of their
name: low-discrepancy sequences. There are plenty definitions for the notion of discrepancy (see litterature for them)
but they all quantify how close the sequence is to a perfect equidistribution of points.

Figure III.6: Comparison of both quasi Monte-Carlo sequences with both LHS and SRS sampling when dealing with
two uniform variables.

On the other hand, the sparse grid sampling can be very useful for integration purposes and can be used in some of
the meta-modelling definition, see, for instance, in Section IV.3.2.2. In Uranie we can used the Petras algorithm [20] to
produce these sparse grids, shown for different levels in Figure III.7, that can be compared to regular algorithms ones
in Figure III.6 (in both cases, the problem is described with two uniform variables).

Figure III.7: Comparison of design-of-experiments made with Petras algorithm, using different level values, when
dealing with two uniform variables.

page 46

Chapter IV

Generating surrogate models

IV.1 Introduction

This part discusses the generation of surrogate models which aim to provide a simpler, and hence faster, model in order
to emulate the specified output of a more complex model (and generally time and memory consuming) as a function
of its inputs and parameters. The input dataset can either be an existing set of elements (provided by someone else,
resulting from simulations or experiments) or it can be a design-of-experiments generated on purpose, for the sake of
the ongoing study. This ensemble (of size nS) can be written as

L= {(xi,yi), i = 1, . . . ,nS}

where xi is the i-Th input vector which can be written as xi = (xi
1 . . . xi

nX
) and the output yi = y(xi).

There are several predefined surrogate-models proposed in the Uranie platform:

• The linear regression, discussed in Section IV.2

• The chaos polynomial expansion, discussed in Section IV.3

• The artificial neural networks, discussed in Section IV.4

• The Kriging method, or gaussian process, discussed in Section IV.5

It is recommended to follow the law of parsimony (also called Ockham’s razor) meaning that the simplest model should
be tested first, unless one has insight that it is not well suited for the problem under consideration. There have been
many analysis performed to try to provide better guideline than the Ockham’s razor on what model to choose, knowing a
bit about the physical problem under study. Among these, one can look at this reference [7] that proposes the following
recommendations:

• Polynomial models: well-established and easy to use, they are best suited for applications with random error and
appropriate for applications with <10 factors.

• Neural networks: good for highly nonlinear or very large problems (∼10 000 parameters), they might be best suited
for deterministic applications but they imply high computational expense (often .10,000 training data points); best for
repeated application.

• Kriging: extremely flexible but complex, they are well-suited for deterministic applications and can handle applications
with <50 factors.

As already stated previously, surrogate models rely on a training database L whose size nS should be sufficient to
allow a proper estimation of the hyper-parameters, providing a nice estimation of the quantity of interest. The next two
parts will introduce the concept of quality criteria and the basic problem of under- and over-fitting.

page 47

Quality criteria definition CHAPTER IV. GENERATING SURROGATE MODELS

IV.1.1 Quality criteria definition

Once the model hyper-parameters are set (this step depends heavily on the chosen model, as discussed in the rest of
this section), the quantity of interest can be estimated as ŷ = M(x), where M represents the surrogate model. Only
using the training database L, one can have a first hint on whether this estimation can be considered reliable or not,
thanks to various quality criteria. Among these, one can state for instance

MSE =
1
nS

nS

∑
i=1

(yi − ŷi)
2 , R2 = 1− ∑

nS
i=1(yi − ŷi)

2

∑
nS
i=1(yi − y)2 , and R2

adj = 1−|1−R2|
∣∣∣∣ nS −1
nS − (1+nX)

∣∣∣∣ ,
EQUATION IV.1: Training database quality criteria definition

where ŷi = ŷ(xi) = M(xi) is the prediction from the surrogate model at the i-Th location and y is the expectation of the
true value of our quantity of interest under consideration. MSE stands for Mean Square Error and should be as close
to 0 as possible. The R2 coefficient on the other hand should as close to 1 as possible to state that the model might be
valid. The last coefficient is just the "adjusted" R2, to regularise the fact that R2 tends to be artificially close to 1 when
the input space dimension nX is large. A final caveat about MSE: unlike R2, MSE is not "scaled" or "normalised", so if
one is dealing with a model whose results are small numerically, the surrogate model might be very wrong while having
a small MSE. The scaling performed when computing R2 (dividing by the variance of the true model) is coping for this.

The criteria discussed above are only using the training database L and their interpretation can be misleading in
case of over-fitting for instance (see Section IV.1.2 for a discussion on this matter). To prevent this, it is possible to
use another database, often called validation database1 that will be called hereafter P and whose size is nP. The
predictivity coefficient Q2 is analogous to the R2 one, as one can write

Q2 = 1− ∑
nP
i=1(yi − ŷ(xi))

2

∑
nP
i=1(y− yi)2 .

EQUATION IV.2: Validation database predictivity criterion definition

The data are this time coming from the validation database (xi ∈ P and yi = M(xi)) so they have not been used to
train de surrogate model. The closer to 1 the Q2 coefficient is, the more predictive the model can be considered.

Finally, for some surrogate models only, it is possible to perform a certain type of cross-validation for no or very limited
cost. The idea is to obtain the prediction ŷ∼i = M∼i(xi) where M∼i represents the surrogate model for which the
training database would have been L without the i-Th location (ŷ∼i is therefore called the Leave-one-out prediction).
The resulting quality criteria are then defined as

MSELOO =
1
nS

nS

∑
i=1

(yi − ŷ∼i)
2 et Q2

LOO = 1− ∑
nS
i=1(yi − ŷ∼i)

2

∑
nS
i=1(yi − ȳ)2 .

EQUATION IV.3: Leave-one-out quality criteria definition

This happen to be very practical when the data are rare and expensive to produce: it is indeed complicated to "sacrifice"
good data to test the validity.

1but not always, as one might find also test database, also this denomination might be confusing when discussing generalisation/regulari-
sation as a method to prevent from over-fitting (see Section IV.1.2).

page 48

CHAPTER IV. GENERATING SURROGATE MODELS Adapting the fitting strategy

IV.1.2 Adapting the fitting strategy

This part describes the possible problem that one can meet when trying to train a surrogate model. Starting back
from the situation described previously where L and P are respectively our training and validation database. If one
assumes that the following relation yi = f (xi)+ εi can exist (basically introducing a white noise ε ∼ N (0,σ2

e), then
finding a proper surrogate model would mean finding the "function" M that can generalise to location out of the training
database and whose error on the validation database can be written as:

E
[
(y−M(x))2]= E [M(x)− f (x)]2 +E

[(
M(x)−E

[
M(x)

])2
]
+σ

2
e .

= (Bias [M(x)])2 +Var [M(x)]+σ
2
e .

This total error is the sum of three different contributions :

• an irreducible error, σ2
e , which is the lowest limit expected on a validation test;

• a bias term, Bias [M(x)], which is the difference between the average prediction of our model and the correct value,
that we are trying to predict;

• a variance term, Var [M(x)], which is the variability of our model prediction for a given data point or a value, that tells
us spread of our data.

Getting the best surrogate model is then a minimisation of both the variance and bias term, even though usually these
two criteria are antagonist: the more complex the surrogate model is, the smaller the bias is becoming. Unfortunately,
this reduction of the bias goes with an increase of the variance as the model tends to adapt itself more to the data. This
is known as the "Variance-Bias dilemma" or the "Variance-Bias trade-off". This is sketched in Figure IV.1 that depicts
the evolution of the bias, the variance and their sum, as a function of the complexity of the model.

Figure IV.1: Sketch of the evolution of the bias, the variance and their sum, as a function of the complexity of the model.

There are usually three situations that one can come across when dealing with surrogate models, all depicted in
Figure IV.2, where black and yellow dots respectively represent a training and a validation database. The ideal situation
is the third one, in the right-hand side of the figure, where the green line passes in between all points, meaning that the

page 49

Adapting the fitting strategy CHAPTER IV. GENERATING SURROGATE MODELS

model predictions are close to all original values, disregarding the database they’re coming from. This leads to a low
bias and, as the variations are smooth and small through the entire range, a low variance as well. Let’s now discuss
the two other situations.

Figure IV.2: Sketches of under-trained (left), over-trained (middle) and properly trained (right) surrogate models, given
that the black points show the training database, while the yellow ones show the testing database

The first situation, shown in the left part Figure IV.2, is what is called under-fitting: the model cannot capture the proper
behaviour of the code and if one wants to estimate the MES, either for the training or validation database, the result
in both cases will be poor. It generally arises when one assumes an over-simplified model either because of a lack
of data or because of a mis-knowledge of the general trend of the problem under consideration. On the validation
database, the prediction coming from the blue line will have an obvious low (null) variance and mainly a large bias
(which is characteristic of under-fitting issue).

The opposite situation, represented in red in the middle of Figure IV.2, is what is called over-fitting: the model has
learned (almost perfectly) the training database, and only it. It failed in capturing the proper trend of the code and if
one applies this model to a validation database, the resulting prediction will be really poor. This situation corresponds
to the case where the variance is becoming large. There are several strategies to avoid being in the situation but in
general the first thing to check is that there is consistency between the the degrees of freedom of the model and the
degree of freedom provided through the training database. One of the possible mechanism consists, for instance, in
splitting the training database into a large sub-part used to train the model and a smaller one used to control how well
the resulting model can predict unknown points. If one computes and represents the MSE for both sub-parts, as a
function of the training steps, the resulting curves should look as those depicted in Figure IV.3. On the first hand, the
MSE estimated on the training sub-part only gets better along the training, while on the other hand, the MSE computed
on the control sample (called generalisation error, as it represents how well the model can be generalised to the rest
of the input space) diminishes along the training error up to a plateau and then it grows again. This plateau is where
one should stop the training procedure.

Figure IV.3: Evolution of the different kinds of error used to determine when does one start to over-train a model

page 50

CHAPTER IV. GENERATING SURROGATE MODELS The linear regression

IV.2 The linear regression

When using the linear regression, one assumes that there is only one output variable and at least one input variable.
The data from the training database are stored here in a matrix A(nS,nX) where nS is the number of elements in the
set and nX is the number of input variables to be used. The idea is to write any output as y = ∑

p
i=1 βihi, where β are

the regression coefficients and hi, are the regressors: p simple functions depending on one or more input variables2

that will be the new basis for the linear regression. A classical simple case is to have p = nX and {hi(x) = xi}i=1,...,nX .

The regressor matrix is then constructed as H(nS, p) and is filled with

H(nS, p) =

h1

1 . . . h1
p

h2
1 . . . h2

p
...

. . .
...

hnS
1 . . . hnS

p

 . Also y =
(

y1 y2 . . . ynS
)

and β =

 β1
...

βp

In the case where the number of points (nS) is greater than the number of input variables (nX), this estimation is
just a minimisation of ||y−Hβ ||2 which leads to the general form of the solution β = (HT H)−1HT y. From this, the
estimated values of the output from the regression are computed as ŷ = Hβ = H(HT H)−1HT y = Py, if one calls
P = H(HT H)−1HT .

As a result, a vector of parameters is computed and used to re-estimate the output parameter value. Few quality criteria
are also computed, such as R2 and the adjusted one R2

adj. There is an interesting interpretation of the R2 criteria, in the
specific case of a linear regression, coming from the previously introduced matrix P, once considered as a projection
matrix. It is indeed symmetrical and the following relation holds P2 = P, so the estimation ŷ by the linear regression
is a orthogonal projection of y onto the subspace H spanned by the column of H. This is depicted in Figure IV.4 and
it shows that the variance, (y− ȳ)2 can be decomposed into its component explained by the model (ŷ− ȳ)2 and the
residual part, (y− ŷ)2. From this, the formula in Equation IV.1 can be also written

R2 = 1− ∑
nS
i=1(yi − ŷi)

2

∑
nS
i=1(yi − y)2 =

∑
nS
i=1(ŷi − y)2

∑
nS
i=1(yi − y)2

Figure IV.4: Schematical view of the projection of the original value from the code onto the subspace spanned by the
column of H (in blue).

2technically, one can also choose 1 as a regressor: this would bring a constant term in the regression.

page 51

Chaos polynomial expansion CHAPTER IV. GENERATING SURROGATE MODELS

For theoretical completeness, in most cases, the matrix H is decomposed following a Singular Value Decomposition
(SVD) such as H(nS, p) = U(nS,nS)× S(nS, p)× VT (p, p). In this context U(nS,nS) and V(p, p) are orthogonal
matrices and S(nS, p) is a diagonal matrix (that can also be stored as a singular values vector Svec(p)). The diagonal
matrix always exists, assuming that the number of samples is greater than the number of inputs (nS ≥ p). This has two
main advantages the first one being that there is no matrix inversion to be performed, which implies that this procedure
is more robust. The second advantage is when considering the P matrix that links directly the output variable and its
estimation through the surrogate model : it can now simply be written as P = UUT . This is highly practical once one
knows that this matrix is used to compute the Leave-One-Out uncertainty, only considering its diagonal component.

IV.3 Chaos polynomial expansion

IV.3.1 Introduction

IV.3.1.1 Theoretical background

The concept of polynomial chaos development relies on the homogeneous chaos theory introduced by Wiener in 1938
[25] and further developed by Cameron and Martin in 1947 [26]. Using polynomial chaos (later referred to as PC)
in numerical simulation has been brought back to the light by Ghanem and Spanos in 1991 [27]. The basic idea is
that any square-integrable function can be written as f (x) = ∑α fαΨα(x) where { fα} are the PC coefficients, {Ψα}
is the orthogonal polynomial-basis. The index over which the sum is done, α , corresponds to a multi-index whose
dimension is equal to the dimension of vector x (i.e. nX) and whose L1 norm (|α|1 = ∑

nX
i=1 αi) is the degree of the

resulting polynomial. Originally written to deal with normal law, for which the orthogonal basis is Hermite polynomials,
this decomposition is now generalised to few other distributions, using other polynomial orthogonal basis (the list of
those available in Uranie is shown in Table IV.1). This decomposition can be helpful in many ways: it can first be used

Distribution \ Polynomial type Legendre Hermite Laguerre Jacobi
Uniform X
LogUniform X
Normal X
LogNormal X
Exponential X
Beta X

Table IV.1: List of best adapted polynomial-basis to develop the corresponding stochastic law

as a surrogate model but it gives also access, through the value of its coefficient, to the sensitivity index (this will be
first introduced in Section IV.3.1.2 and further developed in Chapter V).

IV.3.1.2 Simple example

We’ll discuss here a simple example of polynomial chaos development and its implication. In the case where a system
is depending on two random variables, XU and XN that follow respectively an uniform and normal distribution, giving
rise to a single output Y . Following the remark about square-integrable functions, both inputs can be decomposed on a
specific orthogonal polynomial-basis, such as XU = ∑α f U

α Lα , and XN = ∑α f N
α Hα , where { f U

α } and { f N
α } are the PC

coefficients that respectively multiply the Legendre (L) and Hermite (H) polynomials, for the uniform and normal law
and where α is the multi-index (here of dimension 1) over which the sum is done. These basis are said to be orthogonal
because for any degrees k1 and k2, taking the Legendre case as an example, one can write

∫
Ω
Lk1 Lk2 dΩ = 0, for

k1 ̸= k2.

page 52

CHAPTER IV. GENERATING SURROGATE MODELS Introduction

It is now possible to write the output, Y , as a function of these polynomials. For the i-Th simulation,

Y i = ∑
|α|1≤nX

βαΨα(X i
U ,X

i
N),

EQUATION IV.4: Chaos polynomial function

where α is the multi-index of dimension 2 (α ∈ IN2) over which the sum is performed. The Ψ polynomials are built by
tensor products of the inputs basis following the previously defined degree. In the specific case of the simple example
discussed here, this leads to a decomposition of the output that can be written as

Y i = β0,0 (|α|1 = 0)

+β1,0L1(X i
U) + β0,1H1(X i

N) (|α|1 = 1)

+β1,1L1(X i
U)H1(X i

N) + β2,0L2(X i
U) + β0,2H2(X i

N) (|α|1 = 2)

+β2,1L2(X i
U)H1(X i

N) + β1,2L1(X i
U)H2(X i

N)+ β3,0L3(X i
U) + β0,3H3(X i

N) (|α|1 = 3)

+ . . .

EQUATION IV.5: polynomial chaos decomposition

From this development, it becomes clear that a threshold must be chosen on the order of the polynomials used, as
the number of coefficient is growing quickly, following this rule Ncoeff =

(nX+p)!
nX ! p! , where p is the cut-off chosen on the

polynomial degree. In this example, if we choose to use p = 2, this leads to only 6 coefficients to be measured:
β0,0, β1,0, β0,1, β2,0, β0,2, β1,1. Their estimation is discussed later.

These coefficients are characterising the surrogate model and can be used, when the inputs are independent, to
estimate the corresponding Sobol’s coefficients (a deeper discussion about these coefficients and their meaning can
be found in Section V.1). For the uniform and normal example, the first order coefficients are respectively given by

SU
1 =

β 2
1,0 + β 2

2,0

Var(Y)
and SN

1 =
β 2

0,1 + β 2
0,2

Var(Y)
,

whereas the total order coefficients are respectively given by

SU
T =

β 2
1,0 + β 2

2,0 + β 2
1,1

Var(Y)
and SN

T =
β 2

0,1 + β 2
0,2 + β 2

1,1

Var(Y)
.

