
User manual for Uranie v4.9.0

C++ version

July 30, 2024

THE URANIE TEAM, support-uranie@cea.fr

page 2

Contents

I Overview: Uranie in a nutshell 25

I.1 Introducing Uranie . 25

I.1.1 Uranie modules organisation . 25

I.1.2 External dependencies . 27

I.2 ROOT Environment . 28

I.2.1 Environment variables . 28

I.2.2 ROOT interpreter and runtime compiler . 29

I.2.3 Standard compilation . 30

I.2.4 Uranie namespace . 31

I.2.5 Important modifications going from ROOT v5 to ROOT v6 33

I.2.6 References . 34

I.3 The Python Interface . 34

I.3.1 Python version: greater than 3.8 . 34

I.3.2 Environment variables . 35

I.3.3 Using PyROOT . 35

I.3.4 The PyURANIE interface . 36

I.3.5 References . 38

II The DataServer module 39

II.1 Introduction . 39

II.2 The TAttribute class . 40

II.2.1 Nature of the attribute . 40

II.2.2 List of variable information . 40

II.2.3 Examples of use of the class TAttribute . 44

II.2.4 Adding TAttribute when data are already available . 44

page 3

CONTENTS CONTENTS

II.2.5 Introducing the TStochasticAttribute classes . 45

II.3 Data handling . 69

II.3.1 Main format of input/output . 70

II.3.2 Import data from an ASCII file . 73

II.3.3 Import data from a TNtuple/TDSNtuple/TTree . 75

II.3.4 Adding attributes to a TDataServer . 77

II.3.5 Merging two DataServer . 79

II.3.6 Pattern selection . 81

II.3.7 Export to an ASCII file . 84

II.4 Statistical treatments and operations . 87

II.4.1 Normalising the variable . 87

II.4.2 Computing the ranking . 89

II.4.3 Computing the elementary statistic . 90

II.4.4 The quantile computation . 92

II.4.5 Correlation matrix . 98

II.5 Visualisation dedicated to uncertainties . 100

II.5.1 Histogram . 100

II.5.2 Box-and-whisker("boxplot") . 101

II.5.3 CDF, CCDF curves . 102

II.5.4 Graph 2D with contour levels . 103

II.5.5 Graph 2D "profile" . 104

II.5.6 Graph 2D "Tufte" . 104

II.5.7 Graph 2D "pairs" . 105

II.5.8 Graph "CobWeb" . 106

II.5.9 QQ plot . 108

II.5.10 PP plot . 109

II.6 Combining these aspects: performing PCA . 110

II.6.1 PCA usage within Uranie . 110

III The Sampler module 115

III.1 Introduction . 115

III.2 The Stochastic methods . 116

III.2.1 Introduction . 116

III.2.2 The main sampler classes . 118

page 4

CONTENTS CONTENTS

III.2.3 Simple example . 119

III.2.4 TConstrLHS example . 119

III.3 Description of a correlation . 120

III.3.1 Imposing the correlation coefficients . 121

III.3.2 The copula classes . 123

III.4 QMC method . 125

III.5 The random fields . 127

III.6 OAT Design . 129

III.6.1 Introduction . 129

III.6.2 OAT design in Uranie . 129

III.6.3 TOATDesign . 129

III.7 The Vectorial Quantification method . 135

IV The Launcher module 137

IV.1 Introduction . 137

IV.1.1 Presentation . 137

IV.1.2 Overview of a simple case . 137

IV.2 Analytic function . 143

IV.3 External Code . 147

IV.3.1 Code input and output files . 149

IV.3.2 TCode definition . 166

IV.3.3 Launcher definition . 168

IV.4 Distribution . 171

IV.4.1 Multi-core computer . 171

IV.4.2 Cluster . 171

IV.4.3 Advanced usage of batch systems . 173

IV.4.4 Multi-step launching mechanism . 174

IV.4.5 Multi-step remote launching to clusters . 175

V The Modeler module 181

V.1 Introduction . 181

V.2 The TLinearRegression class . 183

page 5

CONTENTS CONTENTS

V.3 Chaos polynomial expansion . 184

V.3.1 Nisp in a nutshell . 185

V.3.2 Step 1: Specification of the uncertain parameters . 186

V.3.3 Step 2: Building stochastic variables . 186

V.3.4 Step 3: Constitution of the sample . 187

V.3.5 Step 4: Building the polynomial chaos . 188

V.3.6 Step 5: Uncertainty and sensitivity analysis . 188

V.3.7 Other functionalities . 189

V.4 Adaptive development in polynomial chaos: the Anisp method . 194

V.4.1 Step 1: Specification of the uncertain parameters . 194

V.4.2 Step 2: Creation of the TAnisp Object . 195

V.4.3 Step 3: Running the Anisp method . 198

V.4.4 Step 4: Uncertainty and sensitivity analysis . 198

V.5 The artificial neural network . 199

V.5.1 The working principle . 199

V.5.2 Constructor . 201

V.5.3 Training . 201

V.5.4 Export . 202

V.6 The kriging method . 202

V.6.1 Running a kriging . 203

V.6.2 Construction of a kriging model . 204

V.6.3 Usage of a Kriging model . 213

V.6.4 Advanced usage . 218

VI The Sensitivity module 225

VI.1 Brief reminder of theoretical aspects . 225

VI.1.1 Content of the TSensitivity class . 225

VI.1.2 List of available methods . 227

VI.2 The finite differences method . 228

VI.2.1 General presentation of finite difference sensitivity indices 228

VI.2.2 Computation of local sensitivity indices with the finite differences method 228

VI.3 The regression method . 236

VI.3.1 General presentation of regression’s coefficients . 236

VI.3.2 Computation of the coefficients with Uranie . 236

page 6

CONTENTS CONTENTS

VI.4 The Morris screening method . 242

VI.4.1 Principle of the Morris’ method . 242

VI.4.2 The Morris’ method in Uranie . 243

VI.5 The Sobol method . 252

VI.5.1 Introduction to Sobol’s sensitivity indices . 252

VI.5.2 Computation of Sobol’s sensitivity indices . 252

VI.6 Fourier-based methods . 262

VI.6.1 Introducing the method . 262

VI.6.2 Implementation of methods . 263

VI.6.3 Computation of Sobol indices with the FAST method . 263

VI.6.4 Computation of Sobol indices with the method RBD . 272

VI.7 The Johnson relative weight . 280

VI.7.1 General overview . 280

VI.8 Sensitivity Indices based on HSIC . 290

VI.8.1 Introduction to sensitivity measures using HSIC . 290

VII The Optimizer module 295

VII.1 Introduction . 295

VII.2 Function optimisation . 295

VII.2.1 Rosenbrock function . 296

VII.2.2 TOptimizer constructors . 298

VII.2.3 Optimisation as minimum of function seeking . 299

VII.2.4 Optimisation as code adjustment . 301

VII.2.5 Performing the optimisation . 303

VII.3 Multicriteria optimisation . 305

VIII The Relauncher module 307

VIII.1 Introduction . 307

VIII.2 Relauncher abstraction levels . 307

VIII.3 TEval . 310

VIII.3.1 TCIntEval and TCJitEval . 311

VIII.3.2 TPythonEval . 312

page 7

CONTENTS CONTENTS

VIII.3.3 TCodeEval . 312

VIII.3.4 Evaluation functions composition . 315

VIII.4 TRun . 316

VIII.4.1 TSequentialRun . 316

VIII.4.2 TThreadedRun . 317

VIII.4.3 TMpiRun . 318

VIII.5 TMaster . 319

VIII.5.1 Dealing with attributes . 319

VIII.5.2 TLauncher2 . 320

IX The Reoptimizer module 323

IX.1 Introduction . 323

IX.1.1 local optimizer . 323

IX.1.2 global optimizer . 324

IX.1.3 Number of objectives . 324

IX.2 Problem definition . 324

IX.2.1 Objectives and Constraints . 325

IX.2.2 Sizing of a hollow bar example problem . 326

IX.3 Local solver . 327

IX.3.1 TNlopt . 328

IX.3.2 Solvers . 328

IX.4 Global solver . 329

IX.4.1 A step-by-step description of Vizir . 329

IX.4.2 TVizir2 and TVizirIsland . 330

IX.4.3 Solvers . 330

X The Metamodel Optimization module 333

X.1 Introduction . 333

X.2 Efficient Global Optimization . 333

X.2.1 Introduction . 333

X.2.2 Problem definition . 334

page 8

CONTENTS CONTENTS

XI The Calibration module 337

XI.1 Introduction . 337

XI.1.1 The distance used to compare observations and model predictions 338

XI.2 Calibration classes, distance functions, observations and model . 339

XI.2.1 General introduction on data and model definition . 339

XI.2.2 Defining data and distance functions . 340

XI.2.3 The calibration classes common methods . 345

XI.2.4 Use-case for this chapter . 351

XI.3 Using minimisation techniques . 353

XI.3.1 Constructing the instance . 353

XI.3.2 Setting the optimisation properties . 354

XI.4 Analytical linear Bayesian estimation . 355

XI.4.1 Constructing the TLinearBayesian object . 355

XI.4.2 Define the linear model properties . 356

XI.4.3 Look at the results . 356

XI.4.4 Prediction of the variance . 358

XI.5 The Approximation Bayesian Computation techniques (ABC) . 359

XI.5.1 Constructing the RejectionABC object . 359

XI.5.2 Define the TRejectionABC algorithm properties . 360

XI.5.3 Look at the results . 361

XI.6 The Markov-chain approach . 361

XI.6.1 Constructing the TMetropHasting object . 362

XI.6.2 Define the Metropolis-Hasting algorithm properties . 363

XI.6.3 Look at the results . 364

XII The Uncertainty modeler module 369

XII.1 Introduction . 369

XII.2 Tests based on the Empirical Distribution Function ("EDF tests") 369

XII.3 The Circe method . 371

page 9

CONTENTS CONTENTS

XIII The Reliability module 373

XIII.1 Introduction . 373

XIII.2 Form Sorm . 373

XIII.2.1 Study outline . 373

XIII.2.2 TSimpleTransform . 374

XIII.2.3 TFormEval . 374

XIII.2.4 TSorm . 375

XIV Use-cases in C++ 377

XIV.1 Introduction . 377

XIV.2 Macros DataServer . 378

XIV.2.1 Macro "dataserverAttributes.C" . 378

XIV.2.2 Macro "dataserverMerge.C" . 381

XIV.2.3 Macro "dataserverLoadASCIIFilePasture.C" 383

XIV.2.4 Macro "dataserverLoadASCIIFile.C" . 386

XIV.2.5 Macro "dataserverLoadASCIIFileYoungsModulus.C" 387

XIV.2.6 Macro "dataserverLoadASCIIFileIonosphere.C" 391

XIV.2.7 Macro "dataserverLoadASCIIFileCornell.C" 392

XIV.2.8 Macro "dataserverComputeQuantile.C" . 393

XIV.2.9 Macro "dataserverGeyserStat.C" . 396

XIV.2.10 Macro "dataserverGeyserRank.C" . 397

XIV.2.11 Macro "dataserverNormaliseVector.C" . 397

XIV.2.12 Macro "dataserverComputeStatVector.C" . 398

XIV.2.13 Macro "dataserverComputeCorrelationMatrixVector.C" 399

XIV.2.14 Macro "dataserverComputeQuantileVec.C" . 400

XIV.2.15 Macro "dataserverDrawQQPlot.C" . 401

XIV.2.16 Macro "dataserverDrawPPPlot.C" . 405

XIV.2.17 Macro "dataserverPCAExample.C" . 408

XIV.3 Macros Sampler . 411

XIV.3.1 Macro "samplingFlowrate.C" . 411

XIV.3.2 Macro "samplingLHS.C" . 413

XIV.3.3 Macro "samplingLHSCorrelation.C" . 414

page 10

CONTENTS CONTENTS

XIV.3.4 Macro "samplingQMC.C" . 416

XIV.3.5 Macro "samplingBasicSampling.C" . 417

XIV.3.6 Macro "samplingOATRegular.C" . 419

XIV.3.7 Macro "samplingOATRandom.C" . 420

XIV.3.8 Macro "samplingOATMulti.C" . 420

XIV.3.9 Macro "samplingOATRange.C" . 421

XIV.3.10 Macro "samplingSpaceFilling.C" . 421

XIV.3.11 Macro "samplingMaxiMinLHSFromLHSGrid.C" . 424

XIV.3.12 Macro "samplingConstrLHSLinear.C" . 426

XIV.3.13 Macro "samplingConstrLHSEllipses.C" . 428

XIV.3.14 Macro "samplerSingularCorrelationCase.C" 430

XIV.4 Macros Launcher . 433

XIV.4.1 Macro "launchFunctionDataBase.C" . 433

XIV.4.2 Macro "launchFunctionSampling.C" . 434

XIV.4.3 Macro "launchFunctionSamplingGraphs.C" . 436

XIV.4.4 Macro "launchCodeFlowrateKeyDataBase.C" 438

XIV.4.5 Macro "launchCodeFlowrateKeySampling.C" . 442

XIV.4.6 Macro "launchCodeFlowrateXMLSampling.C" . 446

XIV.4.7 Macro "launchCodeFlowrateKeySamplingKey.C" 450

XIV.4.8 Macro "launchCodeFlowrateKeyRecreateSampling.C" 454

XIV.4.9 Macro "launchCodeFlowrateKeyRecreateSamplingOutputDataServer.C" 457

XIV.4.10 Macro "launchCodeFlowrateRowRecreateSamplingOutputDataServer.C" 461

XIV.4.11 Macro "launchCodeFlowrateFlagSampling.C" 465

XIV.4.12 Macro "launchCodeFlowrateFlagSamplingKey.C" 470

XIV.4.13 Macro "launchCodeFlowrateKeyFlagSampling.C" 474

XIV.4.14 Macro "launchCodeFlowrateKeywithFlagSampling.C" 479

XIV.4.15 Macro "launchCodeFlowrateKeyFailure.C" . 484

XIV.4.16 Macro "launchCodeFlowrateFlagFailure.C" . 487

XIV.4.17 Macro "launchCodeFlowrateKeyOATMinMax.C" 492

XIV.4.18 Macro "launchCodeFlowrateFlagOATMinMax.C" 497

XIV.4.19 Macro "launchCodeLevelEOutputColumn.C" . 503

XIV.4.20 Macro "launchCodeLevelEOutputRow.C" . 506

XIV.4.21 Macro "launchCodeLevelEOutputKey.C" . 509

XIV.4.22 Input/Output with vector and string: introduction to macros with multitype 513

XIV.4.23 Macro "launchCodeMultiTypeKey.C" . 514

page 11

CONTENTS CONTENTS

XIV.4.24 Macro "launchCodeMultiTypeKeyCondensate.C" 516

XIV.4.25 Macro "launchCodeMultiTypeDataServer.C" 518

XIV.4.26 Macro "launchCodeMultiTypeColumn.C" . 520

XIV.4.27 Macro "launchCodeMultiTypeRow.C" . 522

XIV.4.28 Macro "launchCodeMultiTypeXML.C" . 524

XIV.4.29 Macro "launchCodeReadMultiTypeKey.C" . 526

XIV.4.30 Macro "launchCodeReadMultiTypeDataServer.C" 529

XIV.4.31 Macro "launchCodeReadMultiTypeColumn.C" 531

XIV.4.32 Macro "launchCodeReadMultiTypeRow.C" . 533

XIV.4.33 Macro "launchCodeReadMultiTypeXML.C" . 536

XIV.4.34 Macro "launchCodeFilesWithBlank.C" . 538

XIV.5 Macros Sensitivity . 540

XIV.5.1 Macro "sensitivityBrutForceMethodFlowrate.C" 540

XIV.5.2 Macro "sensitivityFiniteDifferencesFunctionFlowrate.C" 545

XIV.5.3 Macro "sensitivityDataBaseFlowrate.C" . 547

XIV.5.4 Macro "sensitivityFASTFunctionFlowrate.C" 549

XIV.5.5 Macro "sensitivityRBDFunctionFlowrate.C" 551

XIV.5.6 Macro "sensitivityMorrisFunctionFlowrate.C" 554

XIV.5.7 Macro "sensitivityMorrisFunctionFlowrateRunner.C" 556

XIV.5.8 Macro "sensitivityRegressionFunctionFlowrate.C" 559

XIV.5.9 Macro "sensitivitySobolFunctionFlowrate.C" 561

XIV.5.10 Macro "sensitivitySobolFunctionFlowrateRunner.C" 564

XIV.5.11 Macro "sensitivityRegressionLeveLE.C" . 567

XIV.5.12 Macro "sensitivitySobolLeveLE.C" . 571

XIV.5.13 Macro "sensitivitySobolRe-estimation.C" . 575

XIV.5.14 Macro "sensitivitySobolWithData.C" . 577

XIV.5.15 Macro "sensitivitySobolLoadFile.C" . 579

XIV.5.16 Macro "sensitivityJohnsonRWFunctionFlowrate.C" 582

XIV.5.17 Macro "sensitivityJohnsonRWCorrelatedFunctionFlowrate.C" 585

XIV.5.18 Macro "sensitivityJohnsonRWJustCorrelationFakeFlowrate.C" 588

XIV.5.19 Macro "sensitivityHSICFunctionFlowrate.C" 592

XIV.5.20 Macro "sensitivitySobolRankFunctionFlowrate.C" 594

XIV.6 Macros Modeler . 597

XIV.6.1 Macro "modelerCornellLinearRegression.C" 597

XIV.6.2 Macro "modelerFlowrateLinearRegression.C" 598

page 12

CONTENTS CONTENTS

XIV.6.3 Macro "modelerFlowrateMultiLinearRegression.C" 599

XIV.6.4 Macro "modelerFlowrateNeuralNetworks.C" . 603

XIV.6.5 Macro "modelerFlowrateNeuralNetworksLoadingPMML.C" 606

XIV.6.6 Macro "modelerClassificationNeuralNetworks.C" 608

XIV.6.7 Macro "modelerFlowratePolynChaosRegression.C" 612

XIV.6.8 Macro "modelerFlowratePolynChaosIntegration.C" 614

XIV.6.9 Macro "modelerbuildSimpleGP.C" . 617

XIV.6.10 Macro "modelerbuildGPInitPoint.C" . 618

XIV.6.11 Macro "modelerbuildGPWithAPriori.C" . 619

XIV.6.12 Macro "modelerbuildSimpleGPEstim.C" . 620

XIV.6.13 Macro "modelerbuildSimpleGPEstimWithCov.C" 621

XIV.6.14 Macro "modelerTestKriging.C" . 623

XIV.7 Macros Optimizer . 628

XIV.7.1 Macro "optimizeFunctionRosenbrock.C" . 628

XIV.7.2 Macro "optimizeFunctionRosenbrockNewInputOutput.C" 630

XIV.7.3 Macro "optimizeCodeRosenbrockKey.C" . 631

XIV.7.4 Macro "optimizeCodeRosenbrockKeyNewInputOutput.C" 635

XIV.7.5 Macro "optimizeCodeRosenbrockRow.C" . 638

XIV.7.6 Macro "optimizeCodeRosenbrockKeyRowRecreate.C" 641

XIV.7.7 Macro "optimizeCodeRosenbrockRowRecreate.C" 645

XIV.7.8 Macro "optimizeCodeRosenbrockRowRecreateOutputDataServer.C" 648

XIV.7.9 Example of optimisation with a code that can compute several values at each run 652

XIV.7.10 Macro "optimizeRosenbrockMulti.C" . 653

XIV.7.11 Macro "optimizeRosenbrockError.C" . 658

XIV.8 Macros Relauncher . 662

XIV.8.1 Macro "relauncherFunctionFlowrateCInt.C" 662

XIV.8.2 Macro "relauncherFunctionFlowrateCJit.C" 664

XIV.8.3 Macro "relauncherCJitFunctionThreadTest.C" 667

XIV.8.4 Macro "relauncherCodeFlowrateSequential.C" 670

XIV.8.5 Macro "relauncherCodeFlowrateSequential_ConstantVar.C" 672

XIV.8.6 Macro "relauncherCodeFlowrateThreaded.C" 675

XIV.8.7 Macro "relauncherCodeFlowrateMPI.C" . 677

XIV.8.8 Macro "relauncherCodeFlowrateMpiStandalone.C" 679

XIV.8.9 Macro "relauncherCodeFlowrateSequentialFailure.C" 683

XIV.8.10 Macro "relauncherCodeMultiTypeKey.C" . 686

page 13

CONTENTS CONTENTS

XIV.8.11 Macro "relauncherCodeMultiTypeKeyEmptyVectors.C" 688

XIV.8.12 Macro "relauncherCodeMultiTypeKeyEmptyVectorsAsFailure.C" 691

XIV.8.13 Macro "relauncherCodeReadMultiType.C" . 695

XIV.8.14 Macro "relauncherComposeMultitypeAndReadMultiType.C" 698

XIV.8.15 Macro "relauncherCodeFlowrateSequential_TemporaryVar.C" 700

XIV.9 Macros Reoptimizer . 703

XIV.9.1 Macro "reoptimizeHollowBarCode.C" . 703

XIV.9.2 Macro "reoptimizeHollowBarCodeMultiStart.C" 706

XIV.9.3 Macro "reoptimizeHollowBarCodevizir.C" . 708

XIV.9.4 Macro "reoptimizeHollowBarVizirMoead.C" . 712

XIV.9.5 Macro "reoptimizeHollowBarVizirSplitRuns.C" 716

XIV.9.6 Macro "reoptimizeZoningBiSubMpi.C" . 719

XIV.9.7 Macro "reoptimizeZoneBiFunMpi.C" . 724

XIV.10Macros MetaModelOptim . 727

XIV.10.1 Macro "metamodoptEgoHimmel.C" . 727

XIV.11Macros Calibration . 729

XIV.11.1 Macro "calibrationMinimisationFlowrate1D.C" 729

XIV.11.2 Macro "calibrationLinBayesFlowrate1D.C" . 732

XIV.11.3 Macro "calibrationRejectionABCFlowrate1D.C" 736

XIV.11.4 Macro "calibrationMetropHastingFlowrate1D.C" 739

XIV.11.5 Macro "calibrationMetropHastingLinReg.C" 743

XIV.11.6 Macro "calibrationMinimisationFlowrate2DVizir.C" 748

XIV.12Macros UncertModeler . 753

XIV.12.1 Macro "uncertModelerTestsYoungsModulus.C" 753

XIV.12.2 Macro "uncertModelerCirce.C" . 755

XIV.13Macros Reliability . 759

XIV.13.1 Macro "reliabilityFormSorm.C" . 759

XIV.13.2 Macro "reliabilityFormSormBis.C" . 762

XV References 765

page 14

List of Figures

I.1 Organisation of the Uranie-modules (green boxes) in terms of inter-dependencies. The blue boxes
represent the external dependencies (discussed later on). 26