The complete variance of the output, can also be written as

Var(Y) = ∑
|α|1≤2

β
2
α

Warning
One can use chaos polynomial expansion with a training database without knowing the probability laws used
to generate it, as long as the polynomial coefficients estimation is done with a regression method and not
an integration one (for which the integration-oriented design-of-experiments is made specifically knowing the
laws, see discussion in Section IV.3.2.1 and Section IV.3.2.2).
The interpretation of the polynomial coefficients as Sobol’s coefficients, on the other hand, is strongly relying
on the hypothesis that the probability laws have been properly defined, so it becomes not suitable if the
training database is made without knowing the probability laws. The explanations for this is way beyond the
scope of this documentation but more information can be found in the literature (for instance in [29]).

page 53

Nisp in a nutshell CHAPTER IV. GENERATING SURROGATE MODELS

IV.3.2 Nisp in a nutshell

The wrapper of the Nisp library, Nisp standing for Non-Intrusive Spectral Projection, is a tool allowing to access to Nisp
functionality from the Uranie platform. The main features are detailed below.

The Nisp library [28] uses spectral methods based on polynomial chaos in order to provide a surrogate model and
allow the propagation of uncertainties if they arise in the numerical models. The steps of this kind of analysis, using
the Nisp methodology are represented schematically in Figure IV.5 and are introduced below:

• Specification of the uncertain parameters xi,

• Building stochastic variables associated xi,

• Building a design-of-experiments

• Building a polynomial chaos, either with a regression or an integration method (see Section IV.3.2.1 and Sec-
tion IV.3.2.1)

• Uncertainty and sensitivity analysis

Figure IV.5: Schematic view of the Nisp methodology

IV.3.2.1 The regression method

The regression method is simply based on a least-squares approximation: once the design-of-experiments is done, the
vector of output y(nS) is computed with the code. The regression coefficients β are estimated considering that every
computed output points can be represented following Equation IV.5. By writing the correspondence matrix H(nS, p) and
the coefficient-vector β , this estimation is just a minimisation of ||y−Hβ ||2, where, once back to our simple example
from Section IV.3.1.2 for illustration purpose,

y =
(

Y 1 Y 2 . . . Y nS
)
, H =

Ψ1(X1

U ,X
1
N) . . . Ψp(X1

U ,X
1
N)

Ψ1(X2
U ,X

2
N) . . . Ψp(X2

U ,X
2
N)

...
. . .

...
Ψ1(X

nS
U ,XnS

N) . . . Ψp(X
nS
U ,XnS

N)

 , and β =

β1

β2
...

βp

 ,

As already stated in Section IV.2, this leads to write the general form of the solution as β = (HT H)−1HT y which also
shows that the way the design-of-experiments is performed can be optimised depending on the case under study (and
might be of the utmost importance in some rare case).

In order to perform this estimation, it is mandatory to have more points in the design-of-experiments than the number
of coefficient to be estimated (in principle, following the rule nS ≥ 1.5×Ncoeff leads to a safe estimation).

page 54

CHAPTER IV. GENERATING SURROGATE MODELS The artificial neural network

IV.3.2.2 The integration method

The integration method relies on a more "complex" design-of-experiments. It is indeed recommended to have dedicated
design-of-experiments, made with a Smolyak-based algorithms (as the ones cited in Figure IV.5). These design-of-
experiments are sparse-grids and usually have a smaller number of points than the regularly-tensorised approaches.
In this case, the number of samples has not to be specified by the user. Instead, the argument requested describes
the level of the design-of-experiments (which is closely intricated, as the higher the level is, the larger the number of
samples is). Once this is done, the calculation is performed as a numerical integration by quadrature methods, which
requires a large number of computations.

In the case of Smolyak algorithm, this number can be expressed by the number of dimensions nX and the requested
level l as Nd = 2l × lnX−1 which shows an improvement with respect to the regular tensorised formula for quadrature
(∼ 2l.nX).

IV.4 The artificial neural network

The Artificial Neural Networks (ANN) in Uranie are Multi Layer Perceptron (MLP) with one or more hidden layer (con-
taining ni

H neurons, where i is use to identify the layer) and one or more output variable.

IV.4.1 Introduction to the formal neuron

The concept of formal neuron, has been proposed in 1943, after observing the way biological neurons are intrinsically
connected [21]. This model is a simplification of the various range of functions dealt by a biological neuron, the formal
one (displayed in Figure IV.6) being requested to satisfy only the two following:

• summing the weighted input values, leading to an output value called neuron’s activity a=∑
nX
i=i ωixi, where ω1 . . . ωnX

are the synaptic weights of the neuron.

• emitting a signal (whether the output level goes beyond a chosen threshold or not) s = f (a+θ) where f and θ are
respectively the transfer function and the bias of the neuron.

Figure IV.6: Schematic description of a formal neuron, as seen in McCulloch and Pitts [21].

One can introduce a shadow input defined as x0 = 1 (or -1), which lead to consider the bias as another synaptic weight
ω0 = θ . The resulting emitted signal is written as

s = f (
nX

∑
i=0

ωixi)

page 55

The working principle CHAPTER IV. GENERATING SURROGATE MODELS

There are a large variety of transfer functions possible, and an usual starting point is the sigmoid family, defined with
three real parameters, c, r and k, as fc,k,r(x) = c ekx−1

ekx+1 + r. Setting these parameters to peculiar values leads to known
functions as the hyperbolic tangent and the logistical function, shown in Figure IV.7 and defined as

f1,2,0(x) =
e2x −1
e2x +1

=
ex − e−x

ex + e−x = tanh(x) and f1/2,1,1/2(x) =
1
2

ex −1
ex +1

+
1
2
=

1
1+ e−x

Figure IV.7: Example of transfer functions: the hyperbolic tangent (left) and the logistical one (right)

IV.4.2 The working principle

The artificial neural network conception and working flow has been first proposed in 1962 [22] and was called the
perceptron. The architecture of a neural network is the description of the organisation of the formal neurons and the
way they are connected together. There are two main topologies:

• complete: all the neurons are connected to the others.

• by layer: the neurons on a layer are connected to all neurons on the previous layer and the following one.

The general organisation of the neural network is detailed in three steps in the following part, and summarised in
Figure IV.8. The first layer, where the vector of entries is stored, is called the input layer. The last one is called the
output layer. In between, one can put from zero (leading to a Rosenblatt perceptron) to as many hidden layers as
wanted. With one or more hidden layers, the neural networks are called Multi Layer Perceptron (MLP) and have been
studied heavily since early 1990 [23, 24]. In Uranie, the architecture has to be chosen bu the user (as least one hidden
layer). layer.

page 56

CHAPTER IV. GENERATING SURROGATE MODELS The working principle

Figure IV.8: Schematic description of the working flow of an artificial neural network as used in Uranie

The first step is the definition of the problem: what are the input variables under study, how many neurons will be created
in how many hidden layers, what is the chosen activation function. When choosing the architecture of an artificial neural
network, one should keep in mind that the number of points used to perform the training should obviously be greater
than the number of parameters to be estimated, i.e. the number of synaptic weights (the usual rule of thumb being
having a factor 1.5 between data points and the number of coefficients). From the explanation given previously, the
number of coefficients for a single hidden layer neural network is nH × (nX + 1) where nH is the number of neurons
chosen. This formula can be generalised to multi-layer cases, as

NCoeff =
nL

∑
i=1

ni
H × (ni−1

H +1)

In this equation, ni
H is the number of hidden neurons per layer, for i ∈ [1,nL] where nL is the number of layer, and

n0
H is the number of inputs (n0

H = nX). Defining an architecture is quite tricky and depends on the problem under
consideration. Going multi-layer is a way to reduce the number of coefficients to be estimated when the number of
inputs is large: with 9 inputs variables, a mono-layer with 8 neurons will have 80 synaptic weights while a network with
3 layers and 3 neurons each, will have 9 neurons in total but only 54 weights to be determined.

The second step is the training of the ANN. This step is crucial and many different techniques exist to achieve it but, as
this note is not supposed to be exhaustive, only the one considered in the Uranie implementation will be discussed. A
learning database should be provided, composed of a set of inputs and the resulting output (the ensemble L discussed
in Section IV.1). From that, two mechanisms are run simultaneously:

• the learning itself. By varying all the synaptic weights contained in the parameter θ , the aim is to produce the output
set ŷ = fθ (x), that would be as close as possible to the output stored in L and keep the best configuration (denoted
as θ ∗). The difference between the real outputs and the estimated ones are measured through a loss function which
could be, in the case of regression, a quadratic loss function such as

L(y, ŷ) =
1
2
||y− ŷ||2

page 57

The kriging method CHAPTER IV. GENERATING SURROGATE MODELS

From there, one can define the risk function R(θ) (also called cost or energy function) used to transform the optimal
parameters search into a minimisation problem. The empirical risk function can indeed be written as

R(θ) =
1
nS

nS

∑
i=1

L(yi, fθ (xi))

• the regularisation. This step is made to avoid all over-fitting problem, meaning that the neural network would be
trained only for the L ensemble which might not be representative of the rest of the input space. To avoid this, the
learning database is split into two sub-parts: one for the learning as described in the previous item, and one to
prevent the over-fitting to happen. This is done by computing for every newly tested parameter set θ , the generalised
error (computed as the average error over the set of points not used in the learning procedure). While it is expected
that the risk function is becoming smaller when the number of optimisation step is getting higher, the generalised
error is also becoming smaller at first, but then it should stabilise and even get worse. This flattening or worsening is
used to stop the optimisation.

This procedure is stochastic: the splitting of the L ensemble is done using a random generator, so does the initialisation
of the synaptic weights for all the formal neurons.

Finally, the constructed neural network can be (and should be) exported: the weight initialisation, but also the way the
split is performed between the test and training basis, are randomised leading to different results every time one redo
the training procedure.

IV.5 The kriging method

First developed for geostatistic needs, the kriging method, named after D. Krige and also called Gaussian Process
method (denoted GP hereafter) is another way to construct a surrogate model. It recently became popular thanks to a
series of interesting features:

• it provides a prediction along with its uncertainty, which can then be used to plan the simulations and therefore
improve the predictions of the surrogate model

• it relies on relatively simple mathematical principle

• some of its hyper-parameters can be estimated in a Bayesian fashion to take into account a priori knowledge.

Kriging is a family of interpolation methods developed in the 1970s for the mining industry [30]. It uses information
about the "spatial" correlation between observations to make predictions with a confidence interval at new locations. In
order to produce the prediction model, the main task is to produce a spatial correlation model. This is done by choosing
a correlation function and search for its optimal set of parameters, based on a specific criterion.

The gpLib library [31] provides tools to achieve this task. Based on the gaussian process properties of the kriging
[32], the library proposes various optimisation criteria and parameter calculation methods to find the parameters of the
correlation function and build the prediction model.

The present chapter describes the integration of the gpLib inside Uranie, from a methodological point of view. For a
more practical point of view, see the gpLib tutorial [33].

IV.5.1 Theoretical introduction

The modelisation relies on the assumption that the deterministic output y(x) can be written as a realisation of a
gaussian process Y (x) that can be decomposed as Y (x) = m(x) + Z(x) where m(x) is the deterministic part that

page 58

CHAPTER IV. GENERATING SURROGATE MODELS Theoretical introduction

describes the expectation of the process and Z(x) is the stochastic part that allows the interpolation. This method
can also take into account the uncertainty coming from the measurements. In this case, the previously-written Y (x) is
referred to as YReal(x) and the gaussian process is then decomposed into YObs(x) = m(x)+Z(x)+ ε(x), where ε(x)
is the uncertainty introduced by the measurement.

The first step is to construct the model from the nS known measurements, that will be hereafter called the training
site. To do so, a parametric correlation function has to be chosen amongst a list of provided one (discussed in Sec-
tion IV.5.1.1); a deterministic trend can also be imposed to bring more information on the behaviour of the output
expectation. These steps define the list of hyper-parameters to be estimated, which is done in Uranie through an
optimisation loop. The training site and the estimated hyper-parameters constitute the kriging model that can then be
used to predict the value of a new sets of points.

It is possible, at this stage, even before applying the kriging model to a new set of points, to make a verification of the
covariance function at hand. This is done in Uranie using a Leave-One-Out (LOO) technique. This method consists
in the prediction of a value for yi using the rest of the known values in the training site, i.e. y1, . . . , yi−1, yi+1, . . . , ynS

for i = 1, . . . ,nS. From there, it is possible to use the LOO prediction ŷ∼i and the expectation ȳ to estimate both the
MSELOO and Q2

LOO (see Section IV.1.1 for completeness). The first criterion should be close to 0 while, if the covariance
function is correctly specified, the second one should be close to 1. Another possible test to check whether the model
seems reasonable consists in using the predictive variance vector (σ2

ŷ∼i
)i=1, ...,nS to look at the distribution of the ratio

(yi − ŷ∼i)/
√

σ2
ŷ∼i

for every point in the training site. A good modelling should result in a standard normal distribution,

so one can find in the literature (see [44] for instance) quality criteria proposal such as having at least 99.7% of the
points comply with

yi − ŷ∼i√
σ2

ŷ∼i

∈ [−3,3].

The next section will introduce the correlation functions implemented, that can be used to learn from the data and set
the value of the corresponding hyper-parameters. This is a training step which should lead to the construction of the
covariance matrix K of the stochastic part Z(x) introduced previously. From there, the predictions to new points can
be performed, as discussed in Section IV.5.1.2.

IV.5.1.1 Correlation functions implemented

To end this introduction it might be useful to introduce one of the most used correlation function (at least a very-general
one): the Matern function. It uses the Gamma function Γ and the modified Bessel function of order ν called hereafter
Kν . This ν parameter describes the regularity (or smoothness) of the trajectory (the larger it is, the smoother the
function will be) which should be greater than 0.5. In one dimension, with δx the distance, this function can be written
as

c(δx) = σ
2 1

Γ(ν)2ν−1

(
2
√

ν
δx
l

)ν

Kν

(
2
√

ν
δx
l

)
.

EQUATION IV.6: General Matern function

In this function, l is the correlation length parameter, which has to be positive. The larger l is, the more Y is correlated
between two fixed locations x1 and x2 and hence, the more the trajectories of Y vary slowly with respect to x. As
discussed in Section IV.5.1 this is a crucial part to specify a GP and there are many possible functions implemented
in Uranie. In the following list, l are the correlation lengths and ν are the regularity parameters. For the rest of this
discussion, the variance parameter σ2 will be glossed over as it will be determined in all case and it is global (one
value for a problem disregarding the number of input variable). The impact of these parameters, variance, correlation

page 59

Theoretical introduction CHAPTER IV. GENERATING SURROGATE MODELS

length and smoothness are displayed respectively in Figure IV.9, Figure IV.10and Figure IV.11 (these plots are taken
from [32]).

Figure IV.9: Influence of the variance parameter in the Matern function once fix at 0.5, 1 and 2 (from left to right). The
correlation length is set to 1 while the smoothness is set to 3/2.

Figure IV.10: Influence of the correlation length parameter in the Matern function once fix at 0.5, 1 and 2 (from left to
right). The variance is set to 1 while the smoothness is set to 3/2.

Figure IV.11: Influence of the smoothness parameter in the Matern function once fix at 0.5, 1.5 and 2.5 (from left to
right). Both the variance and the correlation length are set to 1.

• Gauss: it is defined with one parameter per dimension, as c(δx) = exp
[
−∑

nX
k=1

(
δxk
lk

)2
]

.

• Isogauss: it is defined with one parameter only, as c(δx) = exp
[
− |δx|2

l2

]
.

page 60

CHAPTER IV. GENERATING SURROGATE MODELS Theoretical introduction

• Exponential: it is defined with two parameters per dimension, as c(δx) = exp
[
−∑

nX
k=1

(
|δxk|

lk

)pk
]
, where p are the

power parameters. If p = 2, the function is equivalent to the Gaussian correlation function.

• MaternI: the most general form, it is defined with two parameters per dimension, as

c(δx) =
nX

∏
k=1

1
Γ(νk)2νk−1

(
2
√

νk
δxk

lk

)νk

Kνk

(
2
√

νk
δxk

lk

)

• MaternII: it is defined as maternI, with only one common smoothness (leading to nX +1 parameters).

• MaternIII: it first compute a distance as δ =

√
∑

nX
k=1

(
δxk
lk

)2
and then use Equation IV.6 with δx = δ (leading to

nX +1 parameters).

• Matern1/2: it is equivalent to maternIII, when ν = 1/2

• Matern3/2: it is equivalent to maternIII, when ν = 3/2

• Matern5/2: it is equivalent to maternIII, when ν = 5/2

• Matern7/2: it is equivalent to maternIII, when ν = 7/2

The choice has to be made on a case-by-case basis, knowing the behaviour of the various inputs along with the way
the output evolves. A gaussian function is infinitely derivable, so it is expected to work particularly well for cases where
the output has a smooth trend, whereas the exponential, when considering small powers, i.e. p = 0.5 for instance,
could better describe a more erratic output behaviour. The Matern function can easily go from one of this performance
to the other by changing the smoothness. Figure IV.12 presents the evolution of the different covariance functions
implemented in Uranie.

Figure IV.12: Evolution of the different covariance functions implemented in Uranie.

page 61

Theoretical introduction CHAPTER IV. GENERATING SURROGATE MODELS

IV.5.1.2 From the training to the prediction

The predictions are done after the estimations of the hyper-parameters (σ2,θ) of the covariance process, along with
the errors if this is requested and the trend parameters as-well. As a reminder, the probabilistic model is depicted as

Yobs(xi) = h(xi)
T

β +Z(xi), i = 1,2, . . . ,nS

where β ∼N (βprior,Qprior) and Z is a gaussian process independent from β , possibly including uncertainty measure-
ments. As already stated, K is the covariance matrix of the stochastic part Z(xi), i = 1,2, . . . ,nS and Y nS

obs the gaussian
vector defined as Yobs(xi), i = 1,2, . . . ,nS. For the sake of simplicity, we will discuss only deterministic trend here where
β are supposed constant and are estimated from the regressor matrix H, constructed from the h(xi), i = 1,2, . . . ,nS,
as already discussed in Section IV.2. For a more general discussion on a bayesian approach to define the trend, see
[32].

Every prediction of the gaussian process at a new location xnew can be calculated from the conditional gaussian law
Yreal(xnew)|Y nS

obs which can be easily obtained from the joined law (Yreal(xnew),Y
nS
obs) using the gaussian conditioning

theorem3. Starting from the simple case where one wants to get the best estimate ŷ(xnew) and its conditional variance
σ̂2(xnew) for a single new location xnew. Both quantities can be expressed from the previous matrix, using h(xnew) the
regressor vector estimated at this new location and r(xnew) the vector (of size nS) of covariance computed between
this new location and the training set. The results are provided by the following equations:

ŷ(xnew) = h(xnew)
T

β̂ + r(xnew)
T K−1(yobs −Hβ̂)

σ̂
2(xnew) = σ

2 − r(xnew)
T K−1r(xnew)

+(h(xnew)
T − r(xnew)

T K−1H)(HT K−1H)−1(h(xnew)−HT K−1r(xnew))

EQUATION IV.7: Best estimate and its conditional variance for a single new location.

In the case where multiple locations have to be estimated and one wants to keep track of their possible correlation, a
more complex formula is written, starting from Equation IV.7. The regressor vector is now written as Hnew, a regressor
matrix gathering all new locations estimation, R is a nnew × nS matrix that gathers covariance computed between all
new locations and the training set and finally Knew is introduced as the covariance matrix between all the new input
locations (with a given size nnew ×nnew). The results are then provided by the following equations:

ŷ(Xnew) = Hnewβ̂ +RK−1(yobs −Hβ̂)

Γ̂(Xnew) = Knew −RK−1RT +(Hnew −RK−1H)(HT K−1H)−1(HT
new −HT K−1RT)

EQUATION IV.8: Best estimates and their covariance matrix, for a set of new locations.

The main interest of the second procedure is to provided the complete covariance matrix of the estimation so if one
wants to investigate the residuals, when dealing with a validation database, the possible correlation between location
can be taken into account (through a whitening procedure for instance, that is partly introduced in Section III.2.2) to

3For

(
y1
y2

)
a gaussian vector, following the left-hand side relation below, meaning that y1 and ȳ1 are of size n1 and y2 and ȳ2 are of size

n2 and the global covariance matrix is made out of a R11 matrix of size n1 × n1, a R22 matrix of size n2 × n2 and a R12 matrix of size n1 × n2
defining also R21 = RT

12. Under the hypothesis that R22 can be inverted, the law of y1 conditionally to y2 is gaussian and can be written as the
right-hand side equation below.(

y1
y2

)
∼N

((
ȳ1
ȳ2

)
,

(
R11 R12
R21 R22

))
, if R22 can be inverted, (y1|y2)∼N (ȳ1 +R12R−1

22 (y2 − ȳ2),R11 −R12R−1
22 R21)

page 62

CHAPTER IV. GENERATING SURROGATE MODELS Running a kriging

have proper residuals distribution. There are different ways to that, see [18], the ones used here are either based on
Cholesky decomposition or eigen-value decomposition.

Finally, one interesting thing to notice is the fact that the prediction estimation needs both the inverse of the covariance
matrix K−1 and the regressor matrix H. This means that with a large training database, this would mean keep this
possibly two large matrices for every single new location.

IV.5.1.3 A simple example

We illustrate the kriging method on a very simple model, i.e. an uni-dimensional function, and display the resulting
kriging model prediction. We use a training site with 6 points along with a test basis that is made of about 100 points.
The covariance function used is a Gaussian one (left) and a Matern one (right), precisely a Matern3/2, presented in
Figure IV.13. In this figure, one can see the training sites (the six black points), the real values of the testing site (the
blue crosses), the predicted value from the kriging model (the red line) and the uncertainty band on this prediction
(the red-shaded band). Both the MSE and Q2

LOO from LOO are also indicated showing that in this particular case, the
Gaussian choice is better than the Matern one.

Figure IV.13: Example of kriging method applied on a simple uni-dimensional function, with a training site of six points,
and tested on a basis of about hundred points, with either a gaussian correlation function (left) or a matern3/2 one
(right).

IV.5.2 Running a kriging

The kriging procedure in Uranie can be schematised in five steps, depicted in Figure IV.14. Here is a brief description
of the steps:

• get a training site. Either produced by a design-of-experiments from a model definition, or taken from anywhere else,
it is mandatory to get this basis (the larger, the better).

• set the parameter’s values. It can be set by hands, but it is highly recommended to proceed through an optimisation,
to get the best possible parameters.

• build the kriging method.

• test the obtained kriging model. This is done by running the kriging model over a new basis .

page 63

Running a kriging CHAPTER IV. GENERATING SURROGATE MODELS

Figure IV.14: Schematic description of the kriging procedure as done within Uranie

page 64

Chapter V

Sensitivity analysis

V.1 Brief reminder of theoretical aspects

In this section, we will briefly remind the different ways to measure the sensitivity of an output to the inputs of the model.
A theoretical introduction will give a glimpse of different techniques and formalism, going from the simplest case to the
more complex one. It should remain at a very basic level, only to introduce notions since more details can be found in
many references [34, 35, 36].

The list of methods available in Uranie will also be briefly discussed, as most of these procedures, local and global ones,
are further discussed in the following sections (both implementation and cost in terms of number of assessments).

V.1.1 Theoretical aspects

V.1.1.1 The linearity case

In this section, the tested hypothesis is to know whether the output of our considered model, Y , can be written as a
linear approximation, as follows

Y k = β0 +
nX

∑
i=1

βi ×Xk
i + ε

k = Ŷ k + ε
k.

EQUATION V.1: Linear model definition

In this equation, βi are the linear regression coefficients, nX is the dimension of the input variables, k is the index
of the considered event in the complete set of data (of size nS). In the second equality, Ŷ is the estimation and ε is
the regression residual of the k-Th output when using the linear model. In order to study this case, few numerical
expressions can be computed:

• The linear correlation coefficient: also named Pearson coefficient, it is computed as

ρi = ρ (Xi, Y) =
Cov(Xi, Y)√

Var(Xi)Var(Y)
∀ i = 1, ..., nX

• The standard regression coefficient: also named SRC coefficient, it is computed as

SRCi = SRC (Xi, Y) = βi

√
Var(Xi)

Var(Y)
∀ i = 1, ..., nX .

page 65

Theoretical aspects CHAPTER V. SENSITIVITY ANALYSIS

In the case where the various inputs are independent, it is possible to link two of these coefficients by the following
relation: SRCi = ρi. Assuming a pure linear model, meaning that Equation V.1 can be written Y = Ŷ (or equivalently
ε = 0), there is then a closing relation, as follows:

nX

∑
i=1

SRC2
i = 1

• The partial correlation coefficient: also named PCC coefficient. It is defined to quantify the unique sensitivity of
the output to Xi that cannot be explained in terms of the relations of these variables with any other variables (i.e.
considering that the other variables are constant). It is so defined as

PCCi = ρY,Xi.X∼i =
ρY,Xi −ρY,X∼iρXi,X∼i√
1−ρ2

Y,X∼i

√
1−ρ2

Xi,X∼i

where X∼i is the vector of input where the i-Th component has been taken out.

The SRC and PCC coefficients are not equal one to another but they can both be used to sort the inputs according
to their impact on the output, giving the same ranking even though their values would be different. The validity of the
assumption made to consider the model as linear can also be tested by computing "quality criteria". There are few of
them available in Uranie (R2, R2

adj and Q2) which have already been discussed in Section IV.1.1.

V.1.1.2 The monotone case

The linearity is a very strong hypothesis, which is rarely correct when dealing with real problems. In order to circumvent
this hypothesis, it is possible to use the ranks (instead of the values) in order to test only the monotony of the output
with respect to the inputs. Each simulation (whose index k goes from 1 to nS) is ranked according to a variable, 1 being
attributed to the simulation with the lowest value, while nS is allocated to the largest one (or the other way around,
this should not change the results). It is then possible, using these ranks instead of the values, to redefine all the
previously-discussed expressions:

• The correlation coefficient: using the ranks, it is defined like the Pearson coefficient and is called Spearmann coeffi-
cient

ρ
S
i = ρ

S(Xi, Y) = ρ(RXi , RY) ∀i = 1, . . . ,nX

• The standardised regression rank coefficient: using the rank, it is defined like the SRC and is called the SRRC
coefficient

SRRCi = SRRC (Xi, Y) = SRC (RXi , RY) ∀i = 1, . . . ,nX

• The partial rank correlation coefficient: using the rank, it is defined like the PCC and is called the PRCC coefficient

PRCCi = PRCC (Xi, Y) = PCC (RXi , RY) ∀i = 1, . . . ,nX

The quality criteria discussed previously in the context of values study, can as well be computed with the ranks. These
quality criteria (defined in Section IV.1.1) remain indeed valid to judge the validity of the monotony hypothesis once the
same replacement is performed.

page 66

CHAPTER V. SENSITIVITY ANALYSIS Theoretical aspects

V.1.1.3 No hypothesis on the model

When no hypothesis is made on the relation between the inputs and the outputs, one can try a more general approach.
If we can consider that the inputs are independent one to another, it is possible to study how the output variance
diminish when fixing Xi to a certain value x∗i . This variance denoted by

Var(Y |Xi = x∗i)

is called the conditional variance and depends on the chosen value of Xi. In order to study this dependence, one should
consider Var(Y |Xi), the conditional variance over all possible x∗i value. It is a random variable and, as such, one can
define the expectation of this quantity as E(Var(Y |Xi)). The value of this newly defined random variable (Var(Y |Xi)) is
as small as the impact of Xi on the output variance is large.

From there it is possible to use the theorem of the total variance which states, under the assumption of having Xi

and Y two jointly distributed (discrete or continuous) random variables, that Var(Y) = Var(E(Y |Xi))+E(Var(Y |Xi)). It
becomes clear that the variance of the conditional expectation can be a good estimator of the sensitivity of the output
to the specific input Xi. It is then more common and practical to refer to a normalised index in order to define this
sensitivity, which is done by writing

Si =
Var(E(Y |Xi))

Var(Y)
.

EQUATION V.2: First order sensitivity index

This normalised index is often called the first order sensitivity index and is, in the specific case of a purely linear theory,
equal to the corresponding SRC coefficient.

If the previously defined index is the first order, then it means that there are higher-order indices that one might be
able to compute. This index which does indeed describe the impact of the input Xi on the output, does not take into
account the possible interaction between inputs. It can then be completed with the crossed impact of this particular
input with any other X j (for i ̸= j and j ∈ [1,nX]). This second order index Si j does not take into account the crossed
impact of inputs i and j with another one, named for instance k (for i ̸= j ̸= k and k ∈ [1,nX])... This shows the
necessity to consider the interaction between all the inputs, even though they are not correlated, leading to a set of
2nX − 1 indices to compute. A complete estimation of all these coefficients is possible and would lead to a perfect
break down of the output variance, which has been proposed by many authors in the literature and is referred to with
many names, such as functional decomposition, ANOVA method (ANalysis Of VAriance), HDMR (High-Dimensional
Model Representation), Sobol’s decomposition, Hoeffding’s decomposition... This decomposition assumes that the
input factors are independent.

In order to simplify this, it is possible to estimate, for an input Xi, the total order sensitivity index STi defined as the sum
over all the sensitivity indices involving the input variable under study [39]:

STi = ∑
k∈#i

Sk = 1−Sī,

EQUATION V.3: Total order sensitivity index

where #i and ī represents respectively the group of indices that contains and that does not contain the i index. There
are few ways to check but also interpret the value of the Sobol sensitivity indices:

• ∑Si ≤ 1: should always be true.

page 67

Theoretical aspects CHAPTER V. SENSITIVITY ANALYSIS

• ∑Si = 1 = ∑STi : the model is purely additive, or in other words, there are no interaction between the inputs and
Si = STi ∀i = 1, . . . ,nX .

• 1−∑Si is an indicator of the presence of interactions.

• STi −Si is a direct estimate of the interaction of the i-Th input with all the other factors.

In Uranie, there are several methods implemented to get both the first order and the total order index of sensitivity and
they will be discussed in the upcoming sections.

V.1.1.4 Limitation of the Sobol indices

The decomposition discussed in Section V.1.1.3 and the resulting interpretation in terms of first and total order Sobol
indices both suffer from theoretical limitation that are discussed within this section. There are different methods and
indices that are said to overcome part of all of the listed issues. This part introduces the limitation and gives an insight
of the way to overcome them.

There are few main concerns when dealing with sensitivity indices within the Sobol framework:

• there are two indices for every input variables.

– On the one hand, first order indices might be obtained but because of their definition their value can be small or
even null even though their real impact should not be discarded.

– On the other hand, total order indices are very useful to complete the picture provided by the first order ones but
they are usually quite costly to obtain and not so many methods can allow to reach them.

• the input variables must be independent.

– It means input variables must be independant one to another.

– It implies, to remain simple, that the inputs and outputs should remain scalars and if not, they should be no
correlation between their elements.

Concerning the first observation, the sub-item is right disreagarding the situation: because of its definition based on the
evolution of the mean of the conditional output, an input can be discarded even though it has a strong impact as long
as the average impact is constant. As soon as one gets the total index (if possible), it completes the picture but having
two indices can still be confusing (to understand their meaning). A way to overcome this would be to get another metric
providing only one index per variable. The litterature is snowed under with new index definitions in order to overcome
these limitations: based on different research field and on various mathematical techniques, one can find such names
as HSIC [78], Shapley’s values [74], Johnson’s relative weights [50]...

For the second observation, changing the strategy is also a solution. One possibility is to gather the dependent inputs
into a group and only considerer and compare the resulting groups. There will be no hierarchy information within every
groups, but this technique will work only if all variables are not dependent. If not, then, rather than relying on a variance
decomposition-based technique, one should use other indices once again to overcome this issue. Some methods are
discussed later on, in dedicated part, while the rest of this section will briefly introduce the Shapley’s values.

The Shapley analysis has originated from the game theory, when considering the case of a coalitional game, i.e. a
couple (p,c) where

• p is the number of players;

• c is a function from [1 : p]→ R so that c(/0) = 0 and ∀A ⊂ B,c(A)≤ c(B). It is called the characteristic function.

page 68

CHAPTER V. SENSITIVITY ANALYSIS Theoretical aspects

The function c has the following meaning: if u is a coalition of players, then c(u), called the worth of coalition u,
describes the total expected sum of payoffs the members of u can obtain through cooperation. The Shapley’s method
is one way to distribute the total gains to the players, assuming that they all collaborate. It is a "fair" distribution in the
sense that it is the only distribution with certain desirable properties listed below. According to the Shapley value, the
amount that player i will receive, in a coalitional game (p,c), is

ϕi :=
1
p ∑

u⊂−i

(
p−1
|u|

)91

(c(u∪{i})− c(u))

The main properties of the Shapley values are the following ones:

• efficiency: ∑
p
i=1 ϕi = c([1 : p])

• symmetry: if i and j are two equivalent players, meaning c(u∪{i}) = c(u∪{ j}),∀u ⊂ [1 : p]\{i, j}, then ϕi = ϕ j

• additivity: when two coalition games (p,c) and (p,d) are combined, it defines a new game (p,c+ d) where (c+
d)(u) = c(u)+d(u), then ϕi(c+d) = ϕi(c)+ϕi(d).

• nullity: ϕi = 0 for a null player. A player i is null if c(u∪{i}) = c(u),∀u ⊂ [1 : p]\{i}

The concept of Shapley value has been extensively used in finance for some times but has only recently been brought
up in the uncertainty community, one can indeed define the Shapley value for a given input i, as done in Owen [74]:

ηi :=
1

pVar(Y) ∑
u⊂9i

(
p−1
|u|

)91

(Vu∪{i}−Vu),

where 9i is the set [1 : p] \ {i}. Based on this definition, Shapley values have been exhibited as proper sensitivity
indices in [48] when the inputs are dependent. There is indeed only one value for each input variable, this value always
lies in [0,1] and their sum equals to one, once all input variables are considered (even with correlation).