I.2 Histogram produced using PyROOT . 36

II.1 Diagram of the class TDataServer . 39

II.2 Attributes of TAttribute class . 41

II.3 Graph of the variable sdp . 42

II.4 Scatterplot x2 versus x1 for the geyser data with modification of fields title and unit. 43

II.5 Example of PDF, CDF and inverse CDF for Uniform distribution. 47

II.6 Example of PDF, CDF and inverse CDF for LogUniform distributions. 48

II.7 Example of PDF, CDF and inverse CDF for Triangular distributions. 49

II.8 Example of PDF, CDF and inverse CDF for Logtriangular distributions. 50

II.9 Example of PDF, CDF and inverse CDF for Normal distributions. 51

II.10 Example of PDF, CDF and inverse CDF for a Normal truncated distribution. 51

II.11 Example of PDF, CDF and inverse CDF for LogNormal distributions. 52

II.12 Example of PDF, CDF and inverse CDF for a LogNormal truncated distribution. 53

II.13 Example of PDF, CDF and inverse CDF for Trapezium distributions. 54

II.14 Example of PDF, CDF and inverse CDF for UniformByParts distributions. 55

II.15 Example of PDF, CDF and inverse CDF for Exponential distributions. 56

II.16 Example of PDF, CDF and inverse CDF for a Exponential truncated distribution. 56

II.17 Example of PDF, CDF and inverse CDF for Cauchy distributions. 57

II.18 Example of PDF, CDF and inverse CDF for a Cauchy truncated distribution. 57

II.19 Example of PDF, CDF and inverse CDF for GumbelMax distributions. 58

II.20 Example of PDF, CDF and inverse CDF for a GumbelMax truncated distribution. 59

II.21 Example of PDF, CDF and inverse CDF for Weibull distributions. 59

II.22 Example of PDF, CDF and inverse CDF for a Weibull truncated distribution. 60

II.23 Example of PDF, CDF and inverse CDF for Beta distributions. 61

II.24 Example of PDF, CDF and inverse CDF for GenPareto distributions. 62

page 15

LIST OF FIGURES LIST OF FIGURES

II.25 Example of PDF, CDF and inverse CDF for a GenPareto truncated distribution. 62

II.26 Example of PDF, CDF and inverse CDF for Gamma distributions. 63

II.27 Example of PDF, CDF and inverse CDF for a Gamma truncated distribution. 63

II.28 Example of PDF, CDF and inverse CDF for InvGamma distributions. 64

II.29 Example of PDF, CDF and inverse CDF for a InvGamma truncated distribution. 65

II.30 Example of PDF, CDF and inverse CDF for Student distribution. 66

II.31 Example of PDF, CDF and inverse CDF for a Student truncated distribution. 66

II.32 Example of PDF, CDF and inverse CDF for generalized normal distributions. 67

II.33 Example of PDF, CDF and inverse CDF for a generalized normal truncated distribution. 67

II.34 Example of PDF, CDF and inverse CDF for a composed distribution made out of three normal
distributions with respective weights. 68

II.35 Example of PDF, CDF and inverse CDF for a truncated composed distribution made out of three
normal distributions with respective weights. 69

II.36 Import data from an ASCII file . 74

II.37 Content of the ntuple tree contained in "hsimple.root" file. 76

II.38 Data importation from a TNtuple . 76

II.39 Scatterplot of added attributes . 78

II.40 Graph with a selection definition . 82

II.41 Graph with a definition of Cut . 83

II.42 Different histograms of the same attribute xnorm depending on the method for computing bins. The
values are respectively 100(root), 8 from sturges, 7 from fd and scoot. 101

II.43 Boxplot of attribute x2 of the TDataServer geyser . 102

II.44 CDF graph of attribute x2 of the TDataServer geyser . 102

II.45 Graphs CDF+CCDF of the attribute x2 of the TDataServer geyser 103

II.46 Scatterplot between attributes x1 and x2 of the TDataServer geyser. 103

II.47 Scatterplot between attributes x1 and x2 of the TDataServer geyser. 104

II.48 Graphs of "Tufte" type between the attributes x1 and x2 of the TDataServer geyser. 105

II.49 Graphs of "Tufte" type between the attributes x1 and x2 of the TDataServer geyser. 105

II.50 Graphs of "drawPairs" type between the 8 uniformly-distributed inputs and the output of a given
problem. 107

II.51 Graphs of "CobWeb" type between the 8 uniformly-distributed inputs and the output of a given
problem. 108

II.52 Plot resulting from the "drawQQPlot" method, comparing "x2" to a normal distribution. 109

II.53 Plot resulting from the "drawPPPlot" method, comparing "x2" to a normal distribution. 110

II.54 Representation of some variables of the Notes sample. 111

II.55 Representation of the eigenvalues (left) their overall contributions in percent (middle) and the sum
of the contributions (right) from the PCA analysis. 112

page 16

LIST OF FIGURES LIST OF FIGURES

II.56 Representation of correlation between the original variables and the PC under study. 113

II.57 Representation of the data points in the PC-defined plane. 114

III.1 Schematic view of the input/output relation through a code . 115

III.2 Comparison of the two sampling methods SRS (left) and LHS (right) with samples of size 8. 117

III.3 Comparison of deterministic design-of-experiments obtained using either SRS (left) or LHS (right)
algorithm, when having two independent random variables (uniform and normal one) 117

III.4 Tufte plot of the design-of-experiments created using a normal and uniform distribution, with a LHS
method with three correlation coefficient: 0, 0.45 and 0.9 . 121

III.5 Tufte plot of the rank of the design-of-experiments created using a normal and uniform distribution,
with a LHS method with three correlation coefficient: 0, 0.45 and 0.9 122

III.6 Example of sampling done with half million points and two uniform attributes (from 0 to 1), using
AMH copula and varying the parameter value. 123

III.7 Example of sampling done with half million points and two uniform attributes (from 0 to 1), using
Clayton copula and varying the parameter value. 124

III.8 Example of sampling done with half million points and two uniform attributes (from 0 to 1), using
Frank copula and varying the parameter value. 124

III.9 Example of sampling done with half million points and two uniform attributes (from 0 to 1), using
Plackett copula and varying the parameter value. 125

III.10 Comparison of both quasi Monte-Carlo sequences with both LHS and SRS sampling when dealing
with two uniform attributes. 126

III.11 Comparison of design-of-experiments made with Petras algorithm, using different level values, when
dealing with two uniform attributes. 126

III.12 Gaussian Random Field . 128

III.13 Gaussian variograms. Several configurations (in terms of scale factor and variance parameters) are
shown as well. 128

III.14 Sine cardinal variograms. Several configurations (in terms of scale factor and variance parameters)
are shown as well. 129

III.15 Random values for OAT design . 133

III.16 Example of a dataset reduction (the geyser one) using the NeuralGas algorithm, to go from 272
points (left) to 50 one (right) . 136

IV.1 Sketch of the flowrate problem and its variables[2]. 138

IV.2 Inheritance diagram for the class TLauncher . 148

IV.3 Schematic description of the launcher procedure when using an external code. Yellow boxes show
instances of class, and green ones are precision about attributes. The design-of-experiments part
can be replaced by an already-existing database. 148

IV.4 Multi-core computer . 171

V.1 Simplified decomposition of the model creation process into a four important-step recipe. 182

V.2 Schematic view of the Nisp methodology . 185

page 17

LIST OF FIGURES LIST OF FIGURES

V.3 Schematic description of the working flow of an artificial neural network as used in Uranie 200

V.4 Schematic description of the kriging procedure as done within Uranie 204

V.5 Estimation using a simple Kriging model . 214

V.6 Residual distribution using a validation database with and without prediction covariance correction. 217

VI.1 SRC coefficients estimated for the flowrate function. 237

VI.2 SRRC coefficients estimated for the flowrate function. 237

VI.3 Histogram of SRC coefficients . 239

VI.4 Morris screening indices . 245

VI.5 Histogram of Sobol’s indices . 254

VI.6 Pie chart of Sobol’s indices . 255

VI.7 Frequency spectrum from the FAST estimation . 264

VI.8 Histogram of FAST’s indices . 265

VI.9 Pie chart of FAST’s indices . 265

VI.10 Frequency spectrum from the RBD estimation . 273

VI.11 Histogram of RBD’s indices . 273

VI.12 Pie chart of RBD’s indices . 274

VI.13 Histogram of JohnsonRW’s indices . 281

VI.14 Pie chart of JohnsonRW’s indices . 282

VII.1 3D representation of the Rosenbrock function . 296

VIII.1 Schematic description of the needed steps to define a relauncher procedure 310

VIII.2 Hierarchy of classes and structures for the evaluation part of the Relauncher module. 310

VIII.3 Hierarchy of classes and structures for the runner part of the Relauncher module. 316

IX.1 Hollow Bar . 326

IX.2 Schematic description of the requested steps of an optimisation procedure once this one is per-
formed with Vizir . 329

XI.1 Hierarchy of classes and structures out of Doxygen for the Calibration module 338

XI.2 Trace distributions split between below and above 100 threshold 366

XII.1 Results of the macro defined previously to produce variety of test of already implemented distributions370

XIV.1 Graph of the macro "dataserverLoadASCIIFilePasture.C" 385

XIV.2 Graph of the macro "dataserverLoadASCIIFile.C" . 387

XIV.3 Graph of the macro "dataserverLoadASCIIFileYoungsModulus.C" 390

XIV.4 Graph of the macro "dataserverLoadASCIIFileIonosphere.C" 392

page 18

LIST OF FIGURES LIST OF FIGURES

XIV.5 Graph of the macro "dataserverComputeQuantile.C" 396

XIV.6 Graph of the macro "dataserverDrawQQPlot.C" . 404

XIV.7 Graph of the macro "dataserverDrawPPPlot.C" . 407

XIV.8 Graph of the macro "samplingFlowrate.C" . 413

XIV.9 Graph of the macro "samplingLHS.C" . 414

XIV.10 Graph de la macro "samplingLHSCorrelation.C" . 416

XIV.11 Graph of the macro "samplingQMC.C" . 417

XIV.12 Graph of the macro "samplingSpaceFilling.C" . 424

XIV.13 Graph of the macro "samplingMaxiMinLHSFromLHSGrid.C" 426

XIV.14 Graph of the macro "samplingConstrLHSLinear.C" . 428

XIV.15 Graph of the macro "samplingConstrLHSEllipses.C" 430

XIV.16 Graph of the macro "samplerSingularCorrelationCase.C" 433

XIV.17 Graph of the macro "launchFunctionDataBase.C" . 434

XIV.18 Graph of the macro "launchFunctionSampling.C" . 436

XIV.19 Graph of the macro "launchFunctionSamplingGraphs.C" 438

XIV.20 Graph of the macro "launchCodeFlowrateKeyDataBase.C" 442

XIV.21 Graph of the macro "launchCodeFlowrateKeySampling.C" 446

XIV.22 Graph of the macro "launchCodeFlowrateXMLSampling.C" 450

XIV.23 Graph of the macro "launchCodeFlowrateKeySamplingKey.C" 454

XIV.24 Graph of the macro "launchCodeFlowrateKeyRecreateSampling.C" 457

XIV.25 Graph of the macro "launchCodeFlowrateKeyRecreateSamplingOutputDataServer.C"
. 461

XIV.26 Graph of the macro "launchCodeFlowrateRowRecreateSamplingOutputDataServer.C"
. 465

XIV.27 Graph of the macro "launchCodeFlowrateFlagSampling.C" 469

XIV.28 Graph of the macro "launchCodeFlowrateFlagSamplingKey.C" 474

XIV.29 Graph of the macro "launchCodeFlowrateKeyFlagSampling.C" 479

XIV.30 Graph of the macro "launchCodeFlowrateKeywithFlagSampling.C" 483

XIV.31 Graph of the macro "launchCodeFlowrateKeyFailure.C" 487

XIV.32 Graph of the macro "launchCodeFlowrateFlagFailure.C" 491

XIV.33 Graph of the macro "launchCodeFlowrateKeyOATMinMax.C" 497

XIV.34 Graph of the macro "launchCodeFlowrateFlagOATMinMax.C" 502

XIV.35 Graph of the macro "launchCodeLevelEOutputColumn.C" 506

XIV.36 Graph of the macro "launchCodeLevelEOutputRow.C" 509

XIV.37 Graph of the macro "launchCodeLevelEOutputKey.C" 513

XIV.38 Graph of the macro "launchCodeMultiTypeKey.C" . 516

page 19

LIST OF FIGURES LIST OF FIGURES

XIV.39 Graph of the macro "launchCodeMultiTypeKeyCondensate.C" 518

XIV.40 Graph of the macro "launchCodeMultiTypeDataServer.C" 520

XIV.41 Graph of the macro "launchCodeMultiTypeColumn.C" 522

XIV.42 Graph of the macro "launchCodeMultiTypeRow.C" . 524

XIV.43 Graph of the macro "launchCodeMultiTypeXML.C" . 526

XIV.44 Graph of the macro "sensitivityBrutForceMethodFlowrate.C" 544

XIV.45 Graph of the macro "sensitivityDataBaseFlowrate.C" 549

XIV.46 Graph of the macro "sensitivityFASTFunctionFlowrate.C" 550

XIV.47 Graph of the macro "sensitivityRBDFunctionFlowrate.C" 553

XIV.48 Graph of the macro "sensitivityMorrisFunctionFlowrate.C" 555

XIV.49 Graph of the macro "sensitivityMorrisFunctionFlowrateRunner.C" 558

XIV.50 Graph of the macro "sensitivityRegressionFunctionFlowrate.C" 560

XIV.51 Graph of the macro "sensitivitySobolFunctionFlowrate.C" 563

XIV.52 Graph of the macro "sensitivitySobolFunctionFlowrateRunner.C" 566

XIV.53 Graph of the macro "sensitivityRegressionLeveLE.C" 571

XIV.54 Graph of the macro "sensitivitySobolLeveLE.C" . 575

XIV.55 Graph of the macro "sensitivitySobolRe-estimation.C" 576

XIV.56 Graph of the macro "sensitivitySobolWithData.C" 578

XIV.57 Graph of the macro "sensitivitySobolLoadFile.C" 581

XIV.58 Graph of the macro "sensitivityJohnsonRWFunctionFlowrate.C" 584

XIV.59 Graph of the macro "sensitivityJohnsonRWCorrelatedFunctionFlowrate.C" . . 587

XIV.60 Graph of the macro "sensitivityJohnsonRWJustCorrelationFakeFlowrate.C" . 591

XIV.61 Graph of the macro "sensitivityHSICFunctionFlowrate.C" 593

XIV.62 Graph of the macro "sensitivitySobolRankFunctionFlowrate.C" 596

XIV.63 Graph of the macro "modelerCornellLinearRegression.C" 598

XIV.64 Graph of the macro "modelerFlowrateLinearRegression.C" 599

XIV.65 Graph of the macro "modelerFlowrateMultiLinearRegression.C" 603

XIV.66 Graph of the macro "modelerFlowrateNeuralNetworks.C" 605

XIV.67 Graph of the macro "modelerFlowrateNeuralNetworksLoadingPMML.C" 607

XIV.68 Graph of the macro "modelerClassificationNeuralNetworks.C" 611

XIV.69 Graph of the macro "modelerbuildSimpleGPEstim.C" 621

XIV.70 Graph of the macro "modelerbuildSimpleGPEstimWithCov.C" 623

XIV.71 Graph of the macro "modelerTestKriging.C" . 628

XIV.72 Graph of the macro "optimizeFunctionRosenbrock.C" 629

XIV.73 Graph of the macro "optimizeFunctionRosenbrockNewInputOutput.C" 631

page 20

LIST OF FIGURES LIST OF FIGURES

XIV.74 Graph of the macro "optimizeCodeRosenbrockKey.C" 634

XIV.75 Graph of the macro "optimizeCodeRosenbrockKeyNewInputOutput.C" 637

XIV.76 Graph of the macro "optimizeCodeRosenbrockRow.C" 640

XIV.77 Graph of the macro "optimizeCodeRosenbrockKeyRowRecreate.C" 644

XIV.78 Graph of the macro "optimizeCodeRosenbrockRowRecreate.C" 647

XIV.79 Graph of the macro "optimizeCodeRosenbrockRowRecreateOutputDataServer.C" 651

XIV.80 Evolution of searched parameters a and b throw iterations . 657

XIV.81 Evolution of searched parameters a and b throw iterations . 661

XIV.82 Representation of the output as a function of the first input with a colZ option 664

XIV.83 Representation of the output as a function of the first input with a colZ option 667

XIV.84 Representation of the output as a function of the first input with a colZ option 672

XIV.85 Representation of the output as a function of the first input with a colZ option 677

XIV.86 Representation of the output as a function of the first input with a colZ option 679

XIV.87 Representation of the output as a function of the first input with a colZ option when using either the
classical or dedicated constructor . 682

XIV.88 Representation of the output data point when the code is asked to fail on purpose. 685

XIV.89 Graph of the macro "relauncherCodeMultiTypeKey.C" 688

XIV.90 Graph of the macro "relauncherCodeMultiTypeKeyEmptyVectors.C" 691

XIV.91 Graph of the macro "relauncherCodeMultiTypeKeyEmptyVectorsAsFailure.C" . 694

XIV.92 Graph of the macro "reoptimizeHollowBarCodeVizir.C" 711

XIV.93 Graph of the macro "reoptimizeHollowBarVizirMoead.C" 715

XIV.94 Graph of the macro "reoptimizeHollowBarVizirSplitRuns.C" 718

XIV.95 The core and its assemblies . 719

XIV.96 Graph of the macro "calibrationMinimisationFlowrate1D.C" 732

XIV.97 Residual graph of the macro "calibrationLinBayesFlowrate1D.C" 736

XIV.98 Parameter graph of the macro "calibrationLinBayesFlowrate1D.C" 736

XIV.99 Residual graph of the macro "calibrationRejectionABCFlowrate1D.C" 739

XIV.100 Parameter graph of the macro "calibrationRejectionABCFlowrate1D.C" 739

XIV.101 Trace graph of the macro "calibrationMetropHastingFlowrate1D.C" 742

XIV.102 Residual graph of the macro "calibrationMetropHastingFlowrate1D.C" 743

XIV.103 Parameter graph of the macro "calibrationMetropHastingFlowrate1D.C" 743

XIV.104 Trace graph of the macro "calibrationMetropHastingLinReg.C" 746

XIV.105 Acceptation rate graph of the macro "calibrationMetropHastingLinReg.C" 747

XIV.106 Residual graph of the macro "calibrationMetropHastingLinReg.C" 747

XIV.107 Parameter graph of the macro "calibrationMetropHastingLinReg.C" 748

XIV.108 Residual graph of the macro "calibrationMinimisationFlowrate2DVizir.C" 752

XIV.109 Parameter graph of the macro "calibrationMinimisationFlowrate2DVizir.C" . . . 752

XIV.110 Graph of the macro macro "uncertModelerTestsYoungsModulus.C" 754

page 21

LIST OF FIGURES LIST OF FIGURES

page 22

List of Tables

II.1 List of Uranie classes representing the probability laws . 46

II.2 List of keywords of header in ASCII files. 70

II.3 List of keywords of header in ASCII files. 73

V.1 Type of export allowed for different classes . 183

V.2 List of best adapted polynomial-basis to develop the corresponding stochastic law 184

V.3 Methods of sampler generation . 187

V.4 Optimisation criteria . 209

V.5 Optimisation algorithm . 210

V.6 Correlation functions . 219

page 23

LIST OF TABLES LIST OF TABLES

page 24

Chapter I

Overview: Uranie in a nutshell

I.1 Introducing Uranie

Uranie (the version under discussion here being v4.9.0) is a software dedicated to perform studies on uncertainty
propagation, sensitivity analysis and surrogate model generation and calibration, based on ROOT (the corresponding
version being v6.32.00).

As a result, Uranie benefits from numerous features of ROOT, among which:

• an interactive C++ interpreter (Cling), built on the top of LLVM and Clang;

• a Python interface (PyROOT);

• an access to SQL databases;

• many advanced data visualisation features;

• and much more...

In the following sections, the ROOT platform will be briefly introduced as well as the python interface it brings once
the Uranie classes are declared and known. The organisation of the Uranie platform is then introduced, from a broad
scale, giving access to more refined discussion within this documentation.

I.1.1 Uranie modules organisation

The platform consists of a set of so-called technical libraries, or modules (represented as green boxes in Figure I.1),
each performing a specific task.

page 25

http://root.cern.ch

Uranie modules organisation CHAPTER I. OVERVIEW: URANIE IN A NUTSHELL

Figure I.1: Organisation of the Uranie-modules (green boxes) in terms of inter-dependencies. The blue boxes repre-
sent the external dependencies (discussed later on).

In the rest of this section each and every modules discussed in this documentation will be briefly described (in terms
of role and main components) starting with the DataServer one, which is the spine of the Uranie project, as shown in
Figure I.1. A more precise description will then be done in the dedicated other chapters.

I.1.1.1 DataServer module

The DataServer library (cf Chapter II) is the core of the Uranie platform. It describes the central element of Uranie:
the TDataServer. This object contains all the necessary information about the variables of a problem (such as the
names, units, probability laws, data files, and so on...) and allows to perform the very basic statistical operations.

I.1.1.2 Sampler module

The Sampler library (cf Chapter III) allows to create design-of-experiments using TDataServer’s attributes which
are random variables. There are a large variety of design-of-experiments some of which are only meant to be called
by more complicated methods.

I.1.1.3 Launcher module

The Launcher library (cf Chapter IV) applies an analytic function or an external simulation code on the content of a
TDataServer. The TDataServer content can either result from a design-of-experiments generated using one of

page 26

CHAPTER I. OVERVIEW: URANIE IN A NUTSHELL External dependencies

the TSampler object, or can be loaded into from an external source (ASCII file, SQL database, etc...).

I.1.1.4 Modeler module

The Modeler library (cf Chapter V) allows the construction of a surrogate model that links the output Y and the input
factors Xi (for i = 1, . . . ,nX) (polynomial models, neural networks, ...).

I.1.1.5 Sensitivity module

The Sensitivity library (cf Chapter VI) allows to perform sensitivity analysis of one of the output response Y with
respect to the input factors Xi (for i = 1, . . . ,nX). The very basic concepts of sensitivity analysis are introduced as well
in the introduction of this chapter while they are discussed a bit more thoroughly in [30].

I.1.1.6 Optimizer and Reoptimizer modules

The Optimizer and Reoptimizer libraries (cf Chapter VII and Chapter IX) are dedicated to optimisation and model
calibration. Model calibration consists in setting up the "degrees of freedom" of a model so that future simulations will
optimally fit an experimental database. The optimisation is a complex procedure and several techniques are available
to perform single-criterion or multi criteria one, with and without constraint.

I.1.1.7 Relauncher module

The Relauncher library (cf Chapter VIII) is more a technical module that is used throughout the Uranie platform to
provide a general architecture for all parametric studies, allowing secure multi-processors and multi-thread usage in a
simple way.

I.1.1.8 Calibration module

The Calibration library (cf Chapter XI) is more a dedicated module that is used to get the best estimations of some of
the parameter of a specific model under consideration. This module provides different techniques relying on their own
hypothesis on the model but all of these methods need data to perform this calibration.

I.1.2 External dependencies

Before starting with the internal organisation of the platform, this section is discussing the dependencies of the Uranie
platform. They are sorted in two categories: the compulsory and optional ones. The latter ones are shown as blue
boxes in Figure I.1 and both types are listed and briefly discussed below.

I.1.2.1 Compulsory dependencies

ROOT: An oriented-object package that offers many possibilities for data handling, analysis, display... [31]

Sources, binaries and documentation are available at http://root.cern.ch (version used is v6.32.00)

Cmake: Free and open-source software for managing the build process of compiled software [32].

It is available at http://www.cmake.org/ (version used is v3.26.3)

CPPUnit: Unit testing framework for C++ programming [37].

It is available at http://sourceforge.net/projects/cppunit/ (version used is v1.15.1)

page 27

http://root.cern.ch
http://www.cmake.org/
http://sourceforge.net/projects/cppunit/

ROOT Environment CHAPTER I. OVERVIEW: URANIE IN A NUTSHELL

I.1.2.2 Optional dependencies

OPT++: Libraries that include non linear optimisation algorithms written in C++ [33].

It is available at https://software.sandia.gov/opt++/ (version used is v2.4). It is mainly used for neural networks.

FFTW: Library that computes discrete Fourier transform (DFT) (one or more dimensions), of arbitrary input size
[34].

It is available at http://www.fftw.org/ (version used is v3.3.8). It is mainly used for two methods in the Sensitivity
library.

NLopt: Library for nonlinear optimisation [35].

It is available at http://ab-initio.mit.edu/nlopt (version used is v2.6.1). It is mainly used for kriging and mono-
criterion optimisation.

Boost It is a set of libraries used here to implement the low level functionality for coroutines in replacement of PCL
(Portable Coroutine Library) since V4.8.0.

It is available at https://www.boost.org (version used is v1.66)

MPI: (Message Passing Interface) Standardised and portable message-passing system needed to run parallel com-
puting [36].

It is available at http://www.open-mpi.org/ (version used is v3.1)

CUDA: (Compute Unified Device Architecture) Parallel computing platform and pro- gramming model invented by
NVIDIA to harness the power of the graphics processing unit (GPU) [38](version used is v8.0).

If requested, it should be used with the boost library, with a version greater than v1.66.

I.2 ROOT Environment

Uranie can be seen as a set of extension libraries for ROOT. As such, its traditional use is through the ROOT tools,
in particular the root command which offers a C++ interpreter. This is presented in this section. In the next section,
PyRoot will be presented.

I.2.1 Environment variables

Assuming you are in a ROOT enabled system, your shell environment probably defines ROOTSYS, PATH and LD_LIBRARY_PATH
variables (unless they are installed in standard location). In order to use Uranie, assuming it is not installed in standard
or ROOT location, the environment variable LD_LIBRARY_PATH needs to be completed and must contain the sub
directory lib of the Uranie installation.

To achieve this, one can set the environment variable URANIESYS to Uranie’s installation directory. Then, depending
on the shell family used, the variable LD_LIBRARY_PATH can be updated as follows:

C Shell Family (csh, tcsh, etc.)

##------ Uranie ------
setenv URANIESYS MyUranieInstallDirectory

setenv LD_LIBRARY_PATH ${URANIESYS}/lib:$LD_LIBRARY_PATH

page 28

https://software.sandia.gov/opt++/
http://www.fftw.org/
http://ab-initio.mit.edu/nlopt
https://www.boost.org
http://www.open-mpi.org/

CHAPTER I. OVERVIEW: URANIE IN A NUTSHELL ROOT interpreter and runtime compiler

Bourne Shell Family (sh, bash, etc.)

##------ Uranie ------
export URANIESYS=MyUranieInstallDirectory

export LD_LIBRARY_PATH=${URANIESYS}/lib:$LD_LIBRARY_PATH

Uranie may need some external libraries that must be reachable via the LD_LIBRARY_PATH. You can adapt the
former script to take it into account. Uranie installation procedure provides a configuration script that tries to create a
safe environment.

I.2.2 ROOT interpreter and runtime compiler

Uranie can be used through the C++ interpreter of ROOT, either using the command line, or in batch mode, the
successive commands being stored in a file called a ROOT macro .

To run the macro "MyMacro.C" from a shell prompt, use the command:

root -l MyMacro.C

The -l option prevents from launching the ROOT login window. Other options that may be useful are:

• -q: quit ROOT interpreter when the script is run.

• -b: run in batch mode (without DISPLAY)

These options are typically used when your job needs to be distributed.

To execute a Macro from the ROOT prompt, use the command:

.x MyMacro.C

ROOT interpreter offers some facilities for macro writing. In particular, it takes care of loading the needed libraries, and
does not need the #include directives.

WARNING WITH ROOT6: The new versions of ROOT (from ROOT 6.0) is now using Cling the interpreter that does
also a compilation on the fly thanks to LLVM and Clang. It is now much more compliant with the C++ syntax that
previous version, allowing only few simplifications (some namespace loaded and include lines brought).

Another way to run a macro in a compile way is to append one or two "+" at the end of the script.

root -l MyMacro.C+

A "+" compiles the macro if the source changes, while "++" forces a recompilation. From ROOT 6, this method does
not go faster that the "interpreted" one. The only difference remaining now is to produce easily a library (.so) file.

This runtime compiler still deals with libraries auto-load, but needs the #include directives. ROOT looks for include
files in standard location and in the $ROOTSYS/include directory. If Uranie is installed elsewhere, you have to
specify where to find its include files.

One way to do so is to use the .rootrc file. Here is an example:

page 29

Standard compilation CHAPTER I. OVERVIEW: URANIE IN A NUTSHELL

.rootrc

ACLiC.IncludePaths: -DJIT -I$URANIESYS/include -I/another/include/path

It defines a list of C++ compiler options that are added at compile time: -I adds an include path; -D defines a CPP
macro. This CPP macro can be used to write a single source code for both interpreted or compiled runs, hiding or
showing part of source lines (#include declarations for example).

Another way is to use the rootlogon.C file. If this file is available in the active directory, it will be systematically
loaded by ROOT before the application is launched. A more thorough discussion on this file can be found in Sec-
tion I.2.4.

rootlogon.C

{
gInterpreter->AddIncludePath("$URANIESYS/include")
gInterpreter->AddIncludePath("/another/include/path")

}

This allows both the interpreter and the compiler to find the needed files.

One important advantage of runtime compilation is that error messages are more easily understandable.

I.2.3 Standard compilation

For C++ enthusiasts, it is possible to use ROOT (and subsequently Uranie) as a set of libraries, and to compile an
executable. In this case, you have to take care of linked libraries. In order to help the user, ROOT provides a macro
that give many of the needed flag to perform the compilation, both to give the path to the headers and the path to the
libraries.

g++ -o OutputName TheFileName.C ‘root-config --cflags --libs‘

For this example:

• OutputName: the name of the resulting executable

• TheFileName.C: the C++ file containing the code

• `root-config --cflags --libs`: this command provides all the necessary flags to compile most of the macros using
ROOT.

This is a logic we acknowledge and try to follow as well for Uranie: if one wants to compile an Uranie macro, one can
use two flags.

• URANIECPPFLAG: it defines all the include path needed and add on top the ones from ROOT;

• URANIELDFLAG: it defines the linking option and path to library and add on top the ones from ROOT;

With this, an example of standalone compilation for a given macro UranieMacro.C will be:

g++ -o OutputExecutable UranieMacro.C ‘echo ${URANIECPPFLAG} ${URANIELDFLAG}‘

page 30

CHAPTER I. OVERVIEW: URANIE IN A NUTSHELL Uranie namespace

I.2.4 Uranie namespace

As for the vast majority of ROOT’s classes, Uranie’s classes started with a capital T (for instance "TFoo.h", if a class
would be called "Foo"). Most of them inherit from TNamed, a generic class of ROOT which offers method for name
and title bookkeeping. This is an important feature of the way ROOT-files are written (the name being the tag used to
write or read any object and to handle them in memory). These classes belong to a specific namespace, in order to
prevent any mixing between ROOT and Uranie (even though in practice, the name of the new classes implemented
in Uranie is checked not to exist in ROOT for obvious safety and clarity reasons). Uranie defines many namespaces
dedicated to the different module already introduced in Section I.1.1.

• URANIE::DataServer ; the namespace associated with the DataServer library

• URANIE::Launcher ; the namespace associated with the Launcher library

• URANIE::Sampler ; the namespace associated with the Sampler library

• URANIE::Optimizer ; the namespace associated with the Optimizer library

• URANIE::Modeler ; the namespace associated with the Modeler library

• URANIE::Sensitivity ; the namespace associated with the Sensitivity library

• URANIE::Relauncher ; the namespace associated with the Relauncher library

• URANIE::MpiRelauncher ; the namespace associated with the Relauncher library once used with MPI

• URANIE::Calibration ; the namespace associated with the Calibration library

• URANIE::MetaModelOptim ; the namespace associated with the MetaModelOptim library

• URANIE::Reoptimizer ; the namespace associated with the Reoptimizer library

• URANIE::UncertModeler ; the namespace associated with the UncertModeler library

• URANIE::Reliability ; the namespace associated with the Reliability library

You can use the full qualified name to access to Uranie classes or use the using namespace directives to use the
short name.

Another way to use the short name is to use again the rootlogon.C macro. If done so, all macros could access
Uranie classes via the short name implicitly. Here is an example of rootlogon.C file:

using namespace URANIE::DataServer;
using namespace URANIE::Launcher;
using namespace URANIE::Sampler;
using namespace URANIE::Optimizer;
using namespace URANIE::Modeler;
using namespace URANIE::UncertModeler;
using namespace URANIE::Sensitivity;
using namespace URANIE::Relauncher;
using namespace URANIE::Reoptimizer;
using namespace URANIE::Calibration;
using namespace URANIE::Reliability;
// using namespace URANIE::XMLProblem;
// using namespace URANIE::MpiRelauncher;

void rootlogon()
{

page 31

Uranie namespace CHAPTER I. OVERVIEW: URANIE IN A NUTSHELL

gStyle->SetPalette(1);
gStyle->SetOptDate(21);

//General graphical style
// Default colors
int white = 0;
int color = 30;

//Legend
gStyle->SetLegendBorderSize(0);
gStyle->SetFillStyle(0);

// Pads
gStyle->SetPadColor(white);
gStyle->SetTitleFillColor(white);
gStyle->SetStatColor(white);

}

/* ==================== Hint ====================

Might be practical to store this in a convenient place (for instance
your home directory) and to create an alias to make sure that you use
only one rootlogon file independently of where you are.

example : alias root="root -l ${HOME}/rootlogon.C"

Many style issue can be set once and for all here.

Warnings :
=> The name of the main function (in between the void and the () part)
has to be the same as the name of the file (without extension).
=> If you intend to change this file name and make it a hidden file (let’s
say ${HOME}/.toto.C, the name of the main function would have to start with
an underscore, so here it would be "void _toto()".

*/

The most generic solution to simply don’t have to bother with namespaces while possibly tuning root graphical options
to ones taste is to centralise this file and make it our own. By putting it somewhere central (for instance as a hidden file
in your home folder, something like ~/.rootlogon.C) it is possible to make an alias that could have two purposes:

C Shell Family (csh, tcsh, etc.)

alias root root -l ~/.rootlogon.C

Bourne Shell Family (sh, bash, etc.)

alias root="root -l ~/.rootlogon.C"

With this kind of alias, one can have two interesting by-products: on the one hand, there will be no splash screen
anymore (resulting from the "-l" option) while on the other hand, all the Uranie namespaces will be loaded along with
your own graphical preferences, if you have any.

page 32

CHAPTER I. OVERVIEW: URANIE IN A NUTSHELL Important modifications going from ROOT v5 to ROOT v6

I.2.5 Important modifications going from ROOT v5 to ROOT v6

This part summarises the important modifications that are brought when changing ROOT versions. This affects some of
the Uranie macros and if you’ve used Uranie before version 4.X, this part can be useful to understand the modifications
that will mainly affect the constructor of some Uranie’s objects.

The main subject is the way to handle function. As an example, we will considerer the "very" simple function that with
two inputs returns the sum of these two values (c.f. the Addition function below).

void Addition(double *x, double *y)
{

y[0] = x[0] + x[1] ;
}

In C++, within the Uranie framework, there are three ways to use this function in a macro, that would be called
analysis.C:

1. Having the function in a separated file MyFunction.C and load it through ROOT by calling

gROOT->LoadMacro("MyFunction.C");

2. Having the function in a separated file MyFunction.C and include this file in the header of analysis.C as

#include "MyFunction.C"

3. Having the function in the same file (analysis.C) before the main function.

This is common practice both for the 5 and 6 versions of ROOT.

From this, the way to handle this function is a little bit different going from one ROOT major-version (i.e. 5.X) to another
one (i.e. 6.X).

ROOT 5.X: Disregarding the chosen option to read the function (1, 2, or 3 discussed above) the interpreter (CInt
for these versions of ROOT) is associating to the pointer of the function Addition (which is a pointer of the
form (void *)(double *, double*) a name, which it uses as a tag by CInt. The name is in this case
"Addition". For the 3 configuration defined up there, one can use the name and/or the pointer to access the
function.

ROOT 6.X: On the other hand, for these versions of ROOT, the interpreter is, as stated previously, a runtime compiler,
so it behaves very much like expected from properly C++ compiled code. When calling the function thanks to its
pointer (the (void *)(double *, double*) object) no information on a name is accessible. Compared
to ROOT 5, there is no pointer to the function if it is loaded through LoadMacro (which is perfectly logic from a
C++ point of view). The second and third access method can, on the other hand, use both the pointer and the
name.

This obliges us to change several constructor that had been (over ?) simplified: in ROOT 5 versions, the compulsory
information were often just a pointer to the TDataServer object and either the name of the function or a pointer to it.
From this, if nothing else was specified, all current inputs in the TDataServer were used as inputs (this behaviour
could be changed usually providing at third argument) and the output variables were named using the tag taken from
CInt (this behaviour could be changed as well usually providing a fourth argument). Having no tag anymore from CInt
when running ROOT 6, the (usually) optional third and fourth arguments become now compulsory.

page 33

References CHAPTER I. OVERVIEW: URANIE IN A NUTSHELL

I.2.6 References

The ROOT environment [?] has already been under development for a long time now, it’s documentation is very well
advanced and is organised with different level of precision. One can indeed find many useful information in:

• The ROOT user guide (https://root.cern.ch/root/htmldoc/guides/users-guide/ROOTUsersGuideA4.pdf): useful and
relatively complete gathering of information. It might be helpful to keep it locally as a reference.

• The ROOT Class index (https://root.cern.ch/root/html/ClassIndex.html): Very complete description of all the classes
and their methods. One can spent hour passing through these pages to discover what’s doable using the various
objects. It is even possible to mask/show inherited method for sake of simplicity.

There are also many examples and macros that show how to handle the objects provided:

• The Howto website: https://root.cern.ch/howtos

• All the macro contained in the tutorial folder, installed once ROOT has been installed (check in the $ROOTSYS/tuto-
rials folder).

I.3 The Python Interface

Accessing Uranie tools is also possible using the Python language.

The PyROOT tool allows to access to ROOT classes from a Python command line or script. Uranie can benefit from
this tool as well. All the use-case macros provided in the previous version of this user manual (c.f. Chapter XIV) are
now available in Python in the python version of this manual.

I.3.1 Python version: greater than 3.8

From Uranie version 4.9, only Python greater than 3.8 can be used due to the use of ROOT version v6.32 (Python 2 is
deprecated). Two words of caution about this:

• The macros provided in the python version of this manual have indeed been tested with Python 3 (upper than 3.8).

• Note, historically, from Uranie version 4.5 to v4.8, both Python 2 and 3 were used at the same time if it is installed
again a ROOT version from v6.20.00 to v6.28.06. In order to get this compatibility, it means that the printing format
has to be homogenised and this implies that from Uranie version 4.2, these macros might not be working anymore
for Python version below or equal to 2.6.

Possible python configuration on a Linux OS

ls -l ‘which python‘ && ls -l ‘which python3‘

lrwxrwxrwx. 1 root root 9 8 fÃ©vr. 2023 /usr/bin/python -> ./python3
lrwxrwxrwx. 1 root root 10 8 fÃ©vr. 2023 /usr/bin/python3 -> python3.11

page 34

https://root.cern.ch/root/htmldoc/guides/users-guide/ROOTUsersGuideA4.pdf
https://root.cern.ch/root/html/ClassIndex.html
https://root.cern.ch/howtos
http://www.python.org

CHAPTER I. OVERVIEW: URANIE IN A NUTSHELL Environment variables

Today’s operating systems usually embed both versions of python and many of these still use the version 2 as a
reference (see the block above with both python versions). Given the fact that one can have as many different python
versions as possible, it should be possible to specify which one is of interest for the ongoing installation. The following
lines should be used to specify the python version to be used, providing that the "dev" packages are indeed installed
for this version:

cmake ${PATH_TO_ROOT_SOURCES} -DPYTHON_EXECUTABLE=${PATH_TO_PYTHON_BIN} - ←↩
DPYTHON_INCLUDE_DIR=${PATH_TO_PYTHON_INC} -DPYTHON_LIBRARY=${PATH_TO_PYTHON_LIB} ...

These three specific python flags should be used both for ROOT and Uranie in a coherent way in order to install both
platforms with a chosen Python’s version. To get the recommended cmake line both for ROOT and Uranie see the
README provided with the Uranie-sources.

I.3.2 Environment variables

In order to access ROOT and Uranie from Python, we need to ensure that some environment variables are properly
set:

• $PYTHONPATH must contain the $ROOTSYS/lib directory, where $ROOTSYS is ROOT’s installation directory.

• $LD_LIBRARY_PATH must contain the $ROOTSYS/lib directory.

I.3.3 Using PyROOT

When the environment variables for Uranie and PyROOT are properly set, we can access to the classes as follows:

Load the ROOT module
import ROOT

Create a new data server object
tds=ROOT.URANIE.DataServer.TDataServer("myTDS","DataServer for python example")

Add an attribute to the data server
tds.addAttribute(ROOT.URANIE.DataServer.TNormalDistribution("x", 0.0, 1.0))

Create a sampler object
sampler = ROOT.URANIE.Sampler.TSampling(tds, "lhs", 1000)

Generate data
sampler.generateSample()

Display the histogram of attribute x
tds.draw("x")

This code should produce a graphic as the one displayed in Figure I.2.

page 35

The PyURANIE interface CHAPTER I. OVERVIEW: URANIE IN A NUTSHELL

Figure I.2: Histogram produced using PyROOT

The instructions above can be executed either through the Python command line, or be written in a file (myscript.py in
the example below) and run using the command:

python -i myscript.py

The -i option allows to stay in the Python environment at the end of the execution. This prevents the produced image
to be automatically closed.

I.3.4 The PyURANIE interface

In the previous example, we can see that the access to Uranie’s classes is somewhat tedious. In order to ease the
process, a set of specific modules have been created. We call it the PyURANIE interface.

It is then possible to re-write the previous example using these specific modules:

Load the URANIE module
from ROOT import URANIE

Load the DataServer and Sampler modules
from URANIE import DataServer, Sampler

Create a new data server object
tds = DataServer.TDataServer("myTDS","DataServer for the python example")

Add an attribute to the data server
tds.addAttribute(DataServer.TNormalDistribution("x", 0.0, 1.0))

Create a sampler object
sampler = Sampler.TSampling(tds, "lhs", 1000)

Generate data
sampler.generateSample()

Display the histogram of attribute x
tds.draw("x")

page 36

CHAPTER I. OVERVIEW: URANIE IN A NUTSHELL The PyURANIE interface

The access to ROOT classes is provided through the ROOT module.

The PyURANIE interface also allows to use the command:

from URANIE.DataServer import *

This command loads all the classes of the DataServer module in Python and makes them directly accessible. It is
similar to the C++ command using namespace URANIE::DataServer. However, in Python, using this command is not
recommended. It can create name conflicts and use a large amount of memory.

Finally the equivalent of the rootlogon.C has been written for python, and is called rootlogon.py. It is com-
posed of two parts, as for the one in C++, the second one being the exact equivalent. The first one, on the other hand,
is a bit different and this difference arises from the way the language are dealing with loading modules. By doing

from rootlogon import DataServer

one can, for instance, directly creates a TDataServer by doing

toto=DataServer.TDataServer()

The example of rootlogon file for python is the following:

import ROOT

Create shortcuts if uranie exists
urasys = ROOT.TString(ROOT.gSystem.Getenv("URANIESYS"))
if not urasys.EqualTo(""):

from ROOT.URANIE import DataServer as DataServer
from ROOT.URANIE import Sampler as Sampler
from ROOT.URANIE import Launcher as Launcher
from ROOT.URANIE import Relauncher as Relauncher
from ROOT.URANIE import Reoptimizer as Reoptimizer
from ROOT.URANIE import Sensitivity as Sensitivity
from ROOT.URANIE import Optimizer as Optimizer
from ROOT.URANIE import Modeler as Modeler
from ROOT.URANIE import Calibration as Calibration
from ROOT.URANIE import UncertModeler as UncertModeler
from ROOT.URANIE import Reliability as Reliability
from ROOT.URANIE import XMLProblem as XMLProblem
from ROOT.URANIE import MpiRelauncher as MpiRelauncher
pass

General graphical style
white = 0

PlotStyle
ROOT.gStyle.SetPalette(1)
ROOT.gStyle.SetOptDate(21)

Legend
ROOT.gStyle.SetLegendBorderSize(0)
ROOT.gStyle.SetFillStyle(0)

Pads
ROOT.gStyle.SetPadColor(white)
ROOT.gStyle.SetTitleFillColor(white)
ROOT.gStyle.SetStatColor(white)

==================== Hint ====================
#
Might be practical to store this in a convenient place (for instance

page 37

References CHAPTER I. OVERVIEW: URANIE IN A NUTSHELL

the ".python" folder in your home directory) or any other place where
your $PYTHONPATH is pointing.
#
example : export PYTHONPATH=$PYTHONPATH:${HOME}/.mypython/
#
It should then be called as "from rootlogon import " + the list of module
This would replace the shortcuts created and import done in the rest of
the scripts
#
Many style issue can be set once and for all here.
toto=DataServer.TDataServer()
#

I.3.5 References

The PyROOT environment has a few specificities which it is preferable to be aware of (the rest being discussed already
in Section I.2.6). The following websites help to learn about them:

• Presentation on the PyROOT website: http://root.cern.ch/drupal/content/pyroot

• The PyROOT Manual: http://wlav.web.cern.ch/wlav/pyroot/index.html

• The ROOT users forum: http://root.cern.ch/phpBB3/index.php

Finally, reference [1] introduces (in French) some of these problems and shows examples on how to use Uranie with
PyROOT.

page 38

http://root.cern.ch/drupal/content/pyroot
http://wlav.web.cern.ch/wlav/pyroot/index.html
http://root.cern.ch/phpBB3/index.php

Chapter II

The DataServer module

II.1 Introduction

The DataServer module is the spine of the Uranie platform as it is where the data are stored, the attributes (name
given to the variable in Uranie) are gathered and important basic mathematical operations are performed. Objects and
methods will indeed need a TDataServer to retrieve, process and transmit the results of their own operations.