In the case where X ∼N (µ,Γxx), assuming µ = 0, for the sake of simplicity, without genericity loss, one can rewrite
the sensitivity indices, as they can be calculated explicitly. The Sobol indices, for instance, can be expressed with
expectations of conditional variances [73], as done below:

Su :=
(−1)|u|

Var(Y) ∑
v⊂u

(−1)|v|+1E(Var(Y |Xu),∀u ̸= 0,

which leads to a new expression for the i-Th Shapley value:

ηi :=
1

pVar(Y) ∑
u⊂−i

(
p−1
|u|

)91

(E(Var(Y |Xu)−E(Var(Y |Xu∪{i}))

Using the Gaussian framework, one can express the conditional variance as shown here:

Var(Y |Xu) = Var(β T
9uX9u|Xu) = β

T
9u(Γ9u,9u −Γ9u,uΓ

−1
u,uΓu,9u)β9u

This expression is constant for a given subset u, so it is equal to its expectation which provide a way to compute all
Shapley values.

page 69

List of available methods CHAPTER V. SENSITIVITY ANALYSIS

V.1.2 List of available methods

Methods for Sensitivity Analysis (SA) are split into two types:

• local: variations around a nominal value,

• global: variations in all the domain.

1. Finite differences (local method):

It consists in estimating the partial derivatives around a nominal value for each input parameters (see Sec-
tion V.2).

2. Values Regression method (linearity):

It performs a sensitivity analysis based on the coefficients of a normalised linear regression (see Section V.3).

3. Ranks Regression method (monotony):

Here, the analysis is based on the coefficients of a normalised rank regression (see Section V.3).

4. Morris’ screening method:

It consists in ordering the input variables according to their influence on the output variables. This method should
be used for input ranking. Despite the low computational cost encountered, the obtained information is insuffi-
cient to get a proper quantitave estimation of the impact of the input variable on the output under consideration
(see Section V.4).

5. Sobol method:

This method produces numerical values for the Sobol indices. However, it requires a high numerical cost as
numerous code assessments are needed (see Section V.5).

It is based on the so-called Saltelli & Tarontola method, to compute the first and total order indices, using different
algorithms.

6. FAST method:

It computes Sobol’s first order indices from Fourier coefficients, using a sample on a periodic curve with different
frequencies for each input variables (see Section V.6).

7. RBD method:

It computes Sobol’s first order indices from Fourier coefficients, using a sample on a periodic curve with an
unique frequency (see Section V.6).

8. Johnson’s relative weights method:

It computes the relative weights which are aimed to be a good approximation of the Shapley’s values, but whose
main advantage is to be a lot quicker to estimate. This method is limited to linear cases (see Section V.7).

V.2 The finite differences method

V.2.1 General presentation of finite difference sensitivity indices

The finite differences method is among the simplest one. The resulting sensitivity index of an input variable Xi with
respect to an output Y = f ({Xi}i∈[1,nX]) is an estimation of the derivative of f versus Xi, δ f/δXi, around a nominal

page 70

CHAPTER V. SENSITIVITY ANALYSIS The regression method

value Xnom
i . In this implementation of the method, the estimation is obtained by applying an OAT design-of-experiments

(One-At-a-Time) to the studied model. For each input’s nominal value, we define a range ∆Xi. The resulting estimate
of the partial derivative around the nominal value is then given by

∂ f
∂Xi

=
f (Xnom

i +∆Xi)− f (Xnom
i −∆Xi)

2×∆Xi

.

V.3 The regression method

V.3.1 General presentation of regression’s coefficients

The estimation is done by estimating the correlation matrix of the output understudy with the different inputs, leading
to a matrix A(nX + 1,nX + 1) which can be based on values (for SRC and PCC) or on ranks (for SRRC and PRCC).
Once this matrix is estimated, it is inverted and the requested coefficients are estimated using the following relations
(established in Ref [40] and given here only for illustration purpose):

•

(
A−1(nX +1, i)

A−1(nX +1,nX +1)

)2

for standard regression coefficients

•

(
A−1(nX +1, i)√

A−1(nX +1,nX +1)×A−1(i, i)

)2

for partial regression coefficients

where i and nX + 1 being respectively the number of the input and output under study in the correlation matrix. An
important factor for the quality of the regression coefficients is the quality of the model which can be asserted with the
value of the R2 and the R2

adj factors defined in Equation IV.1 and whose computation is performed as followed:

• R2 = 1− 1
A−1(nX +1,nX +1)

• R2
adj = 1− (1−R2)×nS

(nS −nX)

It can be considered that R2 and R2
adj must be superior to 0.7-0.8 in order to use the regression coefficients. However,

these values are not guaranteed-threshold, one should be careful not to only rely on them to state that the underlying
hypothesis is correct or not.

V.3.2 Getting a confidence-interval estimation

When considering SRC, one can rely on the equality introduced in Section V.1.1.1: SRCi = ρi, where ρi is the Pearson
coefficient between the output and the i-Th input. This is interesting, as uncertainty on the estimation of a correlation
coefficient can be computed from Fisher’s z-transformation [41] under certain hypothesis. Given a certain sample of
size N, the empirical estimation ρ̂N of a true correlation ρ between two normal-distributed variables (independent and
identically distributed) can be transformed into ẐN following this recipe:

ẐN =
1
2

ln(
1+ ρ̂N

1− ρ̂N
) = arctanh(ρ̂N)

The nice property of this newly-defined variable is that it follows asymptotically a normal distribution of mean µẐN
=

1
2 ln(1+ρ

1−ρ
) and standard deviation σẐN

= 1√
N−3

. It is particularly appealing to notice that the standard deviation is

page 71

The Morris screening method CHAPTER V. SENSITIVITY ANALYSIS

independent of the correlation value itself, and only depends on the number of points provided in the initial sample.
From there, in order to get a 95% confidence level on the correlation coefficient, one can start from this equation

ẐN − 1.96√
N −3

≤ 1
2

ln(
1+ρ

1−ρ
)≤ ẐN +

1.96√
N −3

and invert it to get the 95% confidence interval on the correlation coefficient itself, defined as

tanh
(

ẐN − 1.96√
N −3

)
≤ ρ ≤ tanh

(
ẐN +

1.96√
N −3

)
(V.1)

This procedure would be fine if the quantity of interest was the correlation coefficient, but in our case, we’re interested
in the square value of this coefficient. To extrapolate the confidence interval on the correlation coefficient into a proper
confidence interval on its squared value, we draw a large sample (of size NGen) of {Ẑi

N}i∈[1,NGen], following the expected
asymptotic behaviour of the Fisher’s z-transformed variable but using the estimated value ρ̂N instead of the true one ρ :

N
(

1
2 ln(1+ρ̂N

1−ρ̂N
), 1√

N−3

)
. This set of points is transformed into new coefficients {ρ̂ i

N} = {tanh(Ẑi
N)}i∈[1,NGen] which are

squared in order to get a set of NGen squared-correlation coefficients. From this set, the 2.5% and 97.5% quantile are
estimated leading to a resulting 95% confidence interval on the squared-value of the estimated correlation coefficient
ρ̂2

N (and thus on its Sobol interpretation in the linear case).

This procedure has been tested using an linear analytic model (for which it is possible to estimate the expected SRC
coefficients) with normal-distributed independent and identically distributed inputs variables. Ten thousand design-of-
experiments were generated and the theoretical Sobol indices were included in the estimated confidence interval in
95% of the cases. Running the same protocole with uniform distributions instead of normal ones, the theoretical Sobol
indices were in the estimated confidence interval between 95% and 98% of the cases. This illustrate the fact that
the resulting confidence interval can be considered exact only if the hypothesis stated above are respected. If not, it
anyways provides an interesting insight on the way the estimation converges, without being a quantifiable range.

Finally, the procedure described above relies on the Pearson coefficient, to get an estimation of a confidence interval for
Sobol indices in linear model. The exact same procedure can be followed using the Spearman correlation coefficient,
which leads then to an estimation of a confidence interval for Sobol indices in monotonic model.

V.4 The Morris screening method

V.4.1 Principle of the Morris’ method

The Morris method [14] is an effective screening procedure that robustifies a bit the OAT protocol (One-factor-At-a-
Time). Instead of varying every input parameters only once (leading then to a minimum of nX +1 assessments of the
code/function, with an OAT technique), the Morris method repeats this OAT principle r times (practically, it is between
5 and 10 times, each time being called a trajectory or a replica), with a randomly chosen starting point (in the input
parameters space). In order to do so, it computes Elementary effects (later on called EE), defined as

EEt
i = EEi(Xt) =

y(X t
1, . . . ,X

t
i +∆t

i, . . . ,X
t
nX
)− y(X t

1, . . . ,X
t
i , . . . ,X

t
nX
)

∆t
i

,

where ∆t is the chosen variation in the trajectory t. This variation can be set by the user, but the default (recommended,
because it is supposed to be optimal [34]) value is ∆ =

p
2(p−1)

, knowing the evolution range of the considered input

and the chosen level p that describes in how many interval, the range should be split. The resulting cost (in terms
of assessment number) is then r(nX + 1). This method is schematised in Figure V.1 for a problem with three inputs.
The hyper-volume is normalised and transformed into an unit hyper-cube. The resulting volume is discretised with the
requested level and two trajectories are drawn for different values of the elementary variation.

page 72

CHAPTER V. SENSITIVITY ANALYSIS Principle of the Morris’ method

Figure V.1: Schematic view of two trajectories drawn randomly in the discretised hyper-volume (with p=6) for two
different values of the elementary variation (the optimal one in black and the smallest one in pink, as detailed on the
figure itself).

With the repetition of this procedure r times, it is possible to compute basic statistics on the elementary effects com-
puted for every input parameter, as

µi =
1
r

r

∑
t=1

EEt
i , µ

∗
i =

1
r

r

∑
t=1

|EEt
i | and σ

2
i =

1
r−1

r

∑
t=1

(EEt
i −µi)

2.

The variable µi and σi represents respectively the mean and standard deviation of the elementary effects of the i-Th
input parameters. In the case where the model is not monotonic some EEt

i may cancel each other out, resulting in a
low µi value even for an important factor. For that reason, a revised version called µ∗

i has been created and defined
as the mean of the absolute values of the EEt

i [35].

The results are usually visualised in the (µ∗,σ) plane, allowing to sort its inputs in the following categories:

• factors that have negligible effects on the output: both µ∗ and σ are small.

• factors that have linear effects, without interaction with other inputs: µ∗ is large (all variations have an impact) but σ

is small (the impact is the same independently of the starting point).

• factors that have non-linear effects and/or interaction with other inputs: both µ∗ and σ are large.

Warning
The optimal value of ∆ = p

2(p−1) given previously might be a dangerous choice in very few cases. When the
evolution of the output as a function of one input is T/2-periodic (when T is the total range of the input under
consideration), the "optimal" elementary variation will lead to insensitive trajectories. In this precise cases,
one might want to change elementary variation.

page 73

The Sobol method CHAPTER V. SENSITIVITY ANALYSIS

V.5 The Sobol method

V.5.1 Sobol’s sensitivity indices

The Sobol method is a Monte-Carlo based estimation that provides the first and total order sensitivity indices at the
cost of requiring a total of nS(nX + 2) code assessments. In order to produce these results, a design-of-experiments
must be produced, whom size (nS) has to be precised by the user. Instead of generating one design-of-experiments
with the requested properties, the program generates actually twice as many data points, split in two different matrices
that one could call M(nS,nX) and N(nS,nX) (both matrices are different and independent random samplings). The
method is detailed in the following paragraph, separately for the first and total order indices, but a schematic view can
be found at the end in Equation V.4.

The first step is to compute the first order sensitivity index, whose definition has been given in Equation V.2. This esti-
mation is based on the measurement of the numerator, Var(E(Y |Xi)), which can be written E(E(Y |Xi)

2)−E(E(Y |Xi))
2

from the definition of variance. Since the second part of previous formula is equivalent to the output expectation, the
needed inputs to get the first order indices are: E(E(Y |Xi)

2), Var(Y) and E(Y). The method discussed in the following
paragraphs and illustrated by Equation V.4 is called the pick-and-freeze method. The matrix M is passed to the code
and nS assessment are done to get a vector of outputs (this is shown by the first line of Equation V.4). From this, the
output properties can easily be estimated, leaving the first term only to be measured. In order to estimate it for the i-Th
input variable, one needs to have two different random sampling with the i-Th component (to satisfy the conditional
character of the expectation to be squared). This is where the second matrix N is used: its i-Th column is replaced by
the M’s one (peek), creating an new Ni matrix. The last term to be estimated can be computed as

E(E(Y |Xi)
2) =

1
nS

nS

∑
k=1

yM
k yNi

k

(the mathematical development leading to this formula can be found in many references). This step, whose total cost is
nS(nX +1) code assessments, is shown by the second line and the right-part of the third line in Equation V.4 (following
the arrows).

Finally the total order indices are computed starting from the second part of Equation V.3. This second part can also
be written as

STi = 1− Var(E(Y |Xī))

Var(Y)

which looks very much alike Equation V.2 used to compute the first order but instead of a condition on having i known
(frozen), it is the exact opposite: the condition is to freeze everything but i. This is easily doable as this is the only
difference between the N and Ni matrices. Following the same recipe as for the first order, only the E(E(Y |Xī)

2) has
to be computed with the following formula:

E(E(Y |Xī)
2) =

1
nS

nS

∑
k=1

yN
k yNi

k .

The compulsory step is so to pass the N matrix to the code, leading to nS code assessments, as shown in Equation V.4
by the left part of the third line.

page 74

CHAPTER V. SENSITIVITY ANALYSIS Sobol’s sensitivity indices

M =

m1,1 . . . m1,i . . . m1,nX

...
. . .

...
. . .

...
m j,1 . . . m j,i . . . m j,nX

...
. . .

...
. . .

...
mnS,1 . . . mnS,i . . . mnS,nX

 −nS assessments −→

f (m1,1, . . . ,m1,i, . . . ,m1,nX)

...
f (m j,1, . . . ,m j,i, . . . ,m j,nX)

...
f (mnS,1, . . . ,mnS,i, . . . ,mnS,nX)

N =

n1,1 . . . n1,i . . . n1,nX

...
. . .

...
. . .

...
n j,1 . . . n j,i . . . n j,nX

...
. . .

...
. . .

...
nnS,1 . . . nnS,i . . . nnS,nX

−M′s ith input instead of N′s → Ni =

n1,1 . . . n1,i−1 m1,i n1,i+1 . . . n1,nX

...
. . .

...
...

...
. . .

...
n j,1 . . . n j,i−1 m j,i n j,i+1 . . . n j,nX

...
. . .

...
...

...
. . .

...
nnS,1 . . . nnS,i−1 mnS,i nnS,i+1 . . . nnS,nX

nS assessments

y (for STi estimation) nS ×nX assessments

y (for i ∈ [1,nX])
f (n1,1, . . . ,n1,i, . . . ,n1,nX)

...
f (n j,1, . . . ,n j,i, . . . ,n j,nX)

...
f (nnS,1, . . . ,nnS,i, . . . ,nnS,nX)

f (n1,1, . . . ,n1,i−1,m1,i,n1,i+1, . . . ,n1,nX)

...
f (n j,1, . . . ,n j,i−1,m j,i,n j,i+1, . . . ,n j,nX)

...
f (nnS,1, . . . ,nnS,i−1,mnS,i,nnS,i+1, . . . ,nnS,nX)

EQUATION V.4: Schematic view of the Sobol method

This method is, in Uranie, said to be "ï¿½ la Saltelli" in contrast with the other implementation (previously used as
default) which is said to be "ï¿½ la Sobol". The difference between the two being the number of assessment used to
get a certain precision: for the same results, the implementation "ï¿½ la Sobol" was requesting nS(2nX +2) and was
offering more numerical results as five algorithms were used. The new implementation "ï¿½ la Saltelli" requests only
nS(nX + 2) estimation but only three algorithms are run. This is summarised as follow where the bold name is the
default stored in --first-- and --total--:

a la Saltelli First order: Saltelli02 [42], Sumo10 [43], Martinez11 [46]

Total order: Homma96 [39], Sumo10 [43], Martinez11 [46]

a la Sobol First order: Sobol93 [47], Saltelli02 [42], Jansen99 [75], Sumo10 [43], Martinez11 [46]

Total order: Homma96 [39], Saltelli02 [42], Jansen99 [75], Sumo10 [43], Martinez11 [46]

Tip
The Martinez11 algorithm is the recommended one, as it provides an estimation of the 95% confidence
interval for every coefficient determined.

page 75

Fourier-based methods CHAPTER V. SENSITIVITY ANALYSIS

V.6 Fourier-based methods

V.6.1 Introducing the method

V.6.1.1 The FAST method

The Fourier Amplitude Sensitivity Test (FAST) [76, 77] is a procedure that provides a way to estimate the expected
value and variance of the output variable of a model, along with the contribution of the input factors to this variance. An
advantage of it, is that the evaluation of sensitivity can be carried out independently for each factor using just a set of
runs because all the terms in a Fourier expansion are mutually orthogonal. The main idea behind this procedure is to
transform the nX -dimensional integration into a single-dimension one, by using the transformation

Xi = Gi(sin(ωi × s)),

where ideally, {ωi} is a set of angular frequencies said to be incommensurate (meaning that no frequency can be
obtained by linear combination of the other ones when using integer coefficients) and Gi is a transformation function
chosen in order to ensure that the variable is sampled accordingly with the probability density function of Xi (meaning
that they are all uniformly distributed in their respective volume definition). Given these conditions, the parametric
variable s will evolve in [−∞,∞] and the vector (X1(s), . . . ,XnX (s)) traces out a curve that fills the entire nX -dimensional
research volume. Practical considerations dictate that an integer rather than an incommensurate set of frequencies
must be used, with few consequences: the resulting parametric curve is not longer a space-filling one, the fundamental
of each input (the chosen frequency for this input) will have harmonics that interfere with one another and the parametric
curve becomes periodic with a 2π-period.