Since it is used by all other technical libraries (Sampler, Launcher, ...), this library is the core library of Uranie (as shown
in Figure I.1). The already discussed TDataServer contains two main objects (has shown in Figure II.1):

• the header: represented in Uranie by the object TDataSpecification. Different information related to the
variables (called in "attributes" in Uranie language and represented by TAttribute objects) are specified in Sec-
tion II.2.

• the data matrix: represented by the object TDSNtupleD (class derived from the ROOT class TTree). For an
advanced use of this object, the reader can refer to chapter XII "Trees ROOT" in ROOT’s user manual.

Figure II.1: Diagram of the class TDataServer

The chapter presentation will be articulated as follows. First of all, the way variable are handled will be introduced in
Section II.2. This is a needed step, as all TDataServer have to be filled with attributes for being able to move along.
The creation of a TDataServer (with many construction, from ASCII to ROOT files) is discussed in Section II.3
before discussing the basic statistical treatment (in Section II.4) and the dedicated visualisation tool (in Section II.5).

page 39

The TAttribute class CHAPTER II. THE DATASERVER MODULE

Tip
An important point to know for the use of Uranie: all options are not case sensitive. Actually, the treatment of
these options is taken anyway as lowercase. The following instructions are equivalent:

tdsGeyser->draw("x1","","Nclass=Sturges");
tdsGeyser->draw("x2","","nclass=Sturges");
tdsGeyser->draw("x2","","nclass=sturges");
tdsGeyser->draw("x2","","NCLASS=STURGES");

II.2 The TAttribute class

The TAttribute class (as its inherited classes, some of which are discussed here as well), is also a crucial part of
any analysis performed through Uranie. It describes any variable (input, output, or internal variable such as iterator)
that are passed to the other modules. It does not really contain the data, but it has the statistical information (in case
methods such as computeStatistic or computeQuantile have been called, see Section II.4)

II.2.1 Nature of the attribute

Unlike previous Uranie-version where all attribute were double-precision float values, the implementation done from
v3.10.0 allows to handle two other types of attribute: string and vector. There are several ways to define the new at-
tribute nature, following the chosen construction process, but all these methods will affect the enumerator URANIE::DataServer::EType
whose value can be:

• kDefault: the default one which is equal to kReal

• kString: in the case of text input (assuming that this text is no split into more than one word, unless extra-cautions
are taken)

• kVector: for vectors of double-precision values. Even though the number of elements within this vector can change
from one pattern to the other, many useful methods discussed in the following sections and chapters will required
(in order to make sense) to have a constant number of elements (at least for a sub-selection of patterns). This is
particularly true for all mathematical methods and sensitivity analysis. The code should complain if this requirement
is needed and not fulfilled.

This new implementation is bringing changes in the way some information are handled, as for the attribute is concerned,
but all the resulting modification have been checked to be backward compatible. Default settings are made assuming
that attributes are double-precision ones, unless specified otherwise (to be sure that all previous script will
work). The corresponding modifications are discussed throughout this documentation.

II.2.2 List of variable information

We will present in this section the list of information contained in a TAttribute of Uranie.

page 40

CHAPTER II. THE DATASERVER MODULE List of variable information

Figure II.2: Attributes of TAttribute class

Name: Variable name It should be a short name as this information is needed to use this variable (mathematical
expressions, graphics, scan, ...).

Title: Variable title. This information is only needed for graphical display.

Unit: Variable units. This information is only needed for graphical display.

Note: Variable note. description of the variable, this is not currently used.

Min, Max, Mean and Std: Minimum, maximum, averaged and standard deviation values. These information are
now vectors and their usage is discussed in Section II.4.3

vquantile: Vector of map containing value of the quantile computed using the key in argument. These informa-
tion are now stored in the attribute itself their usage is discussed in Section II.4.4

defaultValue: Default value. This default value will be considered either by the code launcher or during a parameter
optimisation. In the case of a code launcher, this means either that the code failed to proceed or that the code
did not return the value.

At this level, there is no notion of random variable. Attributes are variables with a name, a label, a unit, a variation
domain (bounded or belonging to R). Despite the large amount of possible combinations to instantiate a variable (name,
name+label, name+boundary, name+label+boundary), only a small number of constructors are implemented. Some
methods like setTitle, setFileKey, setUnity allow to precise the missing information.

The four constructors currently implemented are the following:

• Name: since this constructor only knows the name of the variable, the 3 piece of information title, label and key are
strictly identical. This variable is not bounded. An example of use, already seen before, is:

TAttribute *px = new TAttribute("x");

A random variable "x" (where px denotes a pointer to x) exists and it has its label also equal to x. Thus, if this
variable is visualised on a graph, the default label will also be its title i.e "x".

page 41

List of variable information CHAPTER II. THE DATASERVER MODULE

• Name + title: constructor defined from the name and the title of the variable

TAttribute *psdp = new TAttribute("sdp", "#sigma_{#Delta P}");
psdp->setUnity("M^{2}");

A pointer psdp to a variable "sdp" is available with title being #sigma_{#Delta P}. The command setUnity() precises
the unit. In this case, by default, the field key is identical to the field name. We will use the ability given by ROOT
to write LaTeX expressions in graphics to improve graphics rendering without weighing down the manipulation of
variables: as a matter of fact, we can plot the histogram of the variable sdp by:

tdsGeyser->addAttribute("newx2","x2","#sigma_{#Delta P}","M^{2}");
tdsGeyser->draw("newx2");

The result of this piece of code is shown in Figure II.3.

Figure II.3: Graph of the variable sdp

• Name + variation boundary: constructor defined by the name of the variable and the lower and upper boundaries.
The two other pieces of information, label and key remain equal to the title. An example of use is

TAttribute *x = new TAttribute("x", -2.0, 4.0);

• Name + EType: constructor defined by the name of the variable and nature of the corresponding attribute . An
example of use is

TAttribute *xvec = new TAttribute("x", URANIE::DataServer::TAttribute::kVector);

Setter methods allow to fill the other fields (title, key, etc) generally by calling set and the name of the information to
be modified (a restricted list of available methods being given below). For instance, the plot "x2:x1" of TDataServer
data tdsGeyser (whose data file geyser.dat can be found in the Uranie-macros folder) can be considered again
and we can replace the fields title and unit with new values by using LaTeX instructions. For instance, let us consider
once again the graph of TDataServer data tdsGeyser:

TAttribute *px1 = tdsGeyser->getAttribute("x1");
px1->setTitle("#Delta P^{#sigma}"); // Change the title
px1->setUnity("#frac{mm^{2}}{s}"); // Change the unit
tdsGeyser->Draw("x2:x1"); // Draw the plot

page 42

CHAPTER II. THE DATASERVER MODULE List of variable information

The first line consists in retrieving the attribute pointer x1, while the others are self explanatory. This results in a new
graph (scatterplot) of x2 versus x1 for the TDataServer constructed from the geyser file with updated field title and
unit values, shown in Figure II.4.

Figure II.4: Scatterplot x2 versus x1 for the geyser data with modification of fields title and unit.

Most of the information can be modified by "setter" methods. Here is a short list of the most relevant one starting with
simple and already discussed attribute properties:

• setTitle(TString str): assigns the character string str passed as argument to the field title;

• setUnity(TString str): assigns the character string str passed as argument to the field unity;

• setNote(TString str): assigns the character string str passed as argument to the field note;

• setUpperBound/setLowerBound/setDefaultValue(double val): assigns or changes (if it already existed) respec-
tively the upper, lower or default value for this attribute.

• setDataType(EType thetype or TString str): changes the nature of the attribute given the enumerator value or a
character chain (case insensitive). In the latter case, the enumerator is set to:

– kReal: str= "double" or "real" or "d";

– kString: str= "string" or "s"

– kVector: str= "vector" or "v"

Given the new nature of attributes (meaning vectors and strings) a more generic method has been created to put
default values to all type. The generic methods takes only one argument, a string containing values whatever the type.
In cas of doubt, dedicated methods have also been created, with dedicated prototypes:

• kReal: both setDefault(TString value) and Bool_t setDefaultValue(Double_t val) can
be used as shown below

TAttribute *real = new TAttribute("real");
double real_value=1.23456789;
real->setDefaultValue(real_value); // Default with double value
real->setDefault("1.23456789"); // Default with generic method

page 43

Examples of use of the class TAttribute CHAPTER II. THE DATASERVER MODULE

• kVector: both setDefault(TString value) and setDefaultVectorvector<double> &vec) can
be used as shown below

TAttribute *vector = new TAttribute("vector",TAttribute::kVector);
std::vector<double> v_value={1.2,2.3,3.4};
vector->setDefaultVector(v_value); // Default with double value
vector->setDefault("1.2,2.3,3.4"); // Default with generic method

• kString: both setDefault(TString value) and setDefaultString(TString val) can be used as
shown below

TAttribute *string = new TAttribute("string",TAttribute::kString);
TString str_value="chocolat";
string->setDefaultString(str_value); // Default with double value
string->setDefault(str_value); // Default with generic method

There are also important setters, used to connect attributes to ASCII files. Most of the time, ASCII files are indeed
used to communicate with an external code and Uranie must know in this case where to find the useful information for
the corresponding attributes (either to write a new value that would be used as input to perform a calculation or to read
the output of another computation). This is more carefully detailed in Section IV.3.1.

• setFileKey(TString sfile, TString skey,TString sformatToSubstitute, TAttributeFileKey::EFileType sFileType): allows
to specify for an attribute a file sfile, a key linked to this file skey, a writing format of the value of this key in the
previous file sformatToSubstitute, and also the type of the file sFileType. This is heavily discussed in Chapter IV.

II.2.3 Examples of use of the class TAttribute

The following instruction defines a pointer px to an unbounded variable x.

TAttribute *px = new TAttribute("x");

The following instruction defines a pointer px to a variable x bounded between 0. and 1.

TAttribute *px = new TAttribute("x", 0., 1.);

The following instruction defines a pointer px to a variable x bounded between -2. and 4. with ∆PFiso
e as label:

TAttribute *px = new TAttribute("x", -2.0, 4.0);
px->setTitle("#Delta P_{e}^{F_{iso}}");

The following instruction defines a pointer px to a variable x that describes string

TAttribute *px = new TAttribute("x", URANIE::DataServer::TAttribute::kString);

II.2.4 Adding TAttribute when data are already available

It is possible to add new attribute in a given TDataServer object that would contain data using two different methods.
The first one rely on the already existing data to create a new variable by simply writting the equation, which internally
is calling a TAttributeFormula object. The following piece of code shows how to create a third variable from the
geyser.dat file, simply as an equation from the existing variables:

TDataServer *tds = new TDataServer("foo","pouet");
tds->fileDataRead("geyser.dat");
// Adding a new attribute
TAttribute *x3 = new TAttribute("x3","0.5*x2+sin(x1)");

page 44

CHAPTER II. THE DATASERVER MODULE Introducing the TStochasticAttribute classes

This method can deal with double and vector-based attributes (of course no equation can be estimate when one of the
input variable in the formula is a string one, so this method will crash).

Another way recently introduced is to add an attribute from an array of double (or it’s equivalent in python, meaning
a numpy.array) by calling the method addAttributeUsingData. The idea is to be able to add information
that would have been processed by methods aside from the Uranie ones. The signature of the function is the name of
the new attribute as first argumet, the second one is an array of double and the third one is the size of the array. There
are two ways, recommended, that uses object with built-in method that provide the size (to prevent from mis-typing
problem between the array and its size). Obviously, the size of the array must be equal to the number of patterns in the
existing TDataServer object. Here is an example using the myData.dat, in C++:

TDataServer *tds = new TDataServer("foo","tru");
tds->fileDataRead("myData.dat");
// Defining a vector with 11 elements
vector<double> x2 = {-10,-8,-6,-4,-2,0,2,4,6,8,10};
// Call the method using the address of first element and the size of it
tds->addAttributeUsingData("x2", &x2[0], x2.size());

This method should only be used to create double-based attributes (as the size of the array would be chaotic if it were
to be a vector of varying size). Obviously, no string-based attribute can be constructed like this.

Warning The method addAttributeUsingData should only be called either when no data AND no
attribute are stored in the dataserver or when there are data and the new array of double provided has the
same size (number of patterns) as the data already available within the dataserver.

II.2.5 Introducing the TStochasticAttribute classes

The TStochasticAttribute is the parent class to all attributes which values can be generated by a TSampler
(as discussed in Section III.2). All child objects are random variables, following a specific law, that depends on a small
number of parameters.

As from version 4.8 of the Uranie platform it is possible to combine different probability law, as a sum of weighted
contributions, in order to create a new law. This approach, which is further discussed and illustrated in Section II.2.5.19,
leads to a new probability density function that would look like

f (x) =
N

∑
j=1

ω j f j(x) where ∀ j ∈ [1,N], ω j ∈ R+.

These distributions can be used to model the behaviour of variables, depending on chosen hypothesis, probability
density function being used as a reference more oftenly by physicist, whereas statistical experts will generally use the
cumulative distribution function [3].

Table II.1 gathers the list of implemented statistical laws, along with its class name in Uranie and the list of parameters
used to define them. For every possible law, a piece of code is provided to show how to draw a simple PDF, along with a
figure that displays the PDF, CDF and inverse CDF1 for different sets of parameters (the equation of the corresponding
PDF is reminded as well on every figure). The inverse CDF is basically the CDF whose x and y-axis are inverted (it
is convenient to keep in mind what it looks like, as it will be used to produce design-of-experiments, later-on). For all
these laws, the parameters can be set at the constructor (as shown in the previous example block) but, if this has not
been done it is possible to change their value using the setParameters method.

To define a random variable, the corresponding constructor must be used. The arguments of these constructors are
first, the name of the variable and second, the parameters of the law. For example:

1for a definition of PDF (probability density function), CDF (cumulative density function) and inverse CDF, please look at [30]

page 45

Introducing the TStochasticAttribute classes CHAPTER II. THE DATASERVER MODULE

Law Class Uranie Parameter 1 Parameter 2 Parameter 3 Parameter 4
Uniform TUniformDistribution Min Max

Log-Uniform TLogUniformDistribution Min Max
Triangular TTriangularDistribution Min Max Mode

Log-Triangular TLogTriangularDistribution Min Max Mode
Normal (Gauss) TNormalDistribution Mean (µ) Sigma (σ)

Log-Normal TLogNormalDistribution Mean (M)
Error factor

(E f)
Min

Trapezium TTrapeziumDistribution Min Max Low Up
UniformByParts TUniformByPartsDistribution Min Max Median

Exponential TExponentialDistribution Rate (λ) Min
Cauchy TCauchyDistribution Scale (γ) Median

GumbelMax TGumbelMaxDistribution Mode (µ) Scale (β)
Weibull TWeibullDistribution Scale (λ) Shape (k) Min

Beta TBetaDistribution alpha (α) beta (β) Min Max
GenPareto TGenParetoDistribution Location (µ) Scale (σ) Shape (ξ)

Gamma TGammaDistribution Shape (α) Scale (β) Location (ξ)
InvGamma TInvGammaDistribution Shape (α) Scale (β) Location (ξ)

Student TStudentDistribution DoF (k)
GeneralizedNormal TGeneralizedNormalDistributionLocation (µ) Scale (α) Shape (β)

Table II.1: List of Uranie classes representing the probability laws

//Uniform law

TUniformDistribution *pxu = new TUniformDistribution("x1", -1.0 , 1.0); x1 [1]
// Gaussian Law

TNormalDistribution *pxn = new TNormalDistribution("x2", -1.0 , 1.0); x2 [2]
x1 Allocation of a pointer pxu to a random uniform variable x1 in interval [-1.0, 1.0].x2 Allocation of a pointer pxn to a random normal variable x2 with mean value µ=-1.0 and standard deviation

σ=1.0.

These distributions can be used to model the behaviour of inputs, the choice being generally based on the way the
PDF looks like. For every distributions implemented in Uranie examples of PDF, CDF and inverse CDF are show from
Figure II.5 until Figure II.28. Here is a brief description of the probability density functions and their parameters.

II.2.5.1 Uniform Law

The Uniform law is defined between a minimum and a maximum, as

f (x) =
1

(xmax− xmin)
1I[xmin,xmax](x)

Uranie code to simulate an uniform random variable is:

TDataServer *tds = new TDataServer("tdssampler", "Sampler Uranie demo");
tds->addAttribute(new TUniformDistribution("u", -2., 3.));

page 46

CHAPTER II. THE DATASERVER MODULE Introducing the TStochasticAttribute classes

TSampling *fsamp = new TSampling(tds, "lhs", 300);
fsamp->generateSample(); // Create a representative sample

tds->Draw("u");

Figure II.5 shows the PDF, CDF and inverse CDF generated for a given set of parameters.

Figure II.5: Example of PDF, CDF and inverse CDF for Uniform distribution.

II.2.5.2 Log Uniform Law

The LogUniform law is well adapted for variations of high amplitudes. If a random variable x follows a LogUniform
distribution, the random variable ln(x) follows a Uniform distribution, so

f (x) =
1

(x× ln(xmax/xmin))
1I[xmin,xmax](x)

Uranie code to simulate a LogUniform random variable is:

TDataServer *tds = new TDataServer("tdssampler", "Sampler Uranie demo");
tds->addAttribute(new TLogUniformDistribution("lu", .001, 10.));

TSampling *fsamp = new TSampling(tds, "lhs", 300);
fsamp->generateSample(); // Create a representative sample

tds->Draw("lu");
tds->Draw("log(lu)"); // Check that ln(x) follows a uniform law

Figure II.6 shows the PDF, CDF and inverse CDF generated for different sets of parameters.

page 47

Introducing the TStochasticAttribute classes CHAPTER II. THE DATASERVER MODULE

Figure II.6: Example of PDF, CDF and inverse CDF for LogUniform distributions.

II.2.5.3 Triangular law

This law describes a triangle with a base between a minimum and a maximum and a highest density at a certain point
xmode, so

f (x) =
2× (x− xmin)

(xmax− xmin)× (xmode− xmin)
1I[xmin,xmode](x) and f (x) =

2× (xmax− x)
(xmax− xmin)× (xmax− xmode)

1I[xmode,xmax](x)

Uranie code to simulate a triangular random variable is:

TDataServer *tds = new TDataServer("tdssampler", "Sampler Uranie demo");
tds->addAttribute(new TTriangularDistribution("t", 5.0, 8., 6.0));

TSampling *fsamp = new TSampling(tds, "lhs", 300);
fsamp->generateSample(); // Create a representative sample

tds->Draw("t");

Figure II.7 shows the PDF, CDF and inverse CDF generated for different sets of parameters.

page 48

CHAPTER II. THE DATASERVER MODULE Introducing the TStochasticAttribute classes

Figure II.7: Example of PDF, CDF and inverse CDF for Triangular distributions.

II.2.5.4 LogTriangular law

If a random variable x follows a LogTriangular distribution, the random variable ln(x) follows a Triangular distribution,
so

f (x) =
2× ln(x/xmin)

x× ln(xmax/xmin)× ln(xmode/xmin)
1I[xmin,xmode](x)

and

f (x) =
2× ln(xmax/x)

x× ln(xmax/xmin)× ln(xmax/xmode)
1I[xmode,xmax](x)

Uranie code to simulate a LogTriangular random variable is:

TDataServer *tds = new TDataServer("tdssampler", "Sampler Uranie demo");
tds->addAttribute(new TLogTriangularDistribution("lt", .001, 10., 2.5));

TSampling *fsamp = new TSampling(tds, "lhs", 300);
fsamp->generateSample(); // Create a representative sample

tds->Draw("lt");
tds->Draw("log(lt)"); // Check that ln(lt) follows a triangular law

Figure II.8 shows the PDF, CDF and inverse CDF generated for different sets of parameters.

page 49

Introducing the TStochasticAttribute classes CHAPTER II. THE DATASERVER MODULE

Figure II.8: Example of PDF, CDF and inverse CDF for Logtriangular distributions.

II.2.5.5 Normal law

A normal law is defined with a mean µ and a standard deviation σ , as

f (x) = e
−(x−µ)2

2σ2 × 1√
2πσ2

Uranie code to simulate a normal random variable is:

TDataServer *tds = new TDataServer("tdssampler", "Sampler Uranie demo");
tds->addAttribute(new TNormalDistribution("n", 0.0, 1.0));

TSampling *fsamp = new TSampling(tds, "lhs", 300);
fsamp->generateSample(); // Create a representative sample

tds->Draw("n");

Figure II.9 shows the PDF, CDF and inverse CDF generated for different sets of parameters.

page 50

CHAPTER II. THE DATASERVER MODULE Introducing the TStochasticAttribute classes

Figure II.9: Example of PDF, CDF and inverse CDF for Normal distributions.

Is it also possible to set boundaries to the infinite span of this distribution to create a truncated normal law. This can be
done by calling the following method:

tds->getAttribute("n")->setBounds(-1.4,2.0); //truncate the law

The resulting PDF, CDF and inverse CDF, with and without truncation, can be seen, in this case, in Figure II.10 for a
given set of parameters and various boundaries.

Figure II.10: Example of PDF, CDF and inverse CDF for a Normal truncated distribution.

II.2.5.6 LogNormal law

If a random variable x follows a LogNormal distribution, the random variable ln(x) follows a Normal distribution (whose
parameters are µ and σ), so

f (x) =
1

(x− xmin)σ
√

2π
× e

−(ln(x−xmin)−µ)2

2σ2 1I[xmin,+∞[(x)

page 51

Introducing the TStochasticAttribute classes CHAPTER II. THE DATASERVER MODULE

In Uranie, it is parametrised by default using M, the mean of the distribution, E f , the Error factor that represents the ra-
tion of the 95% quantile and the median (E f = q0.95/q0.50) and the minimum xmin. One can go from one parametrisation
to the other following those simple relations

M = eµ+σ2/2 + xmin ⇔ µ = ln(M− xmin)−σ2/2
EF = e1.645×σ ⇔ σ = ln(E f)/1.645.

Uranie code to simulate a LogNormal random variable is:

TDataServer *tds = new TDataServer("tdssampler", "Sampler Uranie demo");
// using M, Ef and xmin
tds->addAttribute(new TLogNormalDistribution("ln", 1.2, 1.5, -0.5));
// to use ln(x) properties
// double mu = 0.5, sigma=1.; tds->setUnderlyingNormalParameters(mu,sigma);

TSampling *fsamp = new TSampling(tds, "lhs", 300);
fsamp->generateSample(); // Create a representative sample

tds->Draw("ln");
tds->Draw("log(ln)"); // Check that ln(ln) follows a normal law

Figure II.11 shows the PDF, CDF and inverse CDF generated for different sets of parameters.

Figure II.11: Example of PDF, CDF and inverse CDF for LogNormal distributions.

Is it also possible to set boundaries to the infinite span of this distribution to create a truncated normal law. This can be
done by calling the following method:

tds->getAttribute("ln")->setBounds(0.6,3.1); //truncate the law

The resulting PDF, CDF and inverse CDF, with and without truncation, can be seen, in this case, in Figure II.12 for a
given set of parameters and various boundaries.

page 52

CHAPTER II. THE DATASERVER MODULE Introducing the TStochasticAttribute classes

Figure II.12: Example of PDF, CDF and inverse CDF for a LogNormal truncated distribution.

II.2.5.7 Trapezium law

This law describes a trapezium whose large base is defined between a minimum and a maximum and its small base
lies between a low and an up value, as

f (x) =
2

(xup− xlow)+(xmax− xmin)
×Y

where Y = 1 for x ∈ [xlow,xup], Y =
(x− xmin)

(xlow− xmin)
for x ∈ [xmin,xlow] and Y =

(xmax− x)
(xmax− xup)

for x ∈ [xup,xmax].

Uranie code to simulate a Trapezium random variable is:

TDataServer *tds = new TDataServer("tdssampler", "Sampler Uranie demo");
tds->addAttribute(new TTrapeziumDistribution("tr", 0.0, 1.0, 0.25, 0.75));

TSampling *fsamp = new TSampling(tds, "lhs", 300);
fsamp->generateSample(); // Create a representative sample

tds->Draw("tr");

Figure II.13 shows the PDF, CDF and inverse CDF generated for different sets of parameters.

page 53

Introducing the TStochasticAttribute classes CHAPTER II. THE DATASERVER MODULE

Figure II.13: Example of PDF, CDF and inverse CDF for Trapezium distributions.

II.2.5.8 UniformByParts law

The UniformByParts law is defined between a minimum and a median and between the median and a maximum, as

f (x) =
0.5

(xmed− xmin)
1I[xmin,xmed](x) and f (x) =

0.5
(xmax− xmed)

1I[xmed,xmax](x)

Uranie code to simulate a UniformByParts random variable is:

TDataServer *tds = new TDataServer("tdssampler", "Sampler Uranie demo");
tds->addAttribute(new TUniformByPartsDistribution("ubp", 0.0, 1.0, 0.5));

TSampling *fsamp = new TSampling(tds, "lhs", 300);
fsamp->generateSample(); // Create a representative sample

tds->Draw("ubp");

Figure II.14 shows the PDF, CDF and inverse CDF generated for different sets of parameters.

page 54

CHAPTER II. THE DATASERVER MODULE Introducing the TStochasticAttribute classes

Figure II.14: Example of PDF, CDF and inverse CDF for UniformByParts distributions.

II.2.5.9 Exponential law

This law describes an exponential with a rate parameter λ and a minimum xmin, as

f (x) = λ × e−λ×(x−xmin) 1I[xmin,+∞[(x)

The rate parameter λ should be greater than 0.0001.

Uranie code to simulate an Exponential random variable is:

TDataServer *tds = new TDataServer("tdssampler", "Sampler Uranie demo");
tds->addAttribute(new TExponentialDistribution("exp", 0.5));

TSampling *fsamp = new TSampling(tds, "lhs", 300);
fsamp->generateSample(); // Create a representative sample

tds->Draw("exp");

Figure II.15 shows the PDF, CDF and inverse CDF generated for different sets of parameters.

page 55

Introducing the TStochasticAttribute classes CHAPTER II. THE DATASERVER MODULE

Figure II.15: Example of PDF, CDF and inverse CDF for Exponential distributions.

Is it also possible to set boundaries to the infinite span of this distribution to create a truncated Exponential law. This
can be done by calling the following method:

tds->getAttribute("exp")->setBounds(0.4,6.0); //truncate the law

The resulting PDF, CDF and inverse CDF, with and without truncation, can be seen, in this case, in Figure II.16 for a
given set of parameters and various boundaries.

Figure II.16: Example of PDF, CDF and inverse CDF for a Exponential truncated distribution.

II.2.5.10 Cauchy law

This law describes a Cauchy-Lorentz distribution with a location parameter x0 and a scale parameter γ , as

f (x) =
γ

π× (γ2 +(x− x0)2)

The parameter γ should be greater than 0.0001.

Uranie code to simulate a Cauchy random variable is:

page 56

CHAPTER II. THE DATASERVER MODULE Introducing the TStochasticAttribute classes

TDataServer *tds = new TDataServer("tdssampler", "Sampler Uranie demo");
tds->addAttribute(new TCauchyDistribution("cau", 0.3, 1.0));

TSampling *fsamp = new TSampling(tds, "lhs", 300);
fsamp->generateSample(); // Create a representative sample

tds->Draw("cau");

Figure II.17 shows the PDF, CDF and inverse CDF generated for different sets of parameters.

Figure II.17: Example of PDF, CDF and inverse CDF for Cauchy distributions.

Is it also possible to set boundaries to the infinite span of this distribution to create a truncated Cauchy law. This can
be done by calling the following method:

tds->getAttribute("cau")->setBounds(-1.0,2.0); //truncate the law

The resulting PDF, CDF and inverse CDF, with and without truncation, can be seen, in this case, in Figure II.18 for a
given set of parameters and various boundaries.

Figure II.18: Example of PDF, CDF and inverse CDF for a Cauchy truncated distribution.

page 57

Introducing the TStochasticAttribute classes CHAPTER II. THE DATASERVER MODULE

II.2.5.11 GumbelMax law

This law describes a Gumbel max distribution depending on the mode µ and the scale β , as

f (x) = z× e−z

β
, where z = e

−(x−µ)
β

The scale β should be greater than 0.000001 times µ

Uranie code to simulate a GumbelMax random variable is:

TDataServer *tds = new TDataServer("tdssampler", "Sampler Uranie demo");
tds->addAttribute(new TGumbelMaxDistribution("gm", 0.5, 2.0));

TSampling *fsamp = new TSampling(tds, "lhs", 300);
fsamp->generateSample(); // Create a representative sample

tds->Draw("gm");

Figure II.19 shows the PDF, CDF and inverse CDF generated for different sets of parameters.

Figure II.19: Example of PDF, CDF and inverse CDF for GumbelMax distributions.

Is it also possible to set boundaries to the infinite span of this distribution to create a truncated GumbelMax law. This
can be done by calling the following method:

tds->getAttribute("gm")->setBounds(-1.0,12.0); //truncate the law

The resulting PDF, CDF and inverse CDF, with and without truncation, can be seen, in this case, in Figure II.20 for a
given set of parameters and various boundaries.

page 58

CHAPTER II. THE DATASERVER MODULE Introducing the TStochasticAttribute classes

Figure II.20: Example of PDF, CDF and inverse CDF for a GumbelMax truncated distribution.

II.2.5.12 Weibull law

This law describes a weibull distribution depending on the location xmin, the scale λ and the shape k, as

f (x) =
k
λ
×
(

x− xmin

λ

)k−1

× e−(
x−xmin

λ)
k

1I[xmin,+∞[(x)

Both λ and k should be greater than 0.0001.

Uranie code to simulate a Weibull random variable is:

TDataServer *tds = new TDataServer("tdssampler", "Sampler Uranie demo");
tds->addAttribute(new TWeibullDistribution("wei", 0.5, 2.0, -0.01));

TSampling *fsamp = new TSampling(tds, "lhs", 300);
fsamp->generateSample(); // Create a representative sample

tds->Draw("wei");

Figure II.21 shows the PDF, CDF and inverse CDF generated for different sets of parameters.

Figure II.21: Example of PDF, CDF and inverse CDF for Weibull distributions.

page 59

Introducing the TStochasticAttribute classes CHAPTER II. THE DATASERVER MODULE

Is it also possible to set boundaries to the infinite span of this distribution to create a truncated Weibull law. This can
be done by calling the following method:

tds->getAttribute("wei")->setBounds(0.2,1.8); //truncate the law

The resulting PDF, CDF and inverse CDF, with and without truncation, can be seen, in this case, in Figure II.22 for a
given set of parameters and various boundaries.

Figure II.22: Example of PDF, CDF and inverse CDF for a Weibull truncated distribution.

II.2.5.13 Beta law

Defined between a minimum and a maximum, it depends on two parameters α and β , as

f (x) =
Y α−1× (1−Y)β−1

B(α,β)
1I[xmin,xmax](x)

where Y =
(x− xmin)

(xmax− xmin)
and B(α,β) is the beta function. In the current implementation, both α and β must be greater

than 0.0001.

Uranie code to simulate a Beta random variable is:

TDataServer *tds = new TDataServer("tdssampler", "Sampler Uranie demo");
tds->addAttribute(new TBetaDistribution("bet", 6.0, 6.0, 0.0, 2.0));

TSampling *fsamp = new TSampling(tds, "lhs", 300);
fsamp->generateSample(); // Create a representative sample

tds->Draw("bet");

Figure II.23 shows the PDF, CDF and inverse CDF generated for different sets of parameters.

page 60

CHAPTER II. THE DATASERVER MODULE Introducing the TStochasticAttribute classes

Figure II.23: Example of PDF, CDF and inverse CDF for Beta distributions.

II.2.5.14 GenPareto law

This law describes a generalised Pareto distribution depending on the location µ , the scale σ and a shape ξ , as

f (x) =
1
σ
×
(

1+ξ

(
x−µ

σ

))−(1/ξ+1)

In this formula, σ should be greater than 0.

Uranie code to simulate a GenPareto random variable is:

TDataServer *tds = new TDataServer("tdssampler", "Sampler Uranie demo");
tds->addAttribute(new TGenParetoDistribution("gpa", 1.0, 1.0, 0.3));

TSampling *fsamp = new TSampling(tds, "lhs", 300);
fsamp->generateSample(); // Create a representative sample

tds->Draw("gpa");

Figure II.24 shows the PDF, CDF and inverse CDF generated for different sets of parameters.

page 61

Introducing the TStochasticAttribute classes CHAPTER II. THE DATASERVER MODULE

Figure II.24: Example of PDF, CDF and inverse CDF for GenPareto distributions.

Is it also possible to set boundaries to the infinite span of this distribution to create a truncated GenPareto law. This
can be done by calling the following method:

tds->getAttribute("gpa")->setBounds(1.4,4.0); //truncate the law

The resulting PDF, CDF and inverse CDF, with and without truncation, can be seen, in this case, in Figure II.25 for a
given set of parameters and various boundaries.

Figure II.25: Example of PDF, CDF and inverse CDF for a GenPareto truncated distribution.

II.2.5.15 Gamma law

The Gamma distribution is a two-parameter family of continuous probability distributions. It depends on a shape
parameter α and a scale parameter β . The function is usually defined for x greater than 0, but the distribution can be
shifted thanks to the third parameter called location (ξ) which should be positive. This parametrisation is more common
in Bayesian statistics, where the gamma distribution is used as a conjugate prior distribution for various types of laws:

f (x) =
(x−ξ)α−1e−(x−ξ)/β

Γ(α)β α
1I]ξ ,+∞](x)

page 62

CHAPTER II. THE DATASERVER MODULE Introducing the TStochasticAttribute classes

Uranie code to simulate a Gamma random variable is:

TDataServer *tds = new TDataServer("tdssampler", "Sampler Uranie demo");
tds->addAttribute(new TGammaDistribution("gam", 1.0, 2.0, 0.0)) ;

TSampling *fsamp = new TSampling(tds, "lhs", 300);
fsamp->generateSample(); // Create a representative sample

tds->Draw("gam");

Figure II.26 shows the PDF, CDF and inverse CDF generated for different sets of parameters.

Figure II.26: Example of PDF, CDF and inverse CDF for Gamma distributions.

Is it also possible to set boundaries to the infinite span of this distribution to create a truncated Gamma law. This can
be done by calling the following method:

tds->getAttribute("gam")->setBounds(0.1,1.6); //truncate the law

The resulting PDF, CDF and inverse CDF, with and without truncation, can be seen, in this case, in Figure II.27 for a
given set of parameters and various boundaries.

Figure II.27: Example of PDF, CDF and inverse CDF for a Gamma truncated distribution.

page 63

Introducing the TStochasticAttribute classes CHAPTER II. THE DATASERVER MODULE

II.2.5.16 InvGamma law

The inverse-Gamma distribution is a two-parameter family of continuous probability distributions. It depends on a shape
parameter α and a scale parameter β . The function is usually defined for x greater than 0, but the distribution can be
shifted thanks to the third parameter called location (ξ) which should be positive.

f (x) =
β α(x−ξ)−α−1e−β/(x−ξ)

Γ(α)
1I]ξ ,+∞](x)

Uranie code to simulate a inverse-Gamma random variable is:

TDataServer *tds = new TDataServer("tdssampler", "Sampler Uranie demo");
tds->addAttribute(new TInvGammaDistribution("ing", 2.0, 0.5, 0.0));

TSampling *fsamp = new TSampling(tds, "lhs", 300);
fsamp->generateSample(); // Create a representative sample

tds->Draw("ing");

Figure II.28 shows the PDF, CDF and inverse CDF generated for different sets of parameters.

Figure II.28: Example of PDF, CDF and inverse CDF for InvGamma distributions.

Is it also possible to set boundaries to the infinite span of this distribution to create a truncated InvGamma law. This
can be done by calling the following method:

tds->getAttribute("ing")->setBounds(-3.0,8.0); //truncate the law

The resulting PDF, CDF and inverse CDF, with and without truncation, can be seen, in this case, in Figure II.29 for a
given set of parameters and various boundaries.

page 64

CHAPTER II. THE DATASERVER MODULE Introducing the TStochasticAttribute classes

Figure II.29: Example of PDF, CDF and inverse CDF for a InvGamma truncated distribution.

II.2.5.17 Student Law

Warning
This distribution is available only if the ROOT "mathmore" feature has been installed when your ROOT version
was brought (you can check this by running root-config --has-mathmore. If not found, this law
cannot be used.

The Student law is simply defined with a single parameter: the degree-of-freedom (DoF). The probability density
function is then set as

f (x) =
1√
kπ

Γ
(k+1

2

)
Γ
(k

2

) (1+
t2

k

)− k+1
2

where Γ is the Euler’s gamma function.

Uranie code to simulate an student random variable is:

TDataServer *tds = new TDataServer("tdssampler", "Sampler Uranie demo");
tds->addAttribute(new TStudentDistribution("stu", 5));

TSampling *fsamp = new TSampling(tds, "lhs", 300);
fsamp->generateSample(); // Create a representative sample

tds->Draw("stu");

Figure II.30 shows the PDF, CDF and inverse CDF generated for different sets of parameters.

page 65

Introducing the TStochasticAttribute classes CHAPTER II. THE DATASERVER MODULE

Figure II.30: Example of PDF, CDF and inverse CDF for Student distribution.

Is it also possible to set boundaries to the infinite span of this distribution to create a truncated Student law. This can
be done by calling the following method:

tds->getAttribute("stu")->setBounds(-1.4,2.0); //truncate the law

The resulting PDF, CDF and inverse CDF, with and without truncation, can be seen, in this case, in Figure II.31 for a
given set of parameters and various boundaries.

Figure II.31: Example of PDF, CDF and inverse CDF for a Student truncated distribution.

II.2.5.18 Generalized normal law

This law describes a generalized normal distribution depending on the location µ , the scale α and the shape β , as

f (x) =
β

2αΓ(1/β)
××e−(

x−µ

α)
β

Both α and β should be greater than 0.

Uranie code to simulate a generalized normal random variable is:

page 66

CHAPTER II. THE DATASERVER MODULE Introducing the TStochasticAttribute classes

TDataServer *tds = new TDataServer("tdssampler", "Sampler Uranie demo");
tds->addAttribute(new TGeneralizedNormalDistribution("gennor", 0.0, 1.0, 3.0));

TSampling *fsamp = new TSampling(tds, "lhs", 300);
fsamp->generateSample(); // Create a representative sample

tds->Draw("gennor");

Figure II.32 shows the PDF, CDF and inverse CDF generated for different sets of parameters.

Figure II.32: Example of PDF, CDF and inverse CDF for generalized normal distributions.

Is it also possible to set boundaries to the infinite span of this distribution to create a truncated generalized normal law.
This can be done by calling the following method:

tds->getAttribute("gennor")->setBounds(-0.8,1.6); //truncate the law

The resulting PDF, CDF and inverse CDF, with and without truncation, can be seen, in this case, in Figure II.33 for a
given set of parameters and various boundaries.

Figure II.33: Example of PDF, CDF and inverse CDF for a generalized normal truncated distribution.

page 67

Introducing the TStochasticAttribute classes CHAPTER II. THE DATASERVER MODULE

II.2.5.19 Composing law

It is possible to imagine a new law, hereafter called composed law, by combining different pre-existing laws in order to
model a wanted behaviour. This law would be defined with N pre-existing laws whose densities are noted { f j}1≤ j≤N ,
along with their relative weights {ω j}1≤ j≤N ∈ (R+)N and the resulting density is then written as

f (x) =
N

∑
j=1

ω j f j(x).

Uranie code to simulate a composition of three normally-distributed laws (with their own statistical properties):

TDataServer *tds = new TDataServer("tdssampler", "Sampler Uranie demo");
TComposedDistribution *comp = new TComposedDistribution("compo");
comp->addDistribution(new TNormalDistribution("n1", -1.5, 0.2), 1.2);
comp->addDistribution(new TNormalDistribution("n2", 0, 0.8), 1.0);
comp->addDistribution(new TNormalDistribution("n3", 1.5, 0.2), 0.8);
tds->addAttribute(comp);

TSampling *fsamp = new TSampling(tds, "lhs", 300);
fsamp->generateSample(); // Create a representative sample

tds->Draw("compo");

Figure II.34 shows the PDF, CDF and inverse CDF generated for different sets of parameters.

Figure II.34: Example of PDF, CDF and inverse CDF for a composed distribution made out of three normal distributions
with respective weights.

Is it also possible to set boundaries to the infinite span of this distribution, if it is created from at least one infinite-based
law, to create a truncated composed law. This can be done by calling the following method:

tds->getAttribute("compo")->setBounds(-1.6,1.8); //truncate the law

The resulting PDF, CDF and inverse CDF, with and without truncation, can be seen, in this case, in Figure II.35 for a
given set of parameters and various boundaries.

page 68

CHAPTER II. THE DATASERVER MODULE Data handling

Figure II.35: Example of PDF, CDF and inverse CDF for a truncated composed distribution made out of three normal
distributions with respective weights.

The only specific method that is new for the composition is the addDistribution method whose signature is the
following one:

int addDistribution(URANIE::DataServer::TStochasticAttribute *statt, double weight=1.);

The first element is a pointer to a TStochasticAttribute (so any object that is an instance of a class that derives
form it). The second one is the weight (which is 1 by default) and which is the ω constant written in the formula above.

Warning The theoretical element (mean, standard deviation and mode) can not always be measured for
certain stochastic distribution (see the Cauchy’s one for instance).

• If one wants to add such a distribution in a composed law, a warning exception should pop-up to state that
theoretical properties can not be estimated.

• As for the mode, several distributions prevent from having a single-point mode estimation (for instance the
Uniform distribution). The mode estimation should then be taken with great care.

II.3 Data handling

This section describes the data import from an ASCII flat file in a TDataServer of Uranie using the formalism of
Salome tables and JSON format. In both cases, the ASCII file is composed of 2 parts: the header and the experiment
matrix.

• The header describes the information related to the database and related to its attributes:

– the name of the database (optional);

– the title of the database (optional);

– the date of the database’s saving (optional);

– the name of variables (mandatory if the title/label’s not specified). This information will enable to have access to
theses variables either to transform them or to produce graphs. The chosen name has to be explicit but rather
short (smaller than 50 characters);

page 69

Main format of input/output CHAPTER II. THE DATASERVER MODULE

– the title/label of variables (mandatory if the name of variables is not specified). This information will be the axis
tick marks when this variable is visualised on the plot. As it is possible to use LaTeX commands, the name (must
be explicit and short) is distinguished from the label so as to obtain a good graph rendering.

– the variable units (optional). This information aims at improving the graph rendering (the unit being displayed next
to the label).

– the nature of the variables (optional unless dealing with new types). This information is not mandatory if one
wants to handle only double-precision variables. The possible value being "D" for double, "S" for string and "V" for
vectors.

• The second part is the numerical experiment matrix.

Using this formalism, it is enough to provide the name of attributes of the ASCII file in order to load the file in Uranie.

II.3.1 Main format of input/output

II.3.1.1 The Salome-table format

This is the main format used throughout the history of the Uranie-platform. The different header information are set
thanks to keywords. A header line begins with the character ’#’ followed by a keyword characterising the type of
information and by the ’:’ character . Then, the information are separated by the ’|’ character. The list of keywords is:

Keywords Description
NAME The name of the database
TITLE The title of the database
DATE The date of saving (only towards writing or export)
COLUMN_NAMES The names of attributes
COLUMN_TYPES The natures of attributes
COLUMN_TITLES The titles of attributes
COLUMN_UNITS The units of attributes

Table II.2: List of keywords of header in ASCII files.