When both Gi and ωi are properly chosen, one can approximate the following relations:

E(Y) =
1

2π

∫
π

−π

f (s)ds and Var(Y) =
1

2π

∫
π

−π

f 2(s)ds−E2(Y)≈ 2
∞

∑
k=1

(A2
k +B2

k),

EQUATION V.5: Expectation and variance of output in Fourier space

where f (s) = f (G1(sin(ω1s)), . . . ,GnX (sin(ωnX s)) and Ak and Bk are the Fourier coefficients, defined as

Ak =
1

2π

∫
π

−π

f (s)cos(ks)ds and Bk =
1

2π

∫
π

−π

f (s)sin(ks)ds.

EQUATION V.6: Fourier coefficient definition

The first order coefficient is then obtained by estimating the variance for a fundamental ωi and its harmonics. This can
be done by using the second half of Equation V.5 running over p instead of k and replacing in the index by p.ωi. The
important point to notice, for a real computation, is the limitation of the sum that, in the previous equation, runs up to
infinity. A truncation is done by imposing a cut-off with a factor M called the interference factor (whose default value
in Uranie is set to 6). Knowing that the exact same replacements can be done to obtain the corresponding Fourier
coefficients in Equation V.6, the contribution to the output variance of a certain frequency, i.e. the first order sensitivity
index, can be expressed as

Si =
∑

M
p=1(A

2
p.ωi

+B2
p.ωi

)

∑
nX
i=1 ∑

M
pi=1(A2

piωi
+B2

piωi
)
.

Finally, the sample size nS used to measure these coefficients should respect the relation nS ≥ 2Mmax({ωi})+1.

page 76

CHAPTER V. SENSITIVITY ANALYSIS Implementation of methods

V.6.1.2 The RBD method

The Random Balance Design (RBD) [79] method selects nS design points over a curve in the input space. The input
space is explored here using the same frequency ω . However the curve is not space-filling, therefore, we take random
permutations of the coordinates of such points, to generate a set of scrambled points that cover the input space. The
model is then evaluated at each design point. Subsequently, the model outputs are re-ordered such that the design
points are in increasing order with respect to factor Xi. The Fourier spectrum is calculated on the model output at the
frequency ω and at its higher harmonics {ω,2ω, . . . ,Mω} and yields the estimate of the sensitivity index of factor Xi.
The model outputs are re-ordered with respect to the other factors to obtain all the other sensitivity indices.

In practice the RBD approach selected design points can be written as:

Xi(si j) = Gi(sin(ω.si j)) ∀i = 1, . . . ,nX and ∀ j = 1, . . . ,nS

where ω ≤ (nS − 1)/2M and {si1, . . . ,sinS} denotes the i-Th random permutation of the nS points. The values of the
model output Y (s j), for j = 1, . . . ,nS are computed and then are reordered (Y R(s j)) in order to get the corresponding
values of Xi(si j) ranked in increasing order. The sensitivity of Y to Xi is determined by the harmonic content of Y R,
which is quantified by its Fourier spectrum:

F(ω) =
1
π

nS

∑
j=1

Y R(s j)exp(−Im nX ωs j)

evaluated at ω equal to 1 and its higher harmonics (2, 3,..., up to M equal to 6 in our case), leading to

V̂i = Var[E(Y |Xi)] =
M

∑
l=1

F(ω)|ω=l

This relation is used to estimate all the V̂i, for i = 1, . . . ,nX , by re-ordering the output to rank the i-Th input in an
increasing order, which provides a complete estimation of the variance. Thanks to the use of permutations, the total
cost is of the order of nS assessments instead of the order of nS ×nX for the FAST one.

V.6.2 Implementation of methods

In the implementation done within Uranie there are several modifiable parameters that can be considered before start-
ing an analysis using the FAST method:

• The transformation function Gi chosen among the following list:

– Cukier: Xi = X̄i exp(ν̄i sin(ωis))

– SaltelliA: Xi = 0.5+ 1
π

arcsin(sin(ωis))

– SaltelliB: Xi = 0.5+ 1
π

arcsin(sin(ωis+φi))

In this list, X̄i is the nominal value of the factor Xi, ν̄i denotes the endpoints that define the estimated range of
uncertainty of Xi, φi is a random phase shift taken value in [0,2π] and s evolves in [−π/2,π/2].

• The interference factor: M can be changed as well.

• The frequencies: by providing a vector, it is possible to set a default at the frequencies’ value used instead of having
them determined by a specific algorithm to avoid, as best as possible, the interference.

The only common parameter changeable for both methods (and directly in the construction) is the number of samples.

page 77

The Johnson relative weight CHAPTER V. SENSITIVITY ANALYSIS

V.7 The Johnson relative weight

This section introduces indices whose purpose is mainly to obtain good estimators of the Shapley’s values defined in
Section V.1.1.4. The underlying assumption is to state that the model can be considered linear so that the results can
be considered as proper estimation of the Shapley indices (with or without correlation between the input variables).

V.7.1 Introducing the method

The idea here is very similar to the standard regression coefficients introduced in Section V.1.1.1, as one will use
orthogonal transformation to represent our data, with dependent inputs. The method has been introduced by Johnson
in [50] and its principle can be split into three steps:

1. transform the dependent input variables X through a linear transformation into Z so that ZT Z = 1p,p;

2. compute sensitivity index of Y with respect to Z;

3. reconstruct the sensitivity index of Y with respect to the component of X .

Practically, the method proposed by [50] relies on the singular value decomposition of X, written as X = UΣVT for
which U, contains the eigenvectors of XXT , V contains the eigenvectors of XT X and Σ is a diagonal matrix containing
the singular values of X. From there, the best-fitting orthogonal approximation of X can be obtained (c.f. [49] for the
demonstration) as

Z = UVT .

The second steps consists in regressing Y onto Z, which is obtained by

β
∗ = (ZT Z)91ZT Y = (VUT UVT)91VUT Y = 191

p,pVUT Y

= VUT Y.

The squared elements of β ∗ represent the proportion of predictable variance in Y accounted for by the (Zi)i=1,...,p, but
in the case where two or more original variables are highly correlated, the Z variables are not a close representation of
the X ones. To take this into account, Johnson proposed to regress X onto Z, leading to other weights defined as:

Λ
∗ = (ZT Z)91ZT X = (VUT UVT)91VUT UΣVT = 191

p,pVΣVT

= VΣVT

From there, the variance of Y explained by Xi can be written as ∆2
i and estimated from the following formula

∆
2
i =

p

∑
j=1

λ
∗2
i j β

∗2
j ,

where λ ∗
i j = (Λ∗)i j,∀i, j ∈ [1, p]2 and bearing in mind that

Var(Y) =
p

∑
i=1

∆
2
i =

p

∑
i=1

β
∗2
i .

The resulting sensitivity indices are written

∆
∗
i =

∆2
i

Var(Y)
, ∀1 ≤ i ≤ p.

page 78

CHAPTER V. SENSITIVITY ANALYSIS Sensitivity Indices based on HSIC

V.8 Sensitivity Indices based on HSIC

V.8.1 Introducing the method

The sensivity measures based on Hilbert-Schmidt independence criterion (HSIC) [37, 38] aims at analyzing the influ-
ence of input variables X on the output variables Y determining the dependance computing the dissimilary between
the joint distribution PXiY and the product of the marginal distributions PY ⊗PXi .

We associate respectively to Xi and Y Reproducing Kernel Hilbert Space (RKHS) HXi and HY associating projection
functions Φi and Ψ defined by characteristic kernels kXi and kY . Data are projected in a characteristic space using the
kernel trick operation.

ki(xi,x
′
i) = ⟨Φi(x

′
i),Φi(xi)⟩HXi

The advantage of this approach is that the projection has not to be known, we just need to arbitrary define the kernel.
Using the kernel trick operation, the HSIC measure, defined as Hilbert-Shmidt of the cross covariance operator, is
expressed as

HSIC(Xi,Y) = E[ki(Xi,X
′
i)kY (Y,Y

′
)]+E[ki(Xi,X

′
i)]E[kY (Y,Y

′
)]−2E

[
E[ki(Xi,X

′
i)|Xi]E[kY (Y,Y

′
)|Y]
]

which is estimated as
ˆHSIC(Xi,Y) =

1
N −1

Tr(LiHLY H)

with
Li =

[
ki(X

(j)
i ,X (j′)

i)
]

1≤ j, j′≤n
, LY =

[
ki(Y (j),Y (j′))

]
1≤ j, j′≤n

, H =
[
δ j′n −1/n

]
1≤ j, j′≤n

where δ j′n is the Kronecker operator Sensitivity indices are therefore defined such as

R2
HSIC,i =

HSIC(Xi,Y)√
HSIC(Xi,Xi)

√
HSIC(Y,Y)

These indices are mainly used for screening or ranking the parameters.

page 79

Introducing the method CHAPTER V. SENSITIVITY ANALYSIS

page 80

Chapter VI

Dealing with optimisation issues

VI.1 Introduction

An optimisation is a complex problem, because each study has its own peculiarities and it often requires to grope one’s
way forward, before finding an interesting solution. Most commonly, when dealing with optimisation, there are:

• one or more objectives that one wants to minimise (or maximise).

• decision variables that have a clear influence on the objectives.

• possibly some constraints either on the decision variables, on combination of some of them, or on objectives (defining
the search domain)

Knowing this, it is also compulsory to choose an optimisation algorithm, which is a crucial part of the optimisation
procedure. It is possible to divide these algorithms into two different categories:

• local ones: they allow mono-criterion optimisation, with or without constraints. They are generally computationally
efficient, but can not be used in parallel and tend to be trapped in local optima.

• global ones: they allow multi-objective optimisation, with or without constraints. They are suitable for problems with
many local optima, but are expensive computationally. However, they are easily parallelisable.

In the rest of this section, we will discuss optimisation procedure either in single-criterion or multi-objective case.
Independently of the chosen configuration the problem depends on input variables which will be gathered in a vector
x, called optimisation variable or decision variable. Each of these variables can be constrained, i.e. following simple
functions (as inequality) or more complicated ones, that can be combination of several variables. The most obvious
constraints are the boundaries: they define the minimum and maximum values authorised for all the inputs, defining
then the research space.

VI.1.1 Single criterion case

In the case of a single criterion problem, the optimisation procedure is equivalent to the minimisation of a function f (x)
which is called the cost function (but also objective function depending on the literature). The optimisation leads to
the determination of a minimum (that can be called optimum) that can either be global (there is no x′ in the research
volume such as f (x′)< f (xmin)) or local (same relation as before, but only in the vicinity of xmin).

page 81

The pareto concept in a nutshell CHAPTER VI. DEALING WITH OPTIMISATION ISSUES

VI.1.2 The pareto concept in a nutshell

As already discussed above, the optimisation is usually a minimisation problem of one or more objectives. We will
discuss here the multi-objective case as it leads to the definition of the Pareto front and the Pareto set. The optimisation
procedure can then be expressed as the minimisation of this function:

F(x) = (f1(x); f2(x); . . . ; fn(x))

where n is the number of objectives imposed and F is, here, the complete cost function. Unlike the single-criterion
case, there might be no such thing as an overall optimum since it is usually not possible to quantify a relation between
the objectives (to state which one is more important than the other). In the case where two solutions (x1 and x2) are
possible, one can say that x1 dominates x2 if the former does as good as the latter for all the objectives but at least
one, where it does better. The most common thing is to look for a group of solutions that are said to be not dominated,
meaning that they dominate the rest of the solutions (that do not belong to this group) but each and every one of
them can not dominate the others. No-one can state whether one solution in this group is better than any other in
the group (unless an external constraint or preference is imposed, usually with hindsight). This definition goes along
with the concept of trade off. The group of not-dominated solutions is then called the Pareto set and its graphical
representation in the objective space is called the Pareto front. Finally, in the objective space, one can represent
the ideal point and Nadir point which are respectively the minimum and maximum of all objective when considered
separately in the Pareto front.

Figure VI.1 shows a very simple example of a pure analytic model with two objectives (the blue and red curves on
the left panel) depending only on one variable. In this simple case, the Pareto set is shown in pink, as the area in
between both criterion’s minimum. Now looking in the criterion’s space (right panel of Figure VI.1), all the solutions are
shown in black and the corresponding Pareto front is, once more, depicted in pink. Both the ideal and Nadir points are
represented for illustration purpose.

Figure VI.1: Naive example of an imaginary optimisation case relying on two objectives that only depend on a single
input variable.

page 82

CHAPTER VI. DEALING WITH OPTIMISATION ISSUES Multicriteria optimisation

VI.2 Multicriteria optimisation

VI.2.1 Hitchhiker’s guide to genetic algorithms

A genetic algorithm is based on the way the genes are organised in a living being and the way they might evolve
through time and through the future generations.

VI.2.1.1 A brief recap of genetic: needed vocabulary (simplify model)

Genetic is the study of genes which are the places where all information concerning a being are encoded. These
genes are gathered in some kind of containers named chromosomes. Depending on the being under consideration,
the number of chromosomes will change (for instance, the human being has 23 types of chromosomes). In nature, the
living beings can be split into two categories: those with only one chromosome per type (called haploid beings) and
those with two chromosomes per type (called diploid beings). For the former, one precise characteristic is completely
described by the corresponding gene in the chromosome. On the other hand, for the latter, the same characteristic is
encoded by the two versions of the gene, called alleles, located on both chromosomes.

When considering a diploid being, another notion may arise: for every gene, it is possible to have twice the same allele
or two different alleles on both chromosomes. When talking about this specific gene, the first case is called homozy-
gote while the second is called heterozygote. The latter case will then leads to define the concept of dominance,
whose existence is possible in two different forms: the true dominance when an investigated characteristic is only
driven by the dominant allele, or the shared dominance when the resulting characteristic is an admixture of both
alleles. In the former case, the characteristic will be defined by one allele (called the dominant one while the other is
being called the recessive one).

Finally, evolution of the genotype through generations can come from two processes: the crossing one (when two
beings are combining themselves to create a new one) and the mutation one (that happened spontaneously changing
slightly one or several genes). The complete description of the genes in a being under study, is called genotype, while
the complete description of its characteristics is called phenotype.

VI.2.1.2 Uranie implementation of the genetic algorithm

The genetic algorithm implemented in Uranie is a diploid algorithm with real-coding and true dominance. In other words,
it means that every gene has two values (allele) which are represented by a double number, and the phenotype for this
gene is driven either by one allele or the other (but not an admixture of both version). The implementation is done by
plugging the Vizir package [80] which is developed by Gilles Arnaud. The concept of homozygote or heterozygote (that
should apply at the gene level) is applied here at the being level, implying that if a candidate is flagged as homozygote,
it means that all genes on a certain chromosome are rigorously identical on the second one.

Concretely the implementation is done as follows: a chromosome is a fixed-size vector of double (the size being the
number of gene, i.e. the number of criteria). At the initialisation, the value for the gene are chosen in the research
space of the corresponding criteria, following a random drawing (like a SRS one). The next step, the pairing by two to
create a candidate (as the considered beings are diploid), is complex and very much alike the crossing step to create
children from selected candidates. Based on the Figure VI.2, this procedure is described below, split in several steps:
starting from two parents (selected candidate of the N-Th generation) the crossing recipe to get N+1-Th generation
candidate is

Draw one chromosome per parent In Uranie the chromosome is not taken as it is (copied) from the N-Th genera-
tion, but instead a new chromosome is created, taking randomly allele from the first or second chromosome of
the corresponding parent. Once this is done twice, we obtain two chromosomes that should be associated to

page 83

Hitchhiker’s guide to genetic algorithms CHAPTER VI. DEALING WITH OPTIMISATION ISSUES

form a being. This step is present in Figure VI.2 both in the red and blue parts, whose difference is explained in
the next step.

Create homozygote being In Uranie the concept of homozygote or heterozygote (that should apply to gene, c.f.
Section VI.2.1.1) is applied to the considered being. There is a certain probability Ho for the being to be homozy-
gote (the default value in Uranie being 50%). To do that, the two gathered chromosomes are scanned, and for
every genes a linear sum is done between both alleles using a real coefficient randomly drawn in [0− ε,1+ ε]
(this ε can help a bit exploring the research space). The results is stored in a new vector (chromosome) which
is duplicated to get a new being with two identical chromosome that we call an homozygote candidate (red part
in Figure VI.2). On the contrary, if the zygote probability is in (1−Ho), the candidate will be called heterozygote
(blue part in Figure VI.2).

Determine the phenotype The phenotype is determined by the dominant or recessive character of alleles, which is
shown by the green part in Figure VI.2. The first and second steps discussed here to draw one chromosome per
parent and create or not a homozygote being, do not take this information into account at all. The finalisation
of the candidate consists then in doing a new random drawing for every gene, in order to determine which
allele will be the dominant one. Once this is settled, the dominant one is put in the first vector (chromosome)
of the candidate, for the sake of simplicity when testing the candidate. This is why in the parents and the
resulting children, disregarding the candidate is homozygote and heterozygote, a capital D is found below the
first chromosome (for dominant) while a capital R is written below the second one (for recessive).

Mutate genes To keep on exploring the research space, a random drawing is performed in order to know whether the
resulting candidate should mutate. This step is also applied both to homozygote and heterozygote candidate,
with a probability M whose default value in Uranie is 1%. If selected, a gene is chosen in both chromosomes of
the candidate (not necessarily the same gene, as this choice is as well coming from random drawing) and a new
randomly-drawn value is stored instead of the one already there.

Test and validate the children The newly produced candidates are then tested.

page 84

CHAPTER VI. DEALING WITH OPTIMISATION ISSUES General discussion on multi and many criteria problem.

Figure VI.2: Description of the children production process in the Uranie implementation of the genetic algorithm

VI.2.2 General discussion on multi and many criteria problem.

This section introduces the discussion from [1] which is a CEA technical note. The idea is to provide access to
dedicated references and provide the vocabulary, if the reader cannot either access the catalog of CEA notes or read
french (otherwise Ref. [1] is the one to consult, the rest of this section can be discarded).

VI.2.2.1 Evolutionary algorithm principle.

Unlike classical optimisation algorithm whose research is basically sequential from a given starting point, an evolution-
ary algorithm starts from a random sample (a population) which evolves thanks to:

• selection operators: how to choose the parents, i.e. the best element that should be the starting point to new
elements (parental selection) and how to remove the less interesting one (environmental selection).

• variation operators: how to produce a new elements from existing ones (crossing), how to randomly alterate some
caracters (mutation) and how to correct some caracters to make a new element viable (reparation, optional one).

When dealing with multi-objective problems, the notion of Pareto set and front is quickly arising as one wants to obtain
a pareto set, i.e. an ensemble of non-dominated solutions. The solutions should ideally obey different properties:

• convergence: be as close as possible to the "real" pareto front usually called the Pareto-optimal front;

page 85

General discussion on multi and many criteria problem. CHAPTER VI. DEALING WITH OPTIMISATION ISSUES

• coverage: coverage the widest range possible;

• density: elements of the set should be reparted as evenly as possible on the obtained coverage.

Discussions about these notions can be found for instance in [10] and in [9].

VI.2.2.2 Issues with more than one objective.

Is is simple to spot that 2 things can separatly bring a poor convergence of a finite pareto set:

• the size of the requested population;

• the number of objectives to be minimised.

If the only criteria to stop an evolutionary algorithm is the fact that the ensemble of solution are non-dominated one
to another, then clearly having a large number of criteria will lead to have non-comparable solutions almost out-of-box
(at the initialisation level). Even with only two criteria, but a small number of requested element in the final population,
putting the solution away one to another to improve the coverage will automatically reduce the convergence as the
competition between elements will diminish. Even the crossing could become problematic: given a very large Pareto
front, crossing very different elements might lead far away new resulting elements, meaning an inefficiency in the
generation steps.

Figure VI.3 shows a dummy example of this, using our classical hollow bar example introduce in the user manual, ask-
ing only 20 elements in the final population. The classical genetic algorithm (blue dots) stops with the non-dominance
criteria, so to obtain this only 100 estimations are needed in total. If one compares the way the solutions are distributed
in the criteria space (the Pareto Front), the coverage, density and convergence are worse than the curve shown by
the red dots. These dots are the 20 solutions proposed by the MOEAD implentation (see next section below) that
decomposes the space before starting the initialisation and is not only relying on dominance to perform the different
operation stated above.

Figure VI.3: Comparison of two Pareto sets (left) and fronts (right) from vizir (blue) and MOEAD (ref) when the hollow
bar case is studied with very low number of points, i.e. about 20 (simulating higher dimensions).

page 86

CHAPTER VI. DEALING WITH OPTIMISATION ISSUES General discussion on multi and many criteria problem.

VI.2.2.3 Available implementations and references.

This section provides a simple list of algorithms and their references, that can deal with many-objective optimisation.
They have been splitted in different categories, among which

• those who rely on distance or isolation notion to sort out solution which have the same rank (once pareto-dominance
ranking is done);

• those who try to generalise pareto ranking to make it more discriminant;

• those who no longer use pareto rank but try to set up quality index instead;

• those who split the domain first, in order to get a better coverage at first of the ensemble of solutions.

In Uranie one would find different implementation of many-objective algorithms that enrich the possibility and capacity
of the usual evolutionary algorithm, among which:

• a knee-point one [8]

• an IBEA one (Indicator Based Evolutionary Algorithm) [5]

• an MOEAD one (Multi Objective Evolutionary Algorithm based on Decomposition) [4]

page 87

General discussion on multi and many criteria problem. CHAPTER VI. DEALING WITH OPTIMISATION ISSUES

page 88

Chapter VII

The Calibration module

VII.1 Brief reminder of theoretical aspects

This section presents different calibration methods that are provided to help get a correct estimation of the parameters
of a model with respect to data (either from experiment or from simulation). The methods implemented in Uranie are
going from the point estimation to more advanced Bayesian techniques and they mainly differ from the hypothesis that
can be used.

In general, a calibration procedure will request an input datasets meaning an existing set of elements (either resulting
from simulations or experiments). This ensemble (of size n) can be written as

D = {(xi,yi), i = 1, . . . ,n}

where xi is the i-Th input vector which can be written as xi = (xi
1 . . . xi

nX
) while yi is the i-Th output vector which can be

written as yi = (yi
1 . . . yi

nY
).These data will be compared to model predictions, the model being a mathematical function

fθ : RnX → RnY . From now on and unless otherwise specified (for distance definition for instance, see Section VII.1.1)
the dimension of the output is set to 1 (nY = 1) which means that the reference observations and the predictions of the
model are scalars (the observation will then be written y and the prediction of the model fθ (x)).

On top of the input vector, already introduced previously, the model depends also on a parameter vector θ ∈ Θ ⊂ Rp

which is constant but unknown. The model is deterministic, meaning that fθ (x) is constant once both x and θ are
fixed. In the rest of this documentation, a given set of parameter value θ is called a configuration.

The standard hypothesis for probabilistic calibration is that the observations differ from the the predictions of the model
by a certain amount which is supposed to be a random variable as

ε = y− fθ (x) (VII.1)

where ε is a random variable whose expectation is equal to 0 and which is called residue. This variable represents
the deviation between the model prediction and the observation under investigation. It might arise from two possible
origins which are not mutually exclusive:

• experimental: affecting the observations. For a given observation, it could be written εobs = yreal − y

• modelling: the chosen model fθ is intrinsically not correct. This contribution could be written εmodel = f ∗
θ
− fθ

As the ultimate goal is to have yreal − f ∗
θ
= 0, injecting back the two contributions discussed above, this translates back

to equation VII.1, only breaking down:
y− fθ = εobs + εmodel.

The rest of this section introduces two important discussions that will be referenced throughout this module:

page 89

The distance used to compare observations and model predictions CHAPTER VII. THE CALIBRATION MODULE

• the distance between observations and the predictions of the models, in Section VII.1.1;

• the theoretical background and hypotheses (linear assumption, concept of prior and posterior distributions, the Bayes
formulation...) in Section VII.1.2.

The former is simply the way to obtain statistic over the n samples of the reference observations when comparing them
to a set of parameters and how these statistics are computed when the nY ̸= 1

On top of this description, there are several predefined calibration procedures proposed in the Uranie platform:

• The minimisation, discussed in Section VII.2

• The linear Bayesian estimation, discussed in Section VII.3

• The ABC approaches, discussed in Section VII.4

• The Markov-chain Monte-Carlo sampling, discussed in Section VII.5

VII.1.1 The distance used to compare observations and model predictions

There are many ways to quantify the agreement of the observations (our references) with the predictions of the model
given a provided vector of parameter θ . As a reminder, this step has to be run every time a new vector of parameter θ

is under investigation which means that the code (or function) should be run n times for each new parameter vector.

Starting from the formalism introduced above, many different distance functions can be computed. Given the fact that
the number of variable nY used to perform the calibration can be different than 1, one might also need variable weight
{ω j} j∈[1,nY] that might be used to ponderate the contribution of every variable with respect to the others. Given this,
here is a non-exhaustive list of distance functions:

• L1 distance function (sometimes called Manhattan distance): d(y, fθ (x)) =
nY

∑
j=1

ω j ×
(n

∑
i=1

|y j
i − fθ (x)

j
i |
)

• Least square distance function: d(y, fθ (x)) =
nY

∑
j=1

×

√
ω j

n

∑
i=1

(y j
i − fθ (x)

j
i)

2

• Relative least square distance function: d(y, fθ (x)) =
nY

∑
j=1

×

√√√√ω j

n

∑
i=1

(
y j

i − fθ (x)
j
i

y j
i

)2

• Weighted least square distance function: d(y, fθ (x))=
nY

∑
j=1

×

√
ω j

n

∑
i=1

ψi × (y j
i − fθ (x)

j
i)

2 where {ψi}i∈[1,n] are weights

used to ponderate each and every observations with respect to the others.

• Mahalanobis distance function: d(y, fθ (x)) =
nY

∑
j=1

×
√

ω j(y j − fθ (x) j)T Σ−1(y j − fθ (x) j) where Σ is the covariance

matrix of the observations.

These definitions are not orthogonal, indeed if {ψi}i∈[1,n] = α,α ∈ R, then the least-square function is equivalent to
the weighted least-square one. This situation is concrete as it can correspond to the case where the least-square
estimation is weighted with an uncertainty affecting the observations, assuming the uncertainty is constant throughout
the data (meaning α = σ−2). This is called the Homoscedasticity hypothesis and it is important for the linear case,
as discussed later-on.

page 90

CHAPTER VII. THE CALIBRATION MODULE Discussing assumptions and theoretical background

One can also compare the relative and weighted least-square, if α =R and {ψi = (α%×yi)
−1}i∈[i,n] these two forms

become equivalent (the relative least-square is useful when uncertainty on observations is multiplicative). Finally if one
assumes that the covariance matrix of the observations is the identity (meaning Σ = 1), the Mahalanobis distance is
equivalent to the least-square distance.

Warning It is important to stress something here : it might seem natural to think that the lower the distance
is, the closest to the real values our parameters are. Bearing this in mind would mean thinking that "having a
null distance" is the ultimate target of calibration, which is actually dangerous. As for the general discussion
in Chapter IV, the risk could be to overfit the set of parameters by "learning" just the set of observations at
our disposal as the "truth", not considering that the residue (introduced in VII.1) might be here to introduce
observation uncertainties. In this case, knowing the value of the uncertainty on the observations, the ultimate
target of the calibration might be to get the best agreement of observations and model predictions within the
uncertainty models, which can be translated into a distribution of the reduced-residue (that would be some-
thing like {(yi − f i

θ
)/σεi}i∈[1,n] in a scalar cases) behaving like a centred reduced Gaussian distribution.

VII.1.2 Discussing assumptions and theoretical background

VII.1.2.1 Calibration in the context of VVUQ principle

VVUQ is a known acronym standing for "Verification, Validation and Uncertainty Quantification". Within this framework,
the calibration procedure of a model, also called sometimes "Inverse problem" [51] or "data assimilation" [52] depending
on the hypotheses and the context, is an important step of uncertainty quantification. This step should not be confused
with validation, even if both procedures are based on comparison between reference data and model predictions, their
definition is recalled here [53]

validation: process of determining the degree to which a model is an accurate representation of the real world from
the perspective of the intended uses of the model.

calibration: process of improving the agreement of a code calculation or set of code calculations with respect to a
chosen set of benchmarks through the adjustment of parameters implemented in the code.

The underlying question to validation is "What is the confidence level that can be granted to the model given the
difference seen between the predictions and physical reality ?" while the underlying question of calibration is "Given
the chosen model, what parameter’s value minimise the difference between a set of observations and its predictions,
under the chosen statistical hypotheses ?".

In can happen sometimes that a calibration problem allows an infinity of equivalent solutions [54], which is possible
for instance when the chosen model fθ depends explicitly on an operation of two parameters. The simplest example
would be to have a model fθ depending only on two parameters through the difference θ1 −θ2. In this peculiar case,
every couple of parameters (θ1,θ2) that would lead to the same difference θ1−θ2 would provide the exact same model
prediction, which means that it is impossible to disentangle these solutions. This issue, also known as identifiability of
the parameters is crucial as one needs to think at the way our chosen is parameterised [55].

Defining a calibration analysis consists in several important steps:

• Precise the ensemble of observations that will be used as reference;

• Precise the model that is supposed to fairly describe the real world;

• Define the parameters to be analysed (either by defining the a priori laws or at least by setting a range). This step is
the moment where caution has to be taken on the identifiability issue.

page 91

Discussing assumptions and theoretical background CHAPTER VII. THE CALIBRATION MODULE

• Choose the method used to calibrate the parameters.

• Choose the distance function used to quantify the distance between the observations and the predictions of the
model.

VII.1.2.2 Interest in the least square measurement

The least-square distance function introduced in Section VII.1.1 is very classically used when considering calibration
issue. This is true whether one is considering calibration within a statistical approach or not (see the discussion on
uncertainty sources in Section VII.1). The importance of the least-square approach can be understood by adding an
extra hypothesis on the residue defined previously. If one considers that the residue is normally distributed, it implies
that one can write

εi =N (0,σ2
εi
) for i = 1, . . . ,n,

where σεi can quantify both sources of uncertainty and whose values are supposed known. The formula above can be
used to transform equation VII.1 into (setting nY = 1 for simplicity):

yi ∼ Yi|θ :=N (fθ (xi),σ
2
εi
) (VII.2)

This particular case is very interesting, as from equation VII.2 it becomes possible to write down the probability of the
observation set D as the product of all its component probability which can be summarised as such:

L(y|θ) =
n

∏
i=1

ℓ(yi|θ) =
n

∏
i=1

1√
2πσεi

e
− 1

2

(
yi− fθ (xi)

σεi

)2

(VII.3)

A logical approach is to consider than the fact the datasets D has been observed, means that the probability of this
collection of observations is highly probable. The probability defined in equation VII.3 can then be maximised by varying
θ in order to get its most probable values. This is called the Maximum Likelihood Estimation (MLE) and maximising the
likelihood is equivalent to minimise the logarithm of the likelihood which can be written as:

logL(y|θ) =−n
2

log2πσ
2
εi
− 1

2

n

∑
i=1

(yi − fθ (xi)

σεi

)2
.

EQUATION VII.1: Log-likelihood formula for a normally-distributed residue without homoscedasticity hypothesis

The first part of the right-hand side is independent of θ which means that minimising the log-likelihood is basically
focusing on the second part of the right-hand size which is basically the weighted least-square distance with the
weights set to {ψi = σ−2

εi
}i∈[i,n].

Finally on the way to get an estimation of the parameters in this case, it depends on the underlying hypotheses of
the model, and this discussion is postponed to another section (this is discussed in Section VII.2). More details on
least-square concepts can be found in many references, such as [56, 57].

VII.1.2.3 Introduction to Bayesian approach

The probability for an event to happen can be seen as the limit of its occurrence rate or as the quantification of a
personal judgement or opinion as for its realisation. This is a difference in interpretation that usually split the frequentist
and the Bayesian. For a simple illustration one can flip a coin : the probability of getting head, denoted P[head] is either
the average result of a very large number of experiments (this definition being very factual but whose value depends

page 92

CHAPTER VII. THE CALIBRATION MODULE Using minimisation techniques

highly on the size of the set of experiments) or the intimate conviction that the coin is well-balanced or not (which is
basically an a priori opinion that might be based on observations, or not).

Lets call (W,Z) a random vector with a joined probability density f(W,Z)(w,z) and marginal densities written as fW (w)
and fZ(z). From there, the Bayes rules states that:

fW |Z(w|z) =
fZ|W (z|w)× fW (w)

fZ(z)
(VII.4)

where fW |Z(w|z) (respectively fZ|W (z|w)) is the conditional probability density of W knowing that z has been realised
(and vice-versa respectively). These laws are called conditional laws.

Getting back to our formalism introduced previously, using equation VII.4 implies that the probability density of the
random variable θ given our observations, which is called posterior distribution, can be expressed as

πpost(θ |y) =
L(y|θ)πprior(θ)

π(y)
∝ L(y|θ)πprior(θ). (VII.5)

In this equation, L(y|θ) represents the conditional probability of the observations knowing the values of θ , πprior(θ) is
the a priori probability density of θ , often referred to as prior, π(y) is the marginal likelihood of the observations, which
is constant in our scope (as it does not depend on the values of θ but only on its prior, as π(y) =

∫
Θ

L(y|θ)πprior(θ)dθ ,
it consists only in a normalisation factor).

The prior law is said to be proper when one can integrate it, and improper otherwise. It is conventional to simplify the
notations, by writing π(θ |y) instead of πpost(θ |y) and also π(θ) instead of πprior(θ). The choice of the prior is a crucial
step when defining the calibration procedure and it must rely on physical constraints of the problem, expert judgement
and any other relevant information. If one of these are available or reliable, it is still possible to use non-informative
priors for which the calibration will only use the data as inputs. One can find more discussions on non-informative prior
here [58, 59].