An example is the file "geyser.dat"in the data directory of installation of Uranie ($URANIESYS/share/uranie/macros/geyser.dat)

> more $URANIESYS/share/uranie/macros/geyser.dat

#NAME: geyser
#TITLE: geyser data
#COLUMN_NAMES: x1| x2
#COLUMN_TITLES: x_{1}| "#delta P_{#sigma}"
#COLUMN_UNITS: Sec^{-1}| bar

3.600 79.000
1.800 54.000
3.333 74.000
2.283 62.000
4.533 85.000
2.883 55.000
4.700 88.000
3.600 85.000
1.950 51.000
4.350 85.000
1.833 54.000

page 70

CHAPTER II. THE DATASERVER MODULE Main format of input/output

3.917 84.000
4.200 78.000
1.750 47.000
4.700 83.000
2.167 52.000
...

Uranie accepts several forms of file endings: it is possible the file ends with a white line or with a line with empty
spaces, but also to end just after the last data.

Uranie does not accept data with "holes" (empty lines) like as follows in this modified version of the "geyser.dat" file:

#NAME: geyser
#TITLE: geyser data
#COLUMN_NAMES: x1| x2
#COLUMN_TITLES: x_{1}| "#delta P_{#sigma}"
#COLUMN_UNITS: Sec^{-1}| bar

3.600 79.000
1.800 54.000
3.333 74.000
2.283 62.000
4.533 85.000

2.883 55.000
4.700 88.000
3.600 85.000
1.950 51.000
4.350 85.000
1.833 54.000
3.917 84.000
4.200 78.000
1.750 47.000
4.700 83.000
2.167 52.000
...

In this case, Uranie considers that data processing ends with the white line located in the middle of the data lines. This
would be equivalent to use the following data:

#NAME: geyser
#TITLE: geyser data
#COLUMN_NAMES: x1| x2
#COLUMN_TITLES: x_{1}| "#delta P_{#sigma}"
#COLUMN_UNITS: Sec^{-1}| bar

3.600 79.000
1.800 54.000
3.333 74.000
2.283 62.000
4.533 85.000

Tip
Only the line associated to the keyword COLUMN_NAMES is mandatory except if COLUMN_TITLES is
specified. Moreover, the keyword itself is also optional; the next line is correct # x1| x2 to specify both
variables of the geyser data.

page 71

Main format of input/output CHAPTER II. THE DATASERVER MODULE

Warning
An empty line MUST be kept between the header and data matrix .

Particular case of strings and vector

The following example shows how to precise the content of vectors and strings if such information have to be read. In
this case, the field #COLUMN_TYPES: is mandatory and the way it works is equivalent to the column name one (the
delimiter is the "|" sign) but it needs only one letter to define the type. Apart from that, the string can be written as it
comes as long as it does not contains blanks (!!), while the vectors values are dump with the same format as the
double-precision one, using a comma as separator. The following file is a correct input file for a TDataServer

#COLUMN_NAMES: day|place|hour|guest_list|food
#COLUMN_TYPES: D|S|D|V|S

5 restaurant 4 2,3,4,5 chocolate
21 home 3 6,1,8,4,3 almond

The example shown above is working properly as there is no problematic behaviour in the data. Handling strings and
vectors can however be tricky as they respectively can be an empty string and an empty vector. This would result in
a missing number of field in a specific line which will make the fileDataRead crashed. To avoid this, all the files
used in the Launcher and Relauncher (and the Salome-table discussed here as well) contains properties specific to
both vectors and strings:

• String properties: a character can be specified as begin and end for dumping and reading purpose. The ones chosen
by default for the Salome-table format shown here being the double-quote sign ".

• Vector properties: a character can be specified as begin, end and delimiter for dumping and reading purpose. The
ones chosen by default for the Salome-table format shown here being respectively [,] and the commas.

This results in the fact, that the following file gives the exact same dataserver as the one shown previously. It is actually
the style chosen when calling the exportData method of a TDataServer to allow the user to handle empty
strings and vectors if wanted.

#COLUMN_NAMES: day|place|hour|guest_list|food
#COLUMN_TYPES: D|S|D|V|S

5 "restaurant" 4 [2,3,4,5] "chocolate"
21 "home" 3 [6,1,8,4,3] "almond"

II.3.1.2 The JSON format

Brought in version 3.9, the format has been implemented as it is broadly used to transmit data in a very simple way. A
choice has been made on the way the header are displayed: a "_metadata" field is compulsory inside which the list of
flag is gathered in Table II.3.

The second part that provides the data itself, looks alike a key-value table and handles easily all the attribute types.
Here is an example of file with the "geyser" data content, shown previously:

{
"_metadata" :
{
"_comment" : "CurrentComment",

page 72

CHAPTER II. THE DATASERVER MODULE Import data from an ASCII file

Keywords Description
table_name The name of the database
table_description The title of the database
date The date of saving (only towards writing or export)
short_names The names of attributes
types The natures of attributes
long_names The titles of attributes
units The units of attributes

Table II.3: List of keywords of header in ASCII files.

"date" : "Fri Oct 28 10:41:44 2016",
"short_names" : ["x1", "x2", "geyser__n__iter__"],
"table_description" : "Les donnees du geyser",
"table_name" : "geyser",
"types" : ["D", "D", "D"],
"units" : ["Sec", "", ""]

},
"items" :
[

{
"geyser__n__iter__" : 1.0,
"x1" : 3.60,
"x2" : 79.0

},

{
"geyser__n__iter__" : 2.0,
"x1" : 1.80,
"x2" : 54.0

},

{
"geyser__n__iter__" : 272.0,
"x1" : 4.4670,
"x2" : 74.0

}
]

}

II.3.2 Import data from an ASCII file

An example of import of the data file "geyser.dat" (available in the Uranie-macros folder) is shown below leading
to a 2D scatterplot of the variable x2 versus the variable x1

using namespace URANIE::DataServer; x1 [1]
TDataServer * tdsGeyser = new TDataServer("tdsgeyser", "Geyser database"); x2 [2]
tdsGeyser->fileDataRead("geyser.dat"); x3 [3]
tdsGeyser->draw("x2:x1"); x4 [4]
Description of the import of an ASCII file

page 73

Import data from an ASCII file CHAPTER II. THE DATASERVER MODULE

x1 Setting the namespace. This instruction is useless when the provided rootlogon has been loaded as all Uranie-
namespaces have been loaded as well.

x2 Defining a pointer tdsGeyser to an object of type TDataServer whose name is "tdsgeyser" and whose title is
"Geyser database". These information are used by the export or printLog methods.

x3 Loading data contained in an ASCII file $URANIESYS/share/uranie/macros/geyser.dat.

x4 Plot of the scatterplot of the variable x2 versus the variable x1

The obtained graph is the following:

Figure II.36: Import data from an ASCII file

Various examples of macros loading data in a TDataServer with different treatment applied on, are provided in the
use-case chapter of this user manual, between Section XIV.2.3 and Section XIV.2.7.

page 74

CHAPTER II. THE DATASERVER MODULE Import data from a TNtuple/TDSNtuple/TTree

Summary: Loading data (ASCII file)

• fileDataRead (TString filename, bool saveTuple=true, bool preAddReload=false)

Loads the data contained in the ASCII file ("Salome-table" format). The possible arguments are:

– The name of the file (compulsory)

– A boolean to state whether the file should be saved as root-ntuple once the reading is complete (not mandatory,
set to true by default)

– A boolean to allow pre-adding or reloading a database (advanced, not recommended for beginners). This allows

* Pre-adding variables: very technical. It should not be used unless discussed with developers.

* Reloading database: Allow to reload a database file without complaining, AS long AS the provided file exactly
matches the list of attribute in the TDataServer object

• fileDataReadJSon (TString filename, bool saveTuple=true)

Loads the data contained in the ASCII file (JSON format). The possible arguments are:

– The name of the file (compulsory)

– A boolean to state whether the file should be saved as root-ntuple once the reading is complete (not mandatory,
set to true by default)

II.3.3 Import data from a TNtuple/TDSNtuple/TTree

From a TTree object (or any of its derived-object) contained in a ROOT-file, it is possible to import data, with or without
selection of a variable and addition of other ones through formula then deletions of patterns ensuring a criterion

using namespace URANIE::DataServer; x1 [1]
TDataServer * tds = new TDataServer(); x2 [2]
tds->ntupleDataRead("hsimple.root","ntuple","px*px:*:py*py","px*px+py*py<2.0");

x3 [3]
tds->draw("py:px"); x4 [4]
Description of data importation of a TTree from a ROOT file

x1 Specification of the namespace.

x2 Creation of a pointer tds to an object of type TDataServer without name and title.

x3 Fill the TDataServer with all branches contained in the tree ntuple that is contained in hsimple.root.
Two new attributes are computed on the fly and a selection is applied on the patterns to be kept;

x4 Plots scatterplot of the variable py versus the variable px

In this case, tds is constructed from the TTree ntuple contained in the file hsimple.root where all initial variables
are kept (* character). Figure II.37 shows the content of the ntuple. Two new variables are then added on top, defined
by the equations "px*py" and "py*px" on both side of the "*" string. A cut is finally done, to exclude all data that would
satisfy the following equation px2 + py2 < 2

page 75

Import data from a TNtuple/TDSNtuple/TTree CHAPTER II. THE DATASERVER MODULE

Figure II.37: Content of the ntuple tree contained in "hsimple.root" file.

The obtained graph is as follow:

Figure II.38: Data importation from a TNtuple

page 76

CHAPTER II. THE DATASERVER MODULE Adding attributes to a TDataServer

Summary: Loading data (TNtupleD of ROOT in a TFile)

• ntupleDataRead (const char * file, const char * tree, const char * svar="*", const char * cut="",)

Loads the data contained in the TNtupleD tree of file ROOT TFile file by selecting/creating the list of
variables svar (the variables are separated by the ":" character, and "*" character means recalling all variables of
the TNtupleD) and by deleting all patterns ensuring the criterion cut.

II.3.4 Adding attributes to a TDataServer

Attributes can always be added to an existing TDataServer object, whether it is empty (just after its constructor)
or not (after the data loading from either an ASCII file, or a TTree or a database of type SQL). A simple example is
provided and decomposed in Section XIV.2.1.

First of all, let us consider the case of an empty TDataServer. We add attributes using the method addAttribute(
TAttribute *att).

TDataServer * tds = new TDataServer("tds", "new TDataServer");

tds->addAttribute(new TAttribute("x1")); x1 [1]
tds->addAttribute(new TAttribute("x2", 2.5, 5.)); x2 [2]
tds->addAttribute("x3"); x3 [3]
tds->addAttribute("x4", 2.5, 5.); x4 [4]
Description of attributes adding to an empty TDataServer

x1 Adding a new attribute x1 to the TDataServer from a TAttribute with a name (minimal constructor).x2 Adding a new attribute x2 to the TDataServer from a TAttribute with a name and the extreme values
(minimal and maximal).x3 Equivalent to previous one: adding a new attribute x3 to the TDataServer just by giving its name (minimal
constructor).x4 Equivalent to previous one: adding a new attribute x4 to the TDataServer by giving its name and the extreme
values (minimal and maximal).

The difference between the methods with new in it and the others, is basically arising from the way one handles the
memory. The last ones (3 and 4) allow the user not to worry about anything, while, in the case of implementation 1
and 2, one should be aware that every new should imply at some point a delete. For most user, this is not of utmost
importance as usual scripts would contain very few new command and no loop. If this is not the case (for instance if
one does have loop and many object creation in it) do not hesitate to contact the Uranie-team to prevent any slowing
down of the code.

The specification of a TAttribute is further detailed in Section II.2.

We can define new attributes using mathematical expressions with respect to other existing attributes. The name
and the mathematical expression are the only mandatory arguments; its title and unit can also be precised, but both
arguments are optional.

TDataServer * tdsGeyser = new TDataServer("tdsgeyser", "Geyser DataSet");

tdsGeyser->fileDataRead("geyser.dat");

tdsGeyser->addAttribute("cd1","sqrt(x2) * x1"); x1 [1]
tdsGeyser->addAttribute("cd2","sqrt(x2*x1)","#Delta p_{#sigma}","sec^{-1}"); x2 [2]
tdsGeyser->draw("cd2:cd1"); x3 [3]

page 77

Adding attributes to a TDataServer CHAPTER II. THE DATASERVER MODULE

Description attribute adding to a TDataServer from formulas

x1 Adding a new attribute cd1 to the TDataServer defined by a mathematical expression as a function of x1 and x2
attributes:

cd1 = x1 ∗
√

x2x2 Adding a new attribute cd2 to the TDataServer with a mathematical formula, precising its title and unit:

cd2 =
√

x2 ∗ x1

x3 Plots the scatterplot of the variable cd2 versus the variable cd1

The obtained graph is:

Figure II.39: Scatterplot of added attributes

This operation is available with vector-type attribute as well. The results depends on the nature of the attributes involved
in the formula, their content and the nature of the operation. As an example, a simple dataserver is created from the
dummy file tdstest.dat:

#COLUMN_NAMES: x| y| a| v
#COLUMN_TYPES: V|V|D|V

1,2,3 4,5,6 2 1,2,3
7,8,9 1,2 4 4,5,6
1,4,8 2,5,4 5 7,8,9

It contains two vectors whose size are not constant and a double. The four usual operations have been performed
(addition, subtraction, multiplication and division) using the double and a vector but also using the two vectors. The
code is shown here:

{
TDataServer *tdsop =new TDataServer("foo","poet");
tdsop->fileDataRead("tdstest.dat");

tdsop->addAttribute("x*y","x*y"); // Multiply two vectors

page 78

CHAPTER II. THE DATASERVER MODULE Merging two DataServer

tdsop->addAttribute("xovy","x/y"); // Divide two vectors
tdsop->addAttribute("x-y","x-y"); // Subtract two vectors
tdsop->addAttribute("x+y","x+y"); // Add two vectors

tdsop->addAttribute("x*a","x*a"); // Multiply a vector and a double
tdsop->addAttribute("xova","x/a"); // Divide a vector and a double
tdsop->addAttribute("x-a","x-a"); // Subtract a vector and a double
tdsop->addAttribute("x+a","x+a"); // Add a vector and a double

tdsop->scan("x:y:a:x*y:xovy:x+y:x-y:x*a:xova:x+a:x-a","","colsize=3 col=1:1:1::4::::4:");
}

and it gives as a results:

* Row * Instance * x * y * a * x*y * xovy * x+y * x-y * x*a * xova * x+a * x-a *

* 0 * 0 * 1 * 4 * 2 * 4 * 0.25 * 5 * -3 * 2 * 0.5 * 3 * -1 *
* 0 * 1 * 2 * 5 * 2 * 10 * 0.4 * 7 * -3 * 4 * 1 * 4 * 0 *
* 0 * 2 * 3 * 6 * 2 * 18 * 0.5 * 9 * -3 * 6 * 1.5 * 5 * 1 *
* 1 * 0 * 7 * 1 * 4 * 7 * 7 * 8 * 6 * 28 * 1.75 * 11 * 3 *
* 1 * 1 * 8 * 2 * 4 * 16 * 4 * 10 * 6 * 32 * 2 * 12 * 4 *
* 1 * 2 * 9 * * 4 * 0 * * 0 * 0 * 36 * 2.25 * 13 * 5 *
* 2 * 0 * 1 * 2 * 5 * 2 * 0.5 * 3 * -1 * 5 * 0.2 * 6 * -4 *
* 2 * 1 * 4 * 5 * 5 * 20 * 0.8 * 9 * -1 * 20 * 0.8 * 9 * -1 *
* 2 * 2 * 8 * 4 * 5 * 32 * 2 * 12 * 4 * 40 * 1.6 * 13 * 3 *

Summary: Adding attributes

Two kinds of method, allow to add an attribute to a TDataServer:

1. With attribute properties: addAttribute (TAttribute *att) / addAttribute (TString name)

The pointer att is either of TAttribute type or a derived class TAttributeFormula or
TStochasticAttribute type.

2. By means of other existing attributes: addAttribute (TString name, TString formula, TString label="",
TString unity="")

Adding an attribute by specifying its name and its mathematical formula (these two arguments are manda-
tory),and its title and its unit (optional arguments).

A warning has been added if formula is requested using a string-type branch. In the case of vector, the behaviour
should depend on the nature of the branches in the formula.

II.3.5 Merging two DataServer

Warning
This section is discussing the merging of two TDataServer not their concatenation. The first operation
consists in adding new attributes from an existing TDataServer into another existing one, while the sec-
onds consists in adding the content of two TTree object with the exact same structure. For the merging
operation, a specific method TDataServer::merge has been written, while for the concatenation, the
interested user is invited to look at the TChain::Merge method from ROOT.

page 79

Merging two DataServer CHAPTER II. THE DATASERVER MODULE

It is sometimes necessary to merge two TDataServer to form a single one. Since the merging is done line by line,
one has to check that both objects contain the same number of patterns. In Uranie-version older than 3.10.0 it was
assumed that the patterns were exactly stored in the same order. Now the method is looking for the iterator of both
TDataServer objects and it checks that both iterators contain the same value all along (not necessary in the same
order, for instance when dealing with distributed computations). If the iterators are not found or if some iterator’s values
are found in one iterator but not the other (possible in some rare cases such as OAT sampling), the merging is done
line-by-line and a warning is displayed.

This operation is common when you want to build a surface response between output variables Y and predictors X and
these data are located in two different files.

Warning
The 2 objects must have the same number of patterns.

Let’s take a simple example. Assuming that we have 2 TDataServer tds1 and tds2 respectively located in the
ASCII files tds1.dat and tds2.dat. Another example is also provided in Section XIV.2.2.

Data file tds1.dat

#COLUMN_NAMES: x| dy| z| theta
#COLUMN_TITLES: x_{n}| "#delta y"| ""| #theta
#COLUMN_UNITS: N| Sec| KM/Sec| M^{2}

1 1 11 11
1 2 12 21
1 3 13 31
2 1 21 12
2 2 22 22
2 3 23 32
3 1 31 13
3 2 32 23
3 3 33 33

Data file tds2.dat

#COLUMN_NAMES: x2| y| u| ua

1 1 102 11
1 2 104 12
1 3 106 13
2 1 202 21
2 2 204 22
2 3 206 23
3 1 302 31
3 2 304 32
3 3 306 33

Both TDataServer incorporate 9 patterns.

These 2 ASCII files must be loaded in 2 TDataServer (cf Section II.3.2), the merging being done by calling the
merge method of the first TDataServer

{
TDataServer * tds1 = new TDataServer();
tds1->fileDataRead("tds1.dat");

page 80

CHAPTER II. THE DATASERVER MODULE Pattern selection

TDataServer * tds2 = new TDataServer();
tds2->fileDataRead("tds2.dat");

tds1->merge(tds2);
}

Thus, the object tds1 also contains the attributes of the second TDataServer tds2

**
* Row * tds * x. * dy * z. * theta * x2 * y. * u.u * ua *
**
* 0 * 1 * 1 * 1 * 11 * 11 * 1 * 1 * 102 * 11 *
* 1 * 2 * 1 * 2 * 12 * 21 * 1 * 2 * 104 * 12 *
* 2 * 3 * 1 * 3 * 13 * 31 * 1 * 3 * 106 * 13 *
* 3 * 4 * 2 * 1 * 21 * 12 * 2 * 1 * 202 * 21 *
* 4 * 5 * 2 * 2 * 22 * 22 * 2 * 2 * 204 * 22 *
* 5 * 6 * 2 * 3 * 23 * 32 * 2 * 3 * 206 * 23 *
* 6 * 7 * 3 * 1 * 31 * 13 * 3 * 1 * 302 * 31 *
* 7 * 8 * 3 * 2 * 32 * 23 * 3 * 2 * 304 * 32 *
* 8 * 9 * 3 * 3 * 33 * 33 * 3 * 3 * 306 * 33 *
**

Summary: Merging two TDataServer

• merge (TDataServer *tds2, const char* varexpinput="*")

Adds the attributes of the TDataServer tds2 to the current TDataServer. The method is checking for iterators
and their content to perform the merging, as already stated above.

If the second argument is precised, only the requested attributes of tds2 are added to the correct tds.

II.3.6 Pattern selection

It can be necessary during a study to apply filters on the patterns; i.e. to include or to exclude patterns depending on
criterion. For example, to select the patterns with x1 lower than 3.0 and x2 lower than 55.0 from the geyser database,
Uranie code is as follows:

tdsGeyser->setSelect("(x1<3.0) && (x2<55.)");
tdsGeyser->draw("x2:x1");

The obtained figure is:

page 81

Pattern selection CHAPTER II. THE DATASERVER MODULE

Figure II.40: Graph with a selection definition

The result of the scan method applied on this TDataServer object yields:

**
* Row * x1 * x2 * n__iter__ *
**
* 1 * 1.8 * 54 * 2 *
* 8 * 1.95 * 51 * 9 *
* 10 * 1.833 * 54 * 11 *
* 13 * 1.75 * 47 * 14 *
* 15 * 2.167 * 52 * 16 *
...

* 268 * 2.15 * 46 * 269 *
* 270 * 1.817 * 46 * 271 *
**
==> 53 selected entries

We have obtained 53 patterns among 278 respecting the given criterion without having to specify this criterion for the
draw and scan calls. To get the same result, we could have executed the following command as well:

tdsGeyser->draw("x2:x1", "(x1<3.0) && (x2<55.)");
//tdsGeyser->scan("*", "(x1<3.0) && (x2<55.)");

However, in this case, we have to repeat the criterion for each command.

It is also possible to exclude patterns coming from TDataServer with the setCut method.

tdsGeyser->setCut(TString("x1 >= 3."));
tdsGeyser->draw("x2:x1");

The obtained figure is as follows:

page 82

CHAPTER II. THE DATASERVER MODULE Pattern selection

Figure II.41: Graph with a definition of Cut

It can be noticed in the title of Figure II.41, that it simply corresponds to the opposite of criterion’s meaning with respect
to the one given by the setCut method with the ! () character. Thus, the setCut method consists in passing on the
negation of the criterion to the setSelect command.

Finally, it is perfectly possible to delete the current filters with the methods clearSelect and clearCut, and
retrieving the unfiltered results.

Tip
Every modifications of the ongoing selection (meaning doing a new selection or removing it) is now clearing
automatically the vectors that contain statistical properties of attributes and the database of already computed
quantiles. This is reminded with an information line shown below:

<URANIE::INFO> Selection is changing ==> clearing the TAttribute computed ←↩
statistics and quantiles

page 83

Export to an ASCII file CHAPTER II. THE DATASERVER MODULE

Summary: Filters management regarding patterns

• setSelect (TString sselect)

Patterns selection ensuring the criterion sselect

• setCut (TString scut)

Excluding the patterns ensuring the criterion scut

• clearSelect() / clearCut()

Deletes the current filter.

Any modification of the selection is now clearing the vector of statistic (mean, std, min and max) introduced in Sec-
tion II.2.2 as well as the map containing quantiles. This is done in order to be sure that the method used to performed
these estimation are called once again to take into account the change in selection. An informative message is dis-
played to remind this clearing.