VII.2 Using minimisation techniques

The theory behind this method may seem very basic as it consists mainly in a point estimation of a correct configuration
that could be performed without any underlying uncertainty modelling. This vision is over-simplistic, since numerical
optimisation problems are not simple ones, even for mono-criterion optimisation, because of, for instance:

• the regularity and possible local minimum of the cost function under consideration;

• the size of the input spaces and the possible constraints that can be applied on each and every single input.

This is not even starting discussing the intricate problems that might arise when the calibration is facing identifiability
problem. An insight might be seen using for instance evolutionary algorithms. For more methodological aspects on
these issues, please refer to Chapter VI.

VII.3 Analytical linear Bayesian estimation

This method consists mainly in the analytical formulation of the posterior distribution when the hypotheses on the prior
are well set: the problem can be considered linear and the prior distributions are normally distributed (or flat, this aspect
being precised at the end of this section).

In the specific case of a linear model, one can write then fθ (x) = hT (x)θ where h(x) is the regressor vector. This
way of writing the model can include an "hidden virtual" θ0 = 1 whose purpose is to integrate a constant term into the

page 93

Prediction values CHAPTER VII. THE CALIBRATION MODULE

regression (to describe a pedestal). Using the statistical approach introduced in Section VII.1, one can also define the
covariance matrix of the residue which will be written hereafter as Σ = diag(σε1 , . . . ,σεn)

From there, one can construct the conception matrix H = [h(x1), . . . ,h(xn)]
T ∈ Mn,p(R) whose columns are defining

the sub-space onto which the model is projected. With a normal prior, which follows the form θ ∼N (mθ ,Σθ) the pos-
terior is expected to be normal as well, meaning that it can be written π(θ |y)∼N (mpost

θ
,Σpost

θ
) where its parameters

are expressed as

mpost
θ

=
(

Σ
−1
θ

+HT
Σ
−1H

)−1(
mT

θ Σ
−1
θ

+yT
Σ
−1H

)T
(VII.6)

and

Σ
post
θ

=
(

Σ
−1
θ

+HT
Σ
−1H

)−1
. (VII.7)

Actually, one can also use, as already introduced in Section VII.1.2.3, non-informative prior such as the Jeffrey’s prior:
it is an improper flat prior (π(y) ∝ 1) [59], whose posterior distribution (in the linear case) is also Gaussian. For this
prior, the parameters of the posterior are equivalent to the parameters of the posterior from a Gaussian prior, given in
VII.6 and VII.7 only removing all reference to Σθ , as shown here:

mpost
θ

=
(

HT
Σ
−1H

)−1
HT

Σ
−1y and Σ

post
θ

=
(

HT
Σ
−1H

)−1
. (VII.8)

This final form is the results expected and obtained when only considering linear regression of the weighted least-
squares approach [60].

VII.3.1 Prediction values

Once both the posterior parameter values and covariances are estimated, it is possible to get a prediction for a set of
data not used to get the estimation. The central value of the prediction is easy to get, as for any other methods shown
in this documentation, since one knows the model and can use the newly estimated posterior central values of the
parameters.

What’s new is the fact that a variance can be estimated as well for the predicted central value using the posterior
covariance matrix of the parameters, Σ

post
θ

, already introduced in VII.7. This variance is the variance for every new

estimated points coming from the uncertainty of the parameters, and it is contained in the covariance matrix Σ
pred
θ

whose dimension is (q,q), where q is the size sample under consideration. To get the estimation one needs the new
conception matrix Hpred = [h(x1), . . . ,h(xq)]

T ∈ Mq,p(R) which leads to

Σ
pred
θ

=
(

Hpred Σ
post
θ

HT
pred

)
. (VII.9)

VII.4 The Approximation Bayesian Computation techniques (ABC)

This sections is discussing methods gathered below the ABC acronym, which stands for Approximation Bayesian
Computation. The idea behind these methods is to perform Bayesian inference without having to explicitly evaluate the
model likelihood function, which is why these methods are also referred to as likelihood-free algorithms [61].

As a reminder of what’s discussed in further details in Section VII.1.2.3, the principle of the Bayesian approach is recap
in the equation πpost(θ |y) = L(y|θ)πprior(θ)

π(y) ∝ L(y|θ)πprior(θ). where L(y|θ) represents the conditional probability of
the observations knowing the values of θ , πprior(θ) is the a priori probability density of θ (the prior) and π(y) is the
marginal likelihood of the observations, which is constant here. It does, indeed, not depend on the values of θ but only
on its prior, as π(y) =

∫
Θ

L(y|θ)πprior(θ)dθ which makes this a normalisation factor.

page 94

CHAPTER VII. THE CALIBRATION MODULE Rejection ABC algorithm

VII.4.1 Rejection ABC algorithm

The rejection ABC is the simplest possible version of the ABC approach. Its prehistory genesis was stated in the
eighties [62] and it is possible to see a nice introduction of the rejection algorithm as originally applied to a problem with
a finite countable set V of values in [63]. In this specific case, it only consisted in two random drawing: the parameter’s
value according to their prior then the model prediction according to the parameter’s value just drawn. If the results
was the element of the reference data set, the configuration was kept.

Things are getting a bit more tricky when considering continuous sample spaces are there is no such thing are strict
equality when considering stochastic behaviour (without even discussing the numerical issues that have to arise at
some points). This implies the need for two important concepts

• a distance measure on the output space, denoted ρ(., .);

• a tolerance determining the accuracy of the algorithm and denoted δ .

Unlike the simpler discrete case quickly introduced above where the aim is to have strict equality between the predic-
tions and the reference data, here the accepted configurations would be those fulfilling the following condition

ρ(z,y)≤ δ

where θT is the configuration under study draw following the prior π(θ) and z is the model predictions estimated from
fθT once run on the reference datasets. This was firstly used in the late nineties, as can be seen in [64].

Warning A peculiar attention has be to taken to the way the model is defined : one should recall that the
uncertainty model is defined on the residue, as stated in VII.1 and that residue is usually considered normally-
distributed VII.2. Disregarding the origin of this residue, as discussed in Section VII.1, if the model one is
providing is deterministic, the calibration will focus on a single realisation of the observation without uncer-
tainty consideration. In this case, the model prediction must be modified to include a noise representative of
the residue hypotheses [65].

This methodology shows that accepted configurations are not really taken out of the true posterior distribution π(θ |y)
but they’re coming from an approximation of it that can be written π(θ |ρ(z,y)≤ δ) Two interesting asymptotic regime
can be emphasised:

• when δ → 0: the algorithm is exact and is leading to the real π(θ |y);

• when δ → ∞: this algorithm does not use information from the reference datasets and gives back the original prior
π(θ) instead.

There are many different version of this kind of algorithm, among which one could find an extra step using summary
statistic S(.) to project both z and y onto a lower dimensional space. In this version, the configurations kept are drawn
from π(θ |ρ(S(z),S(y))≤ δ).

Finally another possible way to select the best representative sub-sample might be by using a percentile of the analysed
and computed set of configurations. Although, mainly recommended for high-dimension case (meaning when n is
become large), this solution might works as long as one keep an eye on the residue distribution provided by the a
posteriori estimated parameters. Indeed, if no threshold is chosen but a percentile is used, the requested number of
configurations will always been brought at the end, but the only way to check whether the uncertainty hypotheses were
correct is to look at how close the predictions have become for the full reference datasets.

page 95

The Markov-chain approach CHAPTER VII. THE CALIBRATION MODULE

VII.5 The Markov-chain approach

Unlike the Monte-Carlo methods already discussed in Chapter III to obtain design-of-experiments and which usually
provides independent samples (which means that the successive observations are statistically independent unless
correlation is purposely injected), the Monte-Carlo techniques describe here are called "Markov-chain" and they provide
dependent samples as the estimation of the i-Th iteration only depends of the value of the previous one, the (i-1)Th.

VII.5.1 Markov-chain principle

An usual approach to explain the Markov-chain theory on a continuous space is to start with a transition kernel P(x,A)
where x ∈ Rp and A ∈ B, where B is the Borel σ -algebra on Rp [66]. This transition kernel is a conditional distribution
function that represents the probability of moving from x to a point in the set A. It is interesting to notice two properties:
P(x,Rp) = 1 and P(x,{x}) is not necessarily zero, meaning than a transition might be possible from x to x. For a single
estimation, from a given starting point x0, this can be summarised as P(x1 ∈ A|x0) = P(x0,A). The Markov-chain is
defined as a sequence using this transition kernel a certain number of time, leading to the k-Th estimation (k ≥ 1)
P(xk ∈ A|x0) = Pk(x0,A) where Pk denotes the k-Th iteration of the kernel P [67].

The important property of a Markov-chain is the invariant distribution, π∗, which is the only distribution satisfying the
following relation

π
∗(dy) =

∫
Rp

P(x,dy)π(x)dx (VII.10)

where π is the density with respect to the Lebesgue measure of π∗ (meaning π∗(dy) = π(y)dy). This invariant
distribution is an equilibrium distribution for the chain that is the target of the sequence of transition, as

lim
k→∞

Pk(x,A) = π
∗(A)

The Monte-Carlo Markov-chain approach (hereafter called MCMC) is the following one: the invariant distribution is
considered known, as it is the one from which one wishes to sample, while the transition kernel is unknown and to be
determined. This might seem to be "the proverbial needle in a haystack" but the idea is to be able to write the target
kernel through a transition kernel probability p(x,y) (describing the move from x to y) as

P(x,dy) = p(x,y)dy+ r(x)δx(dy) (VII.11)

where δx(dy) = 1 and 0 otherwise, while r(x) = 1−
∫
Rp p(x,y)dy is the probability that the chain remains at its current

location. If the transition part of this function, p(., .), satisfies the reversibility condition (also called time reversibility,
detailed balance, microscopic reversibility...)

π(x)p(x,y) = π(y)p(y,x) (VII.12)

then π(.) is the invariant density of P(x, .) [67].

VII.5.2 The Metropolis-Hasting algorithm

In the Metropolis-Hasting approach, the candidate-generating density is traditionally denoted q(x,y). If this density
satisfies the reversibility condition in equation VII.12 for all x and y the search is over (but this is very unlikely). What’s
more probable is to find something like π(x)q(x,y) > π(y)q(y,x) that states that moving from x to y is happening too
often (or the other way too scarcely).

page 96

CHAPTER VII. THE CALIBRATION MODULE The Metropolis-Hasting algorithm

The proposed way to correct this is to introduce a probability α(x,y)< 1 where this α(x,y) is called the probability of
move that is injected in the reversibility condition to help fulfil it. Without getting in too much details (see [69] which
nicely discusses this), the probability of move is usually set to

α(x,y) = min
[

π(y)q(y,x)
π(x)q(x,y)

,1
]
, if π(x)q(x,y)> 0

= 1, otherwise

If the chain is currently at a point xk = x, then it generates a value y accepted as xk+1 with the probability α(x,y). If
rejected the chain remains at the current location and another drawing is performed from there.

With this, one can define the off-diagonal density of the Metropolis-Hasting kernel as function, p(x,y) = q(x,y)α(x,y)
if x ̸= y and 0 otherwise and with thanks to equation VII.11, one has the invariant distribution for P [67].

Warning Two important things to notice here

• the obtained sample is obviously not independent as the k+1-Th location is taken out from the k-Th one.

• the very first drawn locations are usually rejected as part of the burn-in (also called warm-up) process.
As discussed above, the algorithm needs a certain number of iteration to converge through the invariant
distribution.

VII.5.2.1 The random walk choice

The idea here is to choose a family of candidate-generating densities that follows q(x,y) = q1(x− y) where q1(.) is
a multivariate density [68], a classical choice being q1 set as a multivariate normal density. The candidate is indeed
drawn as current value plus a noise, which is the origin of the random walk name.

Once the newly selected configuration-candidate is chosen, let’s call it , θT the comparison with respect to the latest
configuration kept, called here θk, is done through the ratio of likelihood, which allows to get rid of any constant factors
and should look like this once transformed to its log form:

log
(L(y|θT)

L(y|θk)

)
=

1
2

n

∑
i=1

(yi − fθk(xi)

σεi

)2
− 1

2

n

∑
i=1

(yi − fθT (xi)

σεi

)2
.

This result is then compared to the logarithm of a random uniform drawing between 0 and 1 to decide whether one
should keep this configuration (as usually done in Mpnte-Carlo approach, see [69]).

There are few more properties for this kind of algorithm such as the acceptation rate, that might be tuned or used as
validity check according to the dimension of our parameter space for instance [70, 71] or the lag definition, sometimes
used to thin the resulting sample (whose usage is not always recommended as discussed in [72]). These subjects
being very close to the implementation choices, they are not discussed here.

page 97

The Metropolis-Hasting algorithm CHAPTER VII. THE CALIBRATION MODULE

page 98

Chapter VIII

The Uncertainty modeler module

VIII.1 Introduction

We present in this section the quantitative comparison of an already existing sample to a given probability density func-
tion ("PDF") and the CIRCE method used to determine the uncertainty of non measurable physical model’s parameters
.

VIII.2 Tests based on the Empirical Distribution Function ("EDF tests")

This part is introducing comparison tests, sometimes called "goodness of fit" tests, which are used as test hypothesis.
This idea is to check, when considering a certain variable, whether it is following a predefined law among the list of
implemented ones: normal, lognormal and uniform ones. To do so, there are three different tests implemented in
Uranie. If one calls Fn(x) the Empirical Distribution Function of the law F(x) (i.e. the distribution that we’d like to test)
and F0(x) the reference law one wants to compare to, then, for n the number of data in the EDF, these tests are defined
as:

Kolmogorov-Smirnov (D) [81]

D = sup|F0(Xi)−Fn(Xi)|i=1,...,n

Anderson-Darling (A2) [82]

A2 = n
∫ |F0(x)−Fn(x)|2

F0(x)(1−F0(x))
dF0(x) =−n− 1

n

n

∑
i=1

(2i−1)× [log(Fn(Xi))+ log(Fn(Xn+1−i))]

Cramer-VonMises (W 2) [83]

W 2 = n
∫

|F0(x)−Fn(x)|2dF0(x) =
1

12n

n

∑
i=1

(
F0(Xi)−

2i−1
2n

)2

In these three formulas, the (Xi)i=1,...,n set represents the ordered data of the random variable x which comes usually
as the CDF distribution for convenience.

page 99

The Circe method CHAPTER VIII. THE UNCERTAINTY MODELER MODULE

VIII.3 The Circe method

The Circe method is a statistical approach which is applied as an alternative to the expert judgement, used to de-
termine the uncertainty of physical model’s parameters. These uncertainties can be tricky to estimate as some of
these parameters might not be directly measurable. However, it might be possible to use SET (separate-effect tests)
experiments, which are sensitive to the physical model, to derive an estimation of these uncertainties.

VIII.3.1 Main principle of the CIRCE method

As already stated previously, CIRCE (which stands for "Calcul des Incertitudes Relatives aux Correlations Elemen-
taires") is a statistical method in which the uncertainties are defined through random variables, mean values and
standard deviations [84, 85]. Usually, if one considers Pi the non-observed parameters (i being the number of these
parameters, limited here to a certain number q), one can write the following equation

Pi = pi ×Pnom
i

The physical parameter is then expressed as a function of a nominal value (Pnom
i) and a multiplier coefficient pi. A

relation can be constructed between these multipliers and the parameters considered by CIRCE, as

pi = 1+αi or pi = eαi

EQUATION VIII.1: Relation between multipliers and CIRCE parameters.

The nominal value of αi is set to 0 (leading to a nominal value of the influential physical model equal to 1). The
other inputs needed by the method are the observed data (or responses) that will be hereafter called Rexp

j (j being a

realisation of the SET experiment), and the corresponding code result Rcode
j . CIRCE combines the difference between

the experimental and the code results (Rexp
j −Rcode

j) with the derivatives of each code response with respect to each

parameter
∂Rcode

j

∂αi
. It is also possible to take into account the experimental uncertainties of the response, called

hereafter δRexp
j . This procedure should lead to the estimation, for every αi parameter, of its mean value bi (for bias)

and its standard deviation, σi.

In order to perform this estimation, there are two main hypothesis done by the CIRCE method:

• the linearity between the code response and each parameter αi. This hypothesis is clearly visible since first-order

derivatives are used for the estimation (
∂Rcode

j

∂αi
). It is further discussed in Section VIII.3.1.1.

• the normality of the αi parameters. An hypothesis on the PDF of CIRCE parameters is indeed compulsory, leading
to the hypothesis of normality or lognormality of the pi multiplier if respectively the additive or exponential change of
variable is used in Equation VIII.1. This is further discussed in Section VIII.3.1.2.

VIII.3.1.1 The linearity hypothesis

For every response, the quantity of interest is Rexp
j −Rcode

j which can as well be written as, if one notes Rreal
j the real

value of the R j response, Rexp
j −Rcode

j = (Rexp
j −Rreal

j)+ (Rreal
j −Rcode

j). It is the sum of two independent random
variables:

• (Rexp
j −Rreal

j): the experimental uncertainty which obeys a centered normal law of known standard deviation σ exp.

page 100

CHAPTER VIII. THE UNCERTAINTY MODELER MODULE Main principle of the CIRCE method

• (Rreal
j −Rcode

j): which is obtain from a first order development as

Rreal
j −Rcode

j =
q

∑
i=1

∂Rcode
j

∂αi
(α j,i −α

nom
i)

In this definition, α j,i is the unknown value to be given to the i-Th parameter so that Rcode
j (α j,1, . . . ,α j,q) = Rreal

j (α j,i

being different for every response) and αnom
j is the nominal value of this i-Th parameter (generally 0).

VIII.3.1.2 The normality hypothesis

If one gathers all the information about the system described up to now, the problem can be summarised as

Rexp
j −Rcode

j = (Rexp
j −Rreal

j)+(Rreal
j −Rcode

j) = e j +
q

∑
i=1

∂Rcode
j

∂αi
×α j,i

In this expression, on can discuss the different contributions:

• Rexp
j −Rcode

j and
∂Rcode

j

∂αi
are known.

• e j is a realisation of N (0,(σ exp)2) where σ exp is also known.

• The α j,i are unknown. The only available information can be extracted through their statistical features: their bias bi

and their standard deviation σi.

There will be several solutions possible for the vector of α , leading to a needed choice among them. The criterion
chosen to do so is the maximum of likelihood, which obliges to make an hypothesis on the form of the law followed by
the αi parameters. The normal hypothesis is then chosen.

page 101

Main principle of the CIRCE method CHAPTER VIII. THE UNCERTAINTY MODELER MODULE

page 102

Chapter IX

References

[1] G. Arnaud. Méthodes pour l’optimisation many-objective par algorithme évolutionnaire. Technical report, CEA,
STMF/LGLS/RT/17-005/A, 2017.

[2] Eric W. Weisstein. Likelihood. https://mathworld.wolfram.com/Likelihood.html.

[3] W. Appel. Probabilité pour les non probabilistes. H & K, Paris, 2013.

[4] Qingfu Zhang and Hui Li. Moea/d: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans-
actions on evolutionary computation, 11(6):712–731, 2007.

[5] Eckart Zitzler and Simon Künzli. Indicator-based selection in multiobjective search. In International Conference
on Parallel Problem Solving from Nature, pages 832–842. Springer, 2004.

[6] K. B. Petersen and M. S. Pedersen. The matrix cookbook, nov 2012. Version 20121115.

[7] T.W. Simpson, J.D. Poplinski, P. N. Koch, and J.K. Allen. Metamodels for computer-based engineering design:
Survey and recommendations. Engineering with Computers, 17(2):129–150, Jul 2001.

[8] Xingyi Zhang, Ye Tian, and Yaochu Jin. A knee point-driven evolutionary algorithm for many-objective optimization.
IEEE Transactions on Evolutionary Computation, 19(6):761–776, 2015.

[9] Eckart Zitzler. Evolutionary algorithms for multiobjective optimization: Methods and applications, volume 63.
Citeseer, 1999.

[10] Eckart Zitzler, Lothar Thiele, and Johannes Bader. On set-based multiobjective optimization. IEEE Transactions
on Evolutionary Computation, 14(1):58–79, 2010.

[11] M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of three methods for selecting values of input
variables in the analysis of output from a computer code. Technometrics, 42(1):55–61, February 2000.

[12] J. C. Helton and F. J. Davis. Illustration of sampling-based methods for uncertainty and sensitivity analysis. Risk
Analysis, 22(3):591–622, 2002.

[13] R. L. Iman and W. J. Conover. A distribution-free approach to inducing rank correlation among input variables.
Communications in Statistics - Simulation and Computation, 11(3):311–334, 1982.

[14] D. Morris and J. Mitchell. Exploratory designs for computational experiments. Journal of Statistical Planning and
Inference, 43:381–402, 1995.

[15] G. Damblin, M. Couplet, and B Iooss. Numerical studies of space filling designs: optimization of Latin hypercube
samples and subprojection properties. Journal of simulation, 7:276–289, 2013.

page 103

BIBLIOGRAPHY BIBLIOGRAPHY

[16] L. Pronzato and W. Muller. Design of computer experiments: space filling and beyond. Statistics and Computing,
22(3):681–701, 2012.

[17] I.M Sobol’. On the distribution of points in a cube and the approximate evaluation of integrals. USSR Computa-
tional Mathematics and Mathematical Physics, 7(4):86 – 112, 1967.

[18] Leonardo S Bastos and Anthony O’Hagan. Diagnostics for gaussian process emulators. Technometrics,
51(4):425–438, 2009.

[19] J. H. Halton. Algorithm 247: Radical-inverse quasi-random point sequence. Commun. ACM, 7(12):701–702,
December 1964.

[20] K. Petras. Fast calculation of coefficients in the smolyak algorithm. Numerical Algorithms, 26(2):93–109, 2001.

[21] W.S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathe-
matical biophysics, 5(4):115–133, 1943.

[22] F. Rosenblatt. Principles of neurodynamics: perceptrons and the theory of brain mechanisms. Report (Cornell
Aeronautical Laboratory). Spartan Books, 1962.

[23] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approximators. Neural
Netw., 2(5):359–366, July 1989.

[24] A. R. Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Transactions on
Information Theory, 39(3):930–945, May 1993.

[25] N. Wiener. The homogeneous chaos. American Journal of Mathematics, 60(4):897–936, 1938.

[26] R. H. Cameron and W. T. Martin. The orthogonal development of non-linear functionals in series of fourier-hermite
functionals. Annals of Mathematics, 48(2):385–392, 1947.

[27] Roger G. Ghanem and Pol D. Spanos. Stochastic Finite Elements: A Spectral Approach. Springer-Verlag New
York, Inc., New York, NY, USA, 1991.

[28] M. Baudin and J.M. Martinez. Polynômes de chaos sous Scilab via la librairie NISP. In 42èmes Journées de
Statistique, Marseille, France, France, 2010.

[29] Olivier Roustant, Fabrice Gamboa, and Bertrand Iooss. Sensitivity analysis and generalized chaos expansions.
lower bounds for sobol indices. arXiv preprint arXiv:1906.09883, 2019.

[30] G. Matheron. La théorie des variables régionalisées, et ses applications. Fasicule 5 in Les Cahiers du Centre de
Morphologie Mathématique de Fontainebleau, 1970.

[31] J.M. Martinez, A. Marrel, N. Gilardi, and F. Bachoc. Krigeage par processus gaussiens. Librairie gpLib. Technical
report, CEA DEN/DANS/DM2S/STMF/LGLS/RT/12-026/A, 2012.

[32] F. Bachoc. Estimation paramétrique de la fonction de covariance dans le modèle de Krigeage par processus
Gaussiens : application à la quantification des incertitudes en simulation numérique. PhD thesis, Mathématiques
appliquées, Paris 7, 2013. Thèse de doctorat dirigée par J. Garnier.

[33] J.M. Martinez. Tutorial du krigeage dans uranie. Technical report, CEA DEN/DANS/DM2S/STMF/LGLS/NT/13-
014/A, 2015.

[34] A Saltelli, S. Tarantola, F. Campolongo, and M. Ratto. Sensitivity Analysis in Practice: A Guide to Assessing
Scientific Models. Wiley, New York, 2004.

page 104

BIBLIOGRAPHY BIBLIOGRAPHY

[35] A Saltelli, S. Tarantola, F. Campolongo, M. Ratto, T. Andres, J. Cariboni, D. Gatelli, and M. Saisana. Global
Sensitivity Analysis: The Primer. Wiley, New York, 2008.

[36] A Saltelli, K. Chan, and E.M. Scott. Sensitivity Analysis. Wiley, New York, 2008.

[37] A. Gretton, R. Herbrich, R. Smola, O. Bousquet, B. Schölkopf, et al. Kernel methods for measuring independence.
2005.

[38] S. Da Veiga. Global sensitivity analysis with dependence measures. Journal of Statistical Computation and
Simulation, 85(7):1283–1305, 2015.

[39] T. Homma and A. Saltelli. Importance measures in global sensitivity analysis of nonlinear models. Reliability
Engineering and System Safety, 52:1–17, 1996.

[40] R.L. Iman, M.J. Shortencarier, and J.D. Johnson. FORTRAN 77 program and users guide for the calculation of
partial correlation and standardized regression coefficients. Sandia National Laboratories, Jun 1985.

[41] R. A. Fisher. On the probable error of a coefficient of correlation deduced from a small sample. Metron, 1:3–32,
1921.

[42] A. Saltelli. Making best use of model evaluations to compute sensitivity indices. Computer Physics Communica-
tions, 145:280–297, 2002.

[43] H. Monod, C. Naud, and D. Makowski. Uncertainty and sensitivity analysis for crop models. In D. Wallach, D.
Makowski, and J. W. Jones, editors, 2006.

[44] Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of expensive black-box
functions. Journal of Global optimization, 13(4):455–492, 1998.

[45] Ian Jolliffe. Principal component analysis. Springer, 2011.

[46] J.M. Martinez. Analyse de sensibilité globale par décomposition de la variance. Technical report, GdR Ondes et
Mascot Num, institut Henri Poincaré, 2011.

[47] I.M. Sobol’. Sensitivity indices for nonlinear mathematical models. Mathematical Modelling and Computational
Experiment 1, 1993.

[48] Bertrand Iooss and Clémentine Prieur. Shapley effects for sensitivity analysis with dependent inputs: comparisons
with sobol’indices, numerical estimation and applications. arXiv preprint arXiv:1707.01334, 2017.

[49] Richard M Johnson. The minimal transformation to orthonormality. Psychometrika, 31(1):61–66, 1966.

[50] Jeff W Johnson. A heuristic method for estimating the relative weight of predictor variables in multiple regression.
Multivariate behavioral research, 35(1):1–19, 2000.

[51] Albert Tarantola. Inverse problem theory. SIAM, 2005.

[52] Mark Asch, Marc Bocquet, and Maëlle Nodet. Data assimilation. Methods, algorithms and applications. SIAM,
2016.

[53] Timothy G Trucano, Laura Painton Swiler, Takera Igusa, William L Oberkampf, and Martin Pilch. Calibration,
validation, and sensitivity analysis: What’s what. Reliability Engineering & System Safety, 91(10-11):1331–1357,
2006.

[54] Christian Hansen. Rank-Deficient and Discrete Ill-Posed Problems. SIAM, 1996.

[55] Eric Walter and Luc Pronzato. Identification of parametric models. Communications and control engineering, 8,
1997.

page 105

BIBLIOGRAPHY BIBLIOGRAPHY

[56] Ake Börck. Numerical Methods for Least Squares Problems. Society for Industrial Applied Mathematics, 1996.

[57] V. Pereyra P. C. Hansen and G. Scherer. Least Squares Data Fitting with Applications. Johns Hopkins University
Press, 2013.

[58] Harold Jeffreys. An invariant form for the prior probability in estimation problems. Proceedings of the Royal Society
of London. Series A. Mathematical and Physical Sciences, 186(1007):453–461, 1946.

[59] Christèle Bioche. Approximation de lois impropres et applications. PhD thesis, 2015.

[60] N. H. Bingham and John M. Fry. Regression. Linear Models in Statistics. Springer, 2010.

[61] Richard David Wilkinson. Approximate bayesian computation (abc) gives exact results under the assumption of
model error. Statistical applications in genetics and molecular biology, 12(2):129–141, 2013.

[62] Donald B Rubin. Bayesianly justifiable and relevant frequency calculations for the applies statistician. The Annals
of Statistics, pages 1151–1172, 1984.

[63] Jean-Michel Marin, Pierre Pudlo, Christian P Robert, and Robin J Ryder. Approximate bayesian computational
methods. Statistics and Computing, 22(6):1167–1180, 2012.

[64] Jonathan K Pritchard, Mark T Seielstad, Anna Perez-Lezaun, and Marcus W Feldman. Population growth of
human y chromosomes: a study of y chromosome microsatellites. Molecular biology and evolution, 16(12):1791–
1798, 1999.

[65] Elske van der Vaart, Dennis Prangle, and Richard M Sibly. Taking error into account when fitting models using
approximate bayesian computation. Ecological applications, 28(2):267–274, 2018.

[66] Jon Wakefield. Bayesian and frequentist regression methods. Springer Science & Business Media, 2013.

[67] Luke Tierney. Markov chains for exploring posterior distributions. the Annals of Statistics, pages 1701–1728,
1994.

[68] Peter Müller. A generic approach to posterior integration and Gibbs sampling. Purdue University, Department of
Statistics, 1991.

[69] Siddhartha Chib and Edward Greenberg. Understanding the metropolis-hastings algorithm. The american statis-
tician, 49(4):327–335, 1995.

[70] Andrew Gelman, Gareth O Roberts, Walter R Gilks, et al. Efficient metropolis jumping rules. Bayesian statistics,
5(599-608):42, 1996.

[71] Gareth O Roberts, Andrew Gelman, Walter R Gilks, et al. Weak convergence and optimal scaling of random walk
metropolis algorithms. The annals of applied probability, 7(1):110–120, 1997.

[72] William A Link and Mitchell J Eaton. On thinning of chains in mcmc. Methods in ecology and evolution, 3(1):112–
115, 2012.

[73] Baptiste Broto, François Bachoc, Marine Depecker, and Jean-Marc Martinez. Sensitivity indices for independent
groups of variables. Mathematics and Computers in Simulation, 163:19–31, 2019.

[74] Art B Owen. Sobol’indices and shapley value. SIAM/ASA Journal on Uncertainty Quantification, 2(1):245–251,
2014.

[75] M.J.W. Jansen. Analysis of variance designs for model output. Computer Physics Communications, 117, 1999.

[76] G.J. McRae, J.W. Tilden, and J.H. Seinfeld. Global sensitivity analysis: a computational implementation of the
fourier amplitude sensitivity test (fast). Computers & Chemical Engineering, 6(1):15 – 25, 1982.

page 106

BIBLIOGRAPHY BIBLIOGRAPHY

[77] A. Saltelli and R. Bolado. An alternative way to compute fourier amplitude sensitivity test (fast). Computational
Statistics & Data Analysis, 26(4):445 – 460, 1998.

[78] Sébastien Da Veiga. Global sensitivity analysis with dependence measures. Journal of Statistical Computation
and Simulation, 85(7):1283–1305, 2015.

[79] S. Tarantola, D. Gatelli, and T.A. Mara. Random balance designs for the estimation of first order global sensitivity
indices. Reliability Engineering & System Safety, 91(6):717 – 727, 2006.

[80] G. Arnaud. Manuel d’utilisation de Vizir distribué v2.0. Technical report, CEA, SFME/LGLS/RT/10-001/A, 2010.

[81] A. N. Kolmogorov. Sulla Determinazione Empirica di una Legge di Distribuzione. Giornale dell’Istituto Italiano
degli Attuari, 4:83–91, 1933.

[82] T. W. Anderson and D. A. Darling. Asymptotic theory of certain goodness of fit criteria based on stochastic
processes. Ann. Math. Statist., 23(2):193–212, 06 1952.

[83] T. W. Anderson. On the distribution of the two-sample cramer-von mises criterion. Ann. Math. Statist., 33(3):1148–
1159, 09 1962.

[84] A. De Crécy. Circe: A methodology to quantify the uncertainty of the physical models of a code. Technical report,
CEA DEN/DANS/DM2S/STMF/LGLS/RT/12-013/A, 2012.

[85] A. De Crécy and P. Bazin. Determination of the uncertainties of the constitutive relationship of the CATHARE 2
code. M&C 2001, 2001.

page 107

	Glossary
	Basic statistical elements
	Random variable modelisation
	The probability distributions

	Statistical treatments and operations
	Normalising the variable
	Computing the ranking
	Computing the elementary statistic
	The quantile computation
	Correlation matrix

	Combining these aspects: performing PCA
	Theoretical introduction

	The Sampler module
	Introduction
	The Stochastic methods
	Introduction
	Correlating samples drawn from different marginals
	The maximin LHS
	The constrained LHS

	QMC method

	Generating surrogate models
	Introduction
	Quality criteria definition
	Adapting the fitting strategy

	 The linear regression
	Chaos polynomial expansion
	Introduction
	Nisp in a nutshell

	The artificial neural network
	Introduction to the formal neuron
	The working principle

	The kriging method
	Theoretical introduction
	Running a kriging

	Sensitivity analysis
	Brief reminder of theoretical aspects
	Theoretical aspects
	List of available methods

	The finite differences method
	General presentation of finite difference sensitivity indices

	The regression method
	General presentation of regression's coefficients
	Getting a confidence-interval estimation

	The Morris screening method
	Principle of the Morris' method

	The Sobol method
	Sobol's sensitivity indices

	 Fourier-based methods
	Introducing the method
	Implementation of methods

	 The Johnson relative weight
	Introducing the method

	 Sensitivity Indices based on HSIC
	Introducing the method

	Dealing with optimisation issues
	Introduction
	Single criterion case
	The pareto concept in a nutshell

	Multicriteria optimisation
	 Hitchhiker's guide to genetic algorithms
	 General discussion on multi and many criteria problem.

	The Calibration module
	Brief reminder of theoretical aspects
	The distance used to compare observations and model predictions
	Discussing assumptions and theoretical background

	Using minimisation techniques
	Analytical linear Bayesian estimation
	Prediction values

	The Approximation Bayesian Computation techniques (ABC)
	Rejection ABC algorithm

	The Markov-chain approach
	Markov-chain principle
	The Metropolis-Hasting algorithm

	The Uncertainty modeler module
	Introduction
	Tests based on the Empirical Distribution Function ("EDF tests")
	The Circe method
	Main principle of the CIRCE method

	References