II.3.7 Export to an ASCII file

In the same way as the data are imported from an ASCII file, we can also save the data of a TDataServer in an
ASCII file. Currently, four methods of export are available in Uranie:

• using the same format as that observed during import ("Salome Table");

• using a C file containing the data vectors that can be inserted in a C program.

• using the NeMo format: the generated file is useful for the NeMo tool for constructing neural response surface
developed at STMF.

• using the JSON format: the generated file is easily transferable to any other program that include the JSON protocol.
This file can also be read through the fileDataReadJSon method of a TDataServer object.

TDataServer * tdsGeyser = new TDataServer("tdsgeyser", "geyser database");

tdsGeyser->fileDataRead("geyser.dat");

tdsGeyser->addAttribute("y", "sqrt(x2) * x1");

tdsGeyser->exportData("newfile.dat"); x1 [1]
tdsGeyser->exportDataHeader("newfile.C", "x1:x2:y"); x2 [1]
tdsGeyser->exportDataNeMo("newfile.nemo", "x1:x2", "y", "x2<75.0"); x3 [1]
tdsGeyser->exportDataJSon("newfile.json"); x4 [1]
Data export from a TDataServer in an ASCII file

x1 Export the data of the TDataServer tdsGeyser in an ASCII file "newfile.dat":

#NAME: tdsgeyser
#TITLE: Database of the geyser
#DATE: Tue Oct 9 15:41:29 2007
#COLUMN_NAMES: x1| x2| y| n__iter__

3.600000000e+00 7.900000000e+01 3.199749990e+01 1
1.800000000e+00 5.400000000e+01 1.322724461e+01 2

page 84

CHAPTER II. THE DATASERVER MODULE Export to an ASCII file

3.333000000e+00 7.400000000e+01 2.867155012e+01 3
2.283000000e+00 6.200000000e+01 1.797635998e+01 4
4.533000000e+00 8.500000000e+01 4.179219502e+01 5
...
2.150000000e+00 4.600000000e+01 1.458200946e+01 269
4.417000000e+00 9.000000000e+01 4.190334127e+01 270
1.817000000e+00 4.600000000e+01 1.232349358e+01 271
4.467000000e+00 7.400000000e+01 3.842658697e+01 272

x2 Exports the data of attributes x1, x2 and y of the TDataServer tdsGeyser in the ASCII file "newfile.C"
A format "Header".

// File "newfile.C" generated by ROOT v5.17/04
// DateTime Tue Oct 9 15:41:30 2007
// DataServer: Name="tdsgeyser" Title="Database of the geyser" Select=""

#define essai_nPattern 272

// Attribute Name="x1" Title=" x_{1}"
Double_t x1[essai_nPattern] = {
3.600000000e+00,
1.800000000e+00,
...
1.817000000e+00,
4.467000000e+00,
};
// End of attribute x1

// Attribute Name="x2" Title=" #delta x_{2}"
Double_t x2[essai_nPattern] = {
7.900000000e+01,
5.400000000e+01,
...
1.232349358e+01,
3.842658697e+01,
};
// End of attribute y

// End of File newfile.C

x3 Exports the data of the TDataServer tdsGeyser in an ASCII file newfile.nemo with format NeMo with
x1:x2 as input vector, "y" as output and applying a filter "x2<75.0"

#NombreExemples 126
#NombreEntrees 2
#NombreSorties 1

1.800000000e+00 5.400000000e+01 1.322724461e+01
3.333000000e+00 7.400000000e+01 2.867155012e+01
2.283000000e+00 6.200000000e+01 1.797635998e+01
2.883000000e+00 5.500000000e+01 2.138090024e+01
...
2.150000000e+00 4.600000000e+01 1.458200946e+01
1.817000000e+00 4.600000000e+01 1.232349358e+01
4.467000000e+00 7.400000000e+01 3.842658697e+01

x4 Exports the data of the TDataServer tdsGeyser in an ASCII file newfile.json with format JSON.

{
"_metadata" :

page 85

Export to an ASCII file CHAPTER II. THE DATASERVER MODULE

{
"_comment" : "CurrentComment",
"date" : "Fri Oct 28 10:41:44 2016",
"short_names" : ["x1", "x2", "geyser__n__iter__"],
"table_description" : "Les donnees du geyser",
"table_name" : "geyser",
"types" : ["D", "D", "D"],
"units" : ["Sec", "", ""]

},
"items" :
[

{
"geyser__n__iter__" : 1.0,
"x1" : 3.60,
"x2" : 79.0

},

{
"geyser__n__iter__" : 2.0,
"x1" : 1.80,
"x2" : 54.0

},

{
"geyser__n__iter__" : 272.0,
"x1" : 4.4670,
"x2" : 74.0

}
]

}

page 86

CHAPTER II. THE DATASERVER MODULE Statistical treatments and operations

Summary: Exportation of a TDataServer to ASCII format

• exportData (const char* filename, const char * varexp="*", const char * select="")

Exportation of the data of attributes "varexp" of the TDataServer in the file "filename" in ASCII format, "Salome
table" type, applying the filter contained in "select". The filter "select" is added to the permanent selection (c.f.
Section II.3.6) of the TDataServer.

• exportDataJSon (const char* filename, const char * varexp="*", const char * select="")

Exportation of the data of attributes "varexp" of the TDataServer in the file "filename" in JSON format, applying
the filter contained in "select". The filter "select" is added to the permanent selection (c.f. Section II.3.6) of the
TDataServer.

• exportDataHeader (const char* filename, const char * varexp="*", const char * select="")

Exportation of the data of attributes "varexp" of the TDataServer in the file "filename" in ASCII format for the use of
a C/C++ program. The "select" filter is added to the permanent selection (c.f. Section II.3.6) of the TDataServer.

• exportDataNeMo (const char* filename, const char * varexpinput, const char * varexpoutput, const char *
select="")

Exportation of the TDataServer data din the file "filename" TDataServer in ASCII format NeMo with attributes
"varexpinput" as inputs (separated by the character ":") and attributes "varexpoutput" as outputs (separated by the
character ":") and applying the filter contained in option. The "select" filter is added to the the permanent selection
(c.f. Section II.3.6) of the TDataServer

II.4 Statistical treatments and operations

This section presents the statistical computations allowed on the attributes in a TDataServer through the following
five main groups of method.

All the methods have been adapted to cope with the case of vector: a check is performed, allowing the computation to
be done only if the number of element in the vector is constant (at least throughout the selection if one is requested).
If the constant-size criterion is not fulfilled, the considered vector is disregarded for this method. The methods detailed
here are:

• The normalisation of variable, in Section II.4.1

• The ranking of variable, in Section II.4.2

• The elementary statistic computation, in Section II.4.3

• The quantile estimation, in Section II.4.4

• The correlation matrix determination, in Section II.4.5

II.4.1 Normalising the variable

The normalisation function normalize can be called to create new attributes whose range and dispersion depend
on the chosen normalisation method. This function can be called without argument but also using up to four ones (the
list of which is given in the summary below). Up to now, there are four different ways to perform this normalisation:

page 87

Normalising the variable CHAPTER II. THE DATASERVER MODULE

• centered-reducted (enum value kCR): the new variable values are computed as x̃ =
x−µx

σx

• centered (enum value kCentered): the new variable values are computed as x̃ = x−µx

• reduced to [−1,1] (enum value kMinusOneOne): the new variable values are computed as x̃= 2.0× x− xMin

xMax− xMin
−

1.0

• reduced to [0,1] (enum value kZeroOne): the new variable values are computed as x̃ =
x− xMin

xMax− xMin

The following piece of code shows how to use this function on a very simple dataserver, focusing on a vector whose
values goes from 1 to 9 over three events.

{
TDataServer *tdsop =new TDataServer("foo","pouet");
tdsop->fileDataRead("tdstest.dat");

//Compute a global normalisation of v, CenterReduced
tdsop->normalize("v","GCR",TDataServer::kCR,true);
//Compute a normalisation of v, CenterReduced (not global but entry by entry)
tdsop->normalize("v","CR",TDataServer::kCR,false);

//Compute a global normalisation of v, Centered
tdsop->normalize("v","GCent",TDataServer::kCentered);
//Compute a normalisation of v, Centered (not global but entry by entry)
tdsop->normalize("v","Cent",TDataServer::kCentered,false);

//Compute a global normalisation of v, ZeroOne
tdsop->normalize("v","GZO",TDataServer::kZeroOne);
//Compute a normalisation of v, ZeroOne (not global but entry by entry)
tdsop->normalize("v","ZO",TDataServer::kZeroOne,false);

//Compute a global normalisation of v, MinusOneOne
tdsop->normalize("v","GMOO",TDataServer::kMinusOneOne,true);
//Compute a normalisation of v, MinusOneOne (not global but entry by entry)
tdsop->normalize("v","MOO",TDataServer::kMinusOneOne,false);

tdsop->scan("v:vGCR:vCR:vGCent:vCent:vGZO:vZO:vGMOO:vMOO","","colsize=4 col=2:5::::::::") ←↩
;

}

The normalisation is performed using all methods, first with the global flag set to true (the suffix always starts with "G"
for global) and then with the more local approach. The result of the scan method is given below:

* Row * Instance * v * vGCR * vCR * vGCe * vCen * vGZO * vZO * vGMO * vMOO *

* 0 * 0 * 1 * -1.46 * -1 * -4 * -3 * 0 * 0 * -1 * -1 *
* 0 * 1 * 2 * -1.09 * -1 * -3 * -3 * 0.12 * 0 * -0.7 * -1 *
* 0 * 2 * 3 * -0.73 * -1 * -2 * -3 * 0.25 * 0 * -0.5 * -1 *
* 1 * 0 * 4 * -0.36 * 0 * -1 * 0 * 0.37 * 0.5 * -0.2 * 0 *
* 1 * 1 * 5 * 0 * 0 * 0 * 0 * 0.5 * 0.5 * 0 * 0 *
* 1 * 2 * 6 * 0.365 * 0 * 1 * 0 * 0.62 * 0.5 * 0.25 * 0 *
* 2 * 0 * 7 * 0.730 * 1 * 2 * 3 * 0.75 * 1 * 0.5 * 1 *
* 2 * 1 * 8 * 1.095 * 1 * 3 * 3 * 0.87 * 1 * 0.75 * 1 *
* 2 * 2 * 9 * 1.460 * 1 * 4 * 3 * 1 * 1 * 1 * 1 *

page 88

CHAPTER II. THE DATASERVER MODULE Computing the ranking

Summary: normalize

The method is normalize(const char* varexp="", const char* suffix="_CR",
ENormalisation method=kCR, bool global=true) and is adapted to deal with constant-size vectors.
It creates a new attribute for every attribute concerned by the call and can be called with 0 to 4 arguments;

• const char* varexp="": the first argument is the list of attributes on which the normalisation is applied. Left
as it is, all attributes will be read and transformed in a new set of attributes.

• const char* suffix="_CR": the second argument describes the suffix that will be added to the attribute
name to obtain the new normalised attribute name.

• ENormalisation method=kCR: the third argument is an enumerator that describes the method chosen to
perform the normalisation (the list of which is provided above)

• bool global=true : the fourth argument is only useful in the case where the attribute is a vector. In this case
one can consider two ways of normalising the entries (despite the chosen method): either normalise every iteration
of the constant size vector with respect to the same iteration in other events, without considering the entirety of the
vector (meaning the other iterations of the vector), or normalise the entries considering that all entries of a vector
are a part of a global pull of number which can be described by one mean and standard deviation. The former
case corresponds to global equal to false while the latter is the opposite (and default). This is possible thanks to the
modification done on the method performing the statistical treatment

II.4.2 Computing the ranking

The ranking of variable is used in many methods that are focusing more on monotony than on linearity (this is discussed
throughout this documentation when coping with regression, correlation matrix, ...). The way this is done in Uranie is the
following: for every attribute considered, (which means all attributes by default if the function is called without argument)
a new attribute is created, whose name is constructed as the name of the considered attribute with the prefix "Rk_".
The ranking consists, for a simple double-precision attribute, in assigning to each attribute entry an integer, that goes
from 1 to the number of patterns, following an order relation (in Uranie it is chosen so that 1 is the smallest value and
N is the largest one).

This method has been modified in order to cope with constant size vectors, but also to stabilise its behaviour when
going from one compiler version to another. The first modification only consists in considering every element of a
constant-size vector independent from the others, so every element is in fact treated as if they were different attributes.
The second part is more technical as the sorting method has been changed to use the std::stable_sort insuring
that platforms (operating systems and compiler versions) will have the same behaviour. The main problem was raising
when two patterns had the same value for the attribute under study. In this case, the ranking was not done in the same
way depending on the version of the compiler. Now it should be treated in the same way: if two or more patterns have
the same value for a specific attribute, the first met in the array of attribute value will have the value i while the second
one will be affected with i+1 and so on... Here is a small example of this computation:

{
TDataServer *tdsGeyser =new TDataServer("geyser","poet");
tdsGeyser->fileDataRead("geyser.dat");
tdsGeyser->computeRank("x1");
tdsGeyser->computeStatistic("Rk_x1");

cout<<"NPatterns="<<tdsGeyser->getNPatterns()<<"; min(Rk_x1)= "<<tdsGeyser->getAttribute ←↩
("Rk_x1")->getMinimum()
<<"; max(Rk_x1)= "<<tdsGeyser->getAttribute("Rk_x1")->getMaximum()<<endl;

page 89

Computing the elementary statistic CHAPTER II. THE DATASERVER MODULE

}

This macro should returns

NPatterns=272; min(Rk_x1)= 1; max(Rk_x1)= 272

Summary: computeRank

• computeRank(const char* varexp="*", option* option)

Create a new attribute for every attribute requested (or for all attributes if no argument is provided)

String-type and non-constant-vector-type attribute are disregarded and a warning is shown to let the user know.

II.4.3 Computing the elementary statistic

The TDataServer provides a method to determine the four simplest statistical notions: the minimum, maximum,
average and standard deviation. It can be simply called without argument (running then over all the attributes), or
with a restricted list of attributes. A second possible argument is a selection criteria (which is not applied through the
setSelect method so not changing the behaviour of the TDataServer in the other method).

{
TDataServer *tdsGeyser =new TDataServer("geyser","poet");
tdsGeyser->fileDataRead("geyser.dat");
tdsGeyser->computeStatistic("x1");

cout<<"min(x1)= "<<tdsGeyser->getAttribute("x1")->getMinimum()<<"; max(x1)= "<<tdsGeyser ←↩
->getAttribute("x1")->getMaximum()
<<"; mean(x1)= "<<tdsGeyser->getAttribute("x1")->getMean()<<"; std(x1)= "<< ←↩

tdsGeyser->getAttribute("x1")->getStd()<<endl;
}

It returns the following line

min(x1)= 1.6; max(x1)= 5.1; mean(x1)= 3.48778; std(x1)= 1.14137

II.4.3.1 Specific case of vectors

As stated in Section II.2.2, these information are now stored in vectors because of the new possible attribute nature.
In the case of constant-size vectors whose dimension is N, the attribute-statistical vectors are filled with the statistical
information considering every elements of the input vector independent from the others. This results in attribute-
statistical vectors of size N +1, the extra element being the statistical information computed over the complete vector.
Here is an example of computeStatistic use with the tdstest.dat file already shown in Section II.3.4:

{
TDataServer *tdsop =new TDataServer("foo","poet");
tdsop->fileDataRead("tdstest.dat");

//Considering every element of a vector independent from the others
tdsop->computeStatistic("x");
TAttribute *px = tdsop->getAttribute("x");

page 90

CHAPTER II. THE DATASERVER MODULE Computing the elementary statistic

cout<<"min(x[0])= "<<px->getMinimum(0)<<"; max(x[0])= "<<px->getMaximum(0)
<<"; mean(x[0])= "<<px->getMean(0)<<"; std(x[0])= "<<px->getStd(0)<<endl;

cout<<"min(x[1])= "<<px->getMinimum(1)<<"; max(x[1])= "<<px->getMaximum(1)
<<"; mean(x[1])= "<<px->getMean(1)<<"; std(x[1])= "<<px->getStd(1)<<endl;

cout<<"min(x[2])= "<<px->getMinimum(2)<<"; max(x[2])= "<<px->getMaximum(2)
<<"; mean(x[2])= "<<px->getMean(2)<<"; std(x[2])= "<<px->getStd(2)<<endl;

cout<<"min(xtot)= "<<px->getMinimum(3)<<"; max(xtot)= "<<px->getMaximum(3)
<<"; mean(xtot)= "<<px->getMean(3)<<"; std(xtot)= "<<px->getStd(3)<<endl;

//Statistic for a single realisation of a vector, not considering other events
tdsop->addAttribute("Min_x","Min$(x)");
tdsop->addAttribute("Max_x","Max$(x)");
tdsop->addAttribute("Mean_x","Sum$(x)/Length$(x)");

tdsop->scan("x:Min_x:Max_x:Mean_x","","colsize=5 col=2::::");
}

The first computation is filling the vector of statistical elementary in the concerned attribute x. The first, second and
third cout line in the previous piece of code are dumping the statistical characteristics respectively for the first, second
and third element of the vector. The fourth one is giving the main characteristics considering the complete vector and
all the entries. The results of this example are shown below:

min(x[0])= 1; max(x[0])= 7; mean(x[0])= 3; std(x[0])= 3.4641
min(x[1])= 2; max(x[1])= 8; mean(x[1])= 4.66667; std(x[1])= 3.05505
min(x[2])= 3; max(x[2])= 9; mean(x[2])= 6.66667; std(x[2])= 3.21455
min(xtot)= 1; max(xtot)= 9; mean(xtot)= 4.77778; std(xtot)= 3.23179

This implementation has been chosen as ROOT offers access to another way of computing these notions if one wants
to consider every element of a vector, assuming that every event is now independent from the others. Indeed it is
possible to get the minimum, maximum and mean of a vector on an event-by-event basis by introducing a new attribute
with a formula, as done in Section II.3.4. This is the second part of the code shown in the box above (using specific
function from ROOT, that needs the sign "$" to be recognised). The results are shown below:

* Row * Instance * x * Min_x * Max_x * Mean_x *

* 0 * 0 * 1 * 1 * 3 * 2 *
* 0 * 1 * 2 * 1 * 3 * 2 *
* 0 * 2 * 3 * 1 * 3 * 2 *
* 1 * 0 * 7 * 7 * 9 * 8 *
* 1 * 1 * 8 * 7 * 9 * 8 *
* 1 * 2 * 9 * 7 * 9 * 8 *
* 2 * 0 * 1 * 1 * 8 * 4.3333 *
* 2 * 1 * 4 * 1 * 8 * 4.3333 *
* 2 * 2 * 8 * 1 * 8 * 4.3333 *

page 91

The quantile computation CHAPTER II. THE DATASERVER MODULE

Summary: computeStatistic

• computeStatistic(const char*varexp = "*", const char*selection = "", Option_t *option = "")

Estimate Mean, Std, Maximum and Minimum for attributes requested in varexp, with an optional additional selection.
If no argument is provided, a loop over all attributes is performed.

• getMean(intiel=0), getStd(intiel=0), getMinimum(intiel=0), getMaximum(intiel=0)

Method from TAttribute class, made to give access to the computed statistic information. The argument is the
element number in the corresponding vector, the default being one. The size of the vector is larger than the original
vector because of the statistic computation is also performed on all elements at once. The size of this vector is
provided by these functions:

• getMeanSize(), getStdSize(), getMinimumSize(), getMaximumSize()

Method from TAttribute class, providing access to the size of the statistical-vectors.

• The statistical vectors are cleared as soon as the overall selection is modified.

II.4.4 The quantile computation

There are several ways of estimating the quantiles implemented in Uranie. This part describes the most commonly
used and starts with a definition of quantile.

A quantile xp, as discussed in the following parts, for p a probability going from 0 to 1, is the lowest value of the
random variable X leading to P{X ≤ xp} = p. This definition holds equally if one is dealing with a given probability
distribution (leading to a theoretical quantile), or a sample, drawn from a known probability distribution or not (leading to
an empirical quantile). In the latter case, the sample is split into two sub-samples: one containing pN points, the other
one containing (1− p)N points. It can be easily pictured by looking at Figure II.44 which represents the cumulative
distribution function (CDF) of the attribute x2. The quantile at 50 percent for x2 can be seen by drawing an horizontal
line at 0.5, the value of interest being the one on the abscissa where this line crosses the CDF curve.

II.4.4.1 computeQuantile

For a given probability p, the corresponding quantile q is given by:

q = (1− p)xk + pxk+1

where xk is the k-Th smallest value of the attribute set-of-value (whose size is N). The way k is computed is discussed
later on, as a parameter of the functions.

The implementation and principle has slightly changed in order to be able to cope with vectors (even though the
previous logic has been kept for consistency and backward compatibility). Let’s start with an example of the way it was
done with the two main methods whose name are the same but differ by their signature.

double aproba=0.5, aquant=0;

tdsGeyser->computeQuantile("x2", aproba, aquant); x1 [1]
double Proba[2]={0.05,0.95}; double Quant[2]={0,0}; x2 [2]
tdsGeyser->computeQuantile("x2", 2, Proba, Quant);

cout<<"Quant[0]="<<Quant[0]<<"; aquant="<<aquant<<"; Quant[1]="<<Quant[1]<<endl; x3 [3]
page 92

CHAPTER II. THE DATASERVER MODULE The quantile computation

Description of the methods and results

x1 This function takes here three mandatory arguments: the attribute name, the value of the chosen probability and
a double whose value will be changed in the function to the estimated result.x2 This function takes here four mandatory arguments: the attribute name, the number Nq of calculation to be done,
the values of the chosen probability transmitted as an array of size Nq and another array of size Nq whose value
will be changed in the function to the estimated results.x3 This line shows the results of the three previous computations.

This implementation has been slightly modified for two reasons: to adapt the method to the case of vectors and to
store easily the results and prevent from recomputing already existing results. Even though the previous behaviour
is still correct, the information is now stored in the attribute itself, as a vector of map. For every element of a vector,
a map of format map<double,double> is created: the first double is the key, meaning the value of probability
provided by the user, while the second double is the results. It is now highly recommended to use the method of
the TAttribute, that gives access to these maps for two reasons: the results provided by the methods detailed
previously are only correct for the last element of a vector, and the vector of map just discussed here is cleared as
soon as the general selection is modified (as for the elementary statistical-vectors discussed in Section II.4.3). The
next example uses the following input file, named aTDSWithVectors.dat:

#NAME: cho
#COLUMN_NAMES: x|rank
#COLUMN_TYPES: D|V

0 0,1
1 2,3
2 4,5
3 6,7
4 8,9

From this file, the following code (that can be find in Section XIV.2.14) shows the different methods created in the
attribute class in order for the user to get back the computed values:

{
TDataServer *tdsvec = new TDataServer("foo", "bar");
tdsvec->fileDataRead("aTDSWithVectors.dat");

double probas[3]={0.2, 0.6, 0.8}; double quants[3];
tdsvec->computeQuantile("rank", 3, probas, quants);

TAttribute *prank = tdsvec->getAttribute("rank");
int nbquant;
prank->getQuantilesSize(nbquant); // (1)
cout << "nbquant = " << nbquant << endl;

double aproba=0.8; double aquant;
prank->getQuantile(aproba, aquant); // (2)
cout << "aproba = " << aproba << ", aquant = " <<
aquant << endl;

double theproba[3], thequant[3];
prank->getQuantiles(theproba, thequant); // (3)
for(int i_quant=0; i_quant<nbquant; ++i_quant) {

cout << "(theproba, thequant)[" << i_quant << "] = "
<< "(" << theproba[i_quant] << ", " <<
thequant[i_quant] << ")" << endl;

}

page 93

The quantile computation CHAPTER II. THE DATASERVER MODULE

vector<double> allquant;
prank->getQuantileVector(aproba, allquant); // (4)
cout << "aproba = " << aproba << ", allquant = ";
for(double quant_i: allquant)

cout << quant_i << " ";
cout << endl;

}

Description of the methods and results

(1) This method changes the value of nbquant to the number of already computed and stored values of quantiles.
A second argument can be provided to state which element of the vector is concerned (if the attribute under study
is a vector, the default value being 0).

(2) This method changes the value of aquant to the quantile value corresponding to a given probability aproba.
A second argument can be provided to state which element of the vector is concerned (if the attribute under
study is a vector, the default value being 0).

(3) As previously, this method changes the values of thequant to the quantile values corresponding to given
probabilities stores in theproba. A second argument can be provided to state which element of the vector is
concerned (if the attribute under study is a vector, the default value being 0). Warning: the size of both arrays
has to be carefully set. It is recommended to use the getQuantilesSize method ahead of this one.

(4) This method fills the provided vector allquant with the quantile value of all element of the attribute under study
corresponding to a given probability aproba.

The results of this example are shown below:

nbquant = 3
aproba = 0.8, aquant = 6.4
(theproba, thequant)[0] = (0.2, 1.6)
(theproba, thequant)[1] = (0.6, 4.8)
(theproba, thequant)[2] = (0.8, 6.4)
aproba = 0.8, allquant = 6.4 7.4

page 94

CHAPTER II. THE DATASERVER MODULE The quantile computation

Summary: computeQuantile

• computeQuantile(const char *attName, Double_t proba, Double_t &quantile, Int_t type = 7);

• computeQuantile(const char *attName, Int_t nProba, Double_t * proba, Double_t *quantile, Int_t type = 7);

The methods are discussed above. The last parameter determines how k is computed. For discontinuous cases:

– 1: k = ⌊p×N⌋; if p×N = k, q = xk. q = xk+1 otherwise.

– 2: k = ⌊p×N⌋; if p×N = k, q = 1/2× (xk + xk+1). q = xk+1 otherwise.

– 3: k = ⌊p×N−0.5⌋; if p×N−0.5 = k and k is even, q = xk. q = xk+1 otherwise., default in SAS.

For piece-wise linear interpolations:

– 4: k = ⌊p×N⌋
– 5: k = ⌊p×N−0.5⌋
– 6: k = ⌊p× (N +1)⌋, default in Minitab and SPSS.

– 7: k = ⌊p× (N−1)+1⌋, default in ROOT, S and R.

– 8: k = ⌊p× (N +1/3)+1/3⌋, approximately median unbiased.

– 9: k = ⌊p× (N +1/4)+3/8⌋, approximately unbiased if x is normally distributed.

II.4.4.2 α-quantile

The α-quantile can be evaluated by several ways:

• Control variate,

• Importance sampling.

Control variate

To estimate the α-quantile by control variate, you must use the computeQuantileCV method. The procedure to
do this estimation is the following:

• If the control variate is determined in the macro: A TDataServer is necessary and a surrogate model, like
"linear regression" or "artificial neural network", needs to be built from this dataserver and exported into a file (c.f.
Chapter V). This model will enable the creation of the control variate.

// Build the SR (Linear regression + ANN)
TLinearRegression *tlin = new TLinearRegression(tds,"rw:r:tu:tl:hu:hl:l:kw", sY);
tlin->estimate();
tlin->exportFunction("c++", "_SR_rl_", "SRrl");

TANNModeler* tann=new TANNModeler(tds, Form("%s,8,%s",sinput.Data(),sY.Data()));
tann->train(3, 2, "test");
tann->setDrawProgressBar(kFALSE);
tann->exportFunction("c++", "_SR_ann_", "SRann");

A variable that represents the control-variate is added to the TDataServer. It is built by means of the surrogate
model.

page 95

The quantile computation CHAPTER II. THE DATASERVER MODULE

//build Z
gROOT->LoadMacro("_SR_rl_.C");
TLauncherFunction *tlfz = new TLauncherFunction(tds, "SRrl",sinput,"Z");
tlfz->setDrawProgressBar(kFALSE);
tlfz->run();

The Empirical α-quantile of the control variate needs to be evaluated. You can do it with the followings commands:

TDataServer *tdsza = new TDataServer(Form("%s_zalpha", tds2->GetName()), "Ex. flowrate");
for(Int_t i=0; i< nattinput; i++)
tdsza->addAttribute(tds2->getAttribute(i));

TSampling *fsza = new TSampling(tdsza, "lhs", 6000);
fsza->generateSample();

TLauncherFunction * tlfrlza = new TLauncherFunction(tdsza, "SRrl", sinput, "Zrl");
tlfrlza->setDrawProgressBar(kFALSE);
tlfrlza->run();

tdsza->computeQuantile("Zrl", dAlpha, dZrla);
cout<< dZrla << endl;

Then, the estimation of the α-quantile can be made by using the computeQuantileCV method.

tds->computeQuantileCV("yhat",alpha,"Z",dZrla, dY, rho);

Summary: computeQuantileCV

• computeQuantileCV (TString yname, Double_t alpha, TString zname, Double_t zapha, Double_t &yalpha,
Double_t &rho)

Estimates the α-quantile (yalpha) of the attribute yname thanks to the control variate zname of empirical α-quantile
zalpha.

Importance sampling

To estimate the α-quantile by importance sampling, the method computeThreshold needs to be used. The
procedure to make this estimation follows.

First, an object TImportanceSampling needs to be created. This object will allow the creation of a copy of the
TDataServer where one of its attributes (sent in parameter) is replaced by a new attribute defined by its law (sent
in parameter too).

TImportanceSampling * tis = new TImportanceSampling(tds2,"rw",new TNormalDistribution(" ←↩
rw_IS", 0.10,0.015),nS);

And then, this new TDataServer must be collected via the getTDS method.

TDataServer *tdsis = tis->getTDS();

A sampling needs to be generated for this new TDataServer:

TSampling * sampis = new TSampling(tdsis,"lhs",nS);
sampis->generateSample();
TLauncherFunction *tlfis = new TLauncherFunction(tdsis,"flowrateModel","*","Y_IS");
tlfis->setDrawProgressBar(kFALSE);
tlfis->run();

page 96

CHAPTER II. THE DATASERVER MODULE The quantile computation

Now, the probability of an output variable exceeding threshold can be computed with the computeThreshold
method.

ISproba = tis->computeThreshold("Y_IS",seuil);

For information, it is possible to compute the mean and standard deviation of this output variable.

double ISmean = tis->computeMean("Y_IS");
double ISstd = tis->computeStd("Y_IS");

Summary

• TImportanceSampling (TDataServer * tds, TString var, TStochasticAttribute var_IS)

Build a TDataServer, copy of the TDataServer tds where the attribute var is replaced by the stochastic
variable var_IS.

• getTDS ()

Return the new TDS built by the above constructor.

• Double_t computeMean (TString u)

Compute the mean of the u variable .

• Double_t computeStd (TString u)

Compute the standard deviation of the u variable .

• Double_t computeThreshold (TString u, Double_t val)

Compute the probability of the u variable exceeding the val threshold.

II.4.4.3 Wilks-quantile computation

The Wilks quantile computation is an empirical estimation, based on order statistic which allows to get an estimation
on the requested quantile, with a given confidence level β , independently of the nature of the law, and most of the time,
requesting less estimations than a classical estimation. Going back to the empirical way discussed in Section II.4.4.1:
it consists, for a 95% quantile, in running 100 computations, ordering the obtained values and taking the one at either
the 95-Th or 96-Th position (see the discussion on how to choose k in Section II.4.4.1). This can be repeated several
times and will result in a distribution of all the obtained quantile values peaking at the theoretical value, with a standard
deviation depending on the number of computations made. As it peaks on the theoretical value, 50% of the estimation
are larger than the theoretical value while the other 50% are smaller.

In the following a quantile estimation of 95% will be considered with a requested confidence level of 95% (for more
details on this method, see [30]). If the sample does not exist yet, a possible solution is to estimate the minimum
requested number of computations (which leads in our particular case to a sample of 59 events). Otherwise, one can
ask Uranie the index of the quantile value for a given sample size, as such:

TDataServer *tds = new TDataServer("useless","foo");
double quant=0.95;
double CL = 0.95;
int SampleSize=200; int theindex=0;
theindex = tds->computeIndexQuantileWilks(quant, CL, SampleSize);

page 97

Correlation matrix CHAPTER II. THE DATASERVER MODULE

The previous lines are purely informative, and not compulsory: the method implemented in Uranie to deal with the Wilks
quantile estimation will start by calling these lines and complains if the minimum numbers of points is not available. In
any case, the bigger the sample is, the more accurate the estimated value is. This value is finally determined using the
method:

tds->addAttribute(new TNormalDistribution("attribute",0,1));
TSampling * sampis = new TSampling(tds,"lhs", SampleSize);
sampis->generateSample();

double value;
tds->estimateQuantile("attribute",quant, value, CL);

As stated previously, this is illustrated in a use-case macro which results in Figure XIV.5. There one can see results
from two classical estimations of the 95% quantile. The distribution of their results is centered around the theoretical
value. The bigger the sample is, the closer the average is to the theoretical value and the smaller the standard deviation
is. But in any case, there is always 50% of estimation below and 50% above the theoretical value. Looking at the Wilks
estimation, one can see that only 5% and 1% of the estimations are below the theoretical value respectively for the 95%
and 99% confidence level distributions (at the price of smaller sample). With a larger sample, the standard deviation of
the estimated value distribution for a 95% confidence level is getting smaller.

II.4.5 Correlation matrix

The computation of the correlation matrix can be done either on the values (leading to the Pearson coefficients) or on
the ranks (leading to the Spearmann coefficients). It is performed in the computeCorrelationMatrix method.

TDataServer * tdsGeyser = new TDataServer("tdsgeyser", "Geyser DataSet");
tdsGeyser->fileDataRead("geyser.dat");
tdsGeyser->addAttribute("y", "sqrt(x2) * x1");

TMatrixD matCorr = tdsGeyser->computeCorrelationMatrix("x2:x1");
cout << "Computing correlation matrix ..." << endl;
matCorr.Print();

Computing correlation matrix ...
2x2 matrix is as follows

| 0 | 1 |

0 | 1 0.9008
1 | 0.9008 1

Same thing if computing the correlation matrix on ranks:

TMatrixD matCorrRank = tdsGeyser->computeCorrelationMatrix("x2:x1","", "rank");
cout << "Computing correlation matrix on ranks ..." << endl;
matCorrRank.Print();

Computing correlation matrix on ranks ...
2x2 matrix is as follows

| 0 | 1 |

0 | 1 0.7778
1 | 0.7778 1

page 98

CHAPTER II. THE DATASERVER MODULE Correlation matrix

II.4.5.1 Special case of vector

As for all methods above, this one has been modified so that it can handle constant-size vectors (at least given the
pre-selection of event from the combination of the overall selection and the one provided in the method, as a second
argument). As usual, the idea is to consider all elements of a vector independent from the other. If one considers the
correlation matrix computed between two attributes, one being a scalar while the other one is a constant-sized vector
with 10 elements, the resulting correlation matrix will be a 11 by 11 matrix.

Here are two examples of computeCorrelationMatrix calls, both using the tdstest.dat file already shown in
Section II.3.4, which contains four attributes, three of which can be used here (y being a non constant-size vector, using
it in this method will bring an exception error). In the following example, two correlation matrices are computed: the
first one providing the correlation of both a and x attributes while the second focus on the former and only the second
element of the latter.

{
TDataServer *tdsop =new TDataServer("foo","poet");
tdsop->fileDataRead("tdstest.dat");

// Consider a and x attributes (every element of the vector)
TMatrixD globalOne = tdsop->computeCorrelationMatrix("x:a");
globalOne.Print();

// Consider a and x attributes (cherry-picking a single element of the vector)
TMatrixD focusedOne = tdsop->computeCorrelationMatrix("x[1]:a");
focusedOne.Print();

}

This should lead to the following console return, where the first correlation matrix contains all pearson correlation
coefficient (considering x as a constant-size vector whose element are independent one to another) while the second
on focus only on the second element of this vector (a vector’s number start at 0). The following macro is shown in
Section XIV.2.13.

4x4 matrix is as follows

| 0 | 1 | 2 | 3 |

0 | 1 0.9449 0.6286 0.189
1 | 0.9449 1 0.8486 0.5
2 | 0.6286 0.8486 1 0.8825
3 | 0.189 0.5 0.8825 1

2x2 matrix is as follows

| 0 | 1 |

0 | 1 0.5
1 | 0.5 1

Warning
When considering correlation matrix, the vectors are handled ONLY FOR PEARSON ESTIMATION. No adap-
tation has been made for rank ones.

page 99

Visualisation dedicated to uncertainties CHAPTER II. THE DATASERVER MODULE

Summary: Correlation matrix

• computeCorrelationMatrix (const char* varexp="", const char* select="", Option_t* option="")

Compute the correlation matrix on the attributes given by varexp applying the filter contained in select. When the
parameter varexp is empty, the correlation matrix is calculated on all the attributes in the TDataServer. The
filter select is added to the permanent selection of the TDataServer. By default, when the option is empty, the
correlation matrix was calculated on the values (Pearson matrix).

Tip
The possible values of the argument option are:

rank the correlation was calculated on the ranks (Spearmann matrix).

II.5 Visualisation dedicated to uncertainties

ROOT integrates many high level visualisation features, but some of them, devoted to statistics are missing. As they are
linked to data, it seemed relevant to develop them in this library. Many of the methods discussed throughout this section
are in any case, based on the original ROOT methods that produce plots from a TTree-object: the TTree::Draw
method (and subsequently the TTree::Scan when dumping on screen the content of the TDataServer).

Summary: TTree::Draw and TTree::Scan methods

• TTree::Draw(const char* varexp="", const char* select="", Option_t* option="")

Draw the expression varexp for specified entries.

Returns -1 in case of error or number of selected events in case of success.

The list of the options is located on the THistPainter class on the ROOT website.

• TTree::Scan(const char* varexp="", const char* select="", Option_t* option="")

Scan the expression varexp for specified entries.

Returns -1 in case of error or number of selected events in case of success.

These tree arguments are the same on the TDataServer::draw and TDataServer::scan methods.

II.5.1 Histogram

The histogram is present in ROOT but it needs to be encapsulated when the user wants to choose an automatic method
determining the number of bins. By default, the number of bins is given in the variable of the configuration file of ROOT
.rootrc of the directory $ROOTSYS/etc.This information can be overloaded by an user file .rootrc in its home
directory ($HOME), or in a local file where ROOT is executed. Several methods exist to determine the number of "bins"
according to the characteristics of the variable to be visualised.

Again we consider the TDataServer built from the geyser.dat file, to which we add the attribute xnorm, then
the histograms will be plotted using the different methods of this new attribute.

page 100

http://root.cern.ch/root/html/THistPainter.html

CHAPTER II. THE DATASERVER MODULE Box-and-whisker("boxplot")

TCanvas *c2 = new TCanvas();
c2->Divide(2,2);

TDataServer * tdsGeyser = new TDataServer("tdsgeyser", "Databae of the geyser");
tdsGeyser->fileDataRead("geyser.dat");
tdsGeyser->addAttribute("xnorm", "sqrt(x1*x1+x2*x2)");

c2->cd(1); tdsGeyser->draw("xnorm","","nclass=root");
c2->cd(2); tdsGeyser->draw("xnorm","","nclass=sturges");
c2->cd(3); tdsGeyser->draw("xnorm","","nclass=fd");
c2->cd(4); tdsGeyser->draw("xnorm","","nclass=scott");

Figure II.42: Different histograms of the same attribute xnorm depending on the method for computing bins. The values
are respectively 100(root), 8 from sturges, 7 from fd and scoot.

II.5.2 Box-and-whisker("boxplot")

tdsGeyser->drawBoxPlot("x2");

page 101

CDF, CCDF curves CHAPTER II. THE DATASERVER MODULE

Figure II.43: Boxplot of attribute x2 of the TDataServer geyser

II.5.3 CDF, CCDF curves

We can plot the graphs of CDF and/or CCDF.

tdsGeyser->drawCDF("x2");
tdsGeyser->drawCDF("x2","","ccdf");

Figure II.44: CDF graph of attribute x2 of the TDataServer geyser

page 102

CHAPTER II. THE DATASERVER MODULE Graph 2D with contour levels

Figure II.45: Graphs CDF+CCDF of the attribute x2 of the TDataServer geyser

II.5.4 Graph 2D with contour levels

When a 2D scatterplot is plotted, we do not automatically see the number of points falling in the same cell. To get an
assessment of this information, the contour levels of the number of points have to be put in background and then it
becomes possible to plot the classical scatterplot.

TDataServer * tdsGeyser = new TDataServer("tdsgeyser", "Geyser database");
tdsGeyser->fileDataRead("geyser.dat");
tdsGeyser->drawScatterplot("x2:x1");

Figure II.46: Scatterplot between attributes x1 and x2 of the TDataServer geyser.

This figure has to be compared to the classical scatterplot shown, for instance, in Figure II.4.

page 103

Graph 2D "profile" CHAPTER II. THE DATASERVER MODULE

II.5.5 Graph 2D "profile"

It consists in partitioning the "x" axis with a number of bins and in plotting, for each segment, the mean value in blue
and the standard deviation by a black line. The number of segments N is passed as an option with the formalism
nclass=N. We can also visualise the scatterplot just below the profile plot, by adding the option "same" (resulting in
the red points also shown in Figure II.47).

TDataServer * tdsGeyser = new TDataServer("tdsgeyser", "Geyser database");
tdsGeyser->fileDataRead("geyser.dat");
tdsGeyser->drawProfile("x2:x1","","same");

Figure II.47: Scatterplot between attributes x1 and x2 of the TDataServer geyser.

II.5.6 Graph 2D "Tufte"

This 2D graph consists in plotting the scatterplot of the two attributes , and also plotting each of the two histograms of
the attributes in X and Y, respectively below or on the left of the scatterplot.

TDataServer * tdsGeyser = new TDataServer("tdsgeyser", "Database of the geyser");
tdsGeyser->fileDataRead("geyser.dat");
tdsGeyser->drawTufte("x2:x1");

page 104

CHAPTER II. THE DATASERVER MODULE Graph 2D "pairs"

Figure II.48: Graphs of "Tufte" type between the attributes x1 and x2 of the TDataServer geyser.

II.5.7 Graph 2D "pairs"

This 2D graph consists in creating a matrix of graphs, where for the (i,j) cells with i different from j, the graph contains
the scatterplot of the attribute j versus the attribute i, and for cell (i,i), the graph contains the histogram of the attribute i.

TDataServer * tdsGeyser = new TDataServer("tdsgeyser", "Database of the geyser");
tdsGeyser->fileDataRead("flowrateUniformDesign.dat");
tdsGeyser->drawPairs();

Figure II.49: Graphs of "Tufte" type between the attributes x1 and x2 of the TDataServer geyser.

page 105

Graph "CobWeb" CHAPTER II. THE DATASERVER MODULE

Summary: 2D Graph

• drawScatterplot (const char* varexp, const char* selection="", Option_t* option="")

Draw 2D graph with the number of points of attributes located in varexp on the background .

• drawProfile (const char* varexp, const char* selection="", Option_t* option="")

Draw 2D graphic of the mean and standard deviation of each segment of "X" axis for the attributes contained in
varexp.

Tip
The possible values of options option are:

nclass=[0-9]* Specifies the number of segments in "X" axis .

same Displays the 2D scatterplot below "profile".

• drawTufte (const char* varexp, const char* selection="", Option_t* option="")

Draw 2D graph of the attributes located in varexp.

Tip
The possible values of options option are:

optstat Prints the window containing statistics in each histogram

scatter Prints the scatterplot the same way as the command drawScatterplot.

• drawPairs (const char* varexp, const char* selection="", Option_t* option="")

Create the matrix of graph with the attributes located in varexp.

It should be noticed that these functions have the same signature as the draw method of a TTree of ROOT.

Warning
For all these methods, the character varexp must contain either two attributes or a single character ":"

II.5.8 Graph "CobWeb"

For multidimensional problem, the drawPairs method is limited to spot correlation because of the way the output
looks. For instance in a problem with 8 uniformly-distributed inputs and one output, one can get a graphic as the one
shown in Figure II.50 (obtained with the code below). No special trend can be seen here.

TDataServer * tdsCobweb = new TDataServer("tdscobweb", "Database of the cobweb");
tdsCobweb->fileDataRead("cobwebdata.dat"); // read data file
tdsCobweb->drawPairs(); // do the drawPairs graph

page 106

CHAPTER II. THE DATASERVER MODULE Graph "CobWeb"

Figure II.50: Graphs of "drawPairs" type between the 8 uniformly-distributed inputs and the output of a given problem.

The "CobWeb" multidimensional graph, on the other hand, consists in plotting every dimension on a vertical axis and
connecting all the points for a single event with a straight line. It is particularly useful to spot correlation in high-
dimension problems as it is simple to highlight a certain region (by changing the colour for instance) to see if the rest
of the variable are randomly distributed or not.

// Draw the cobweb plot
tdsCobweb->drawCobWeb("x0:x1:x2:x3:x4:x5:x6:x7:out"); // Draw the cobweb

// Get the parallel coordination part to perform modification
TParallelCoord* para = (TParallelCoord*)gPad->GetListOfPrimitives()->FindObject(" ←↩

__tdspara__1");
// Get the output axis
TParallelCoordVar* axis = (TParallelCoordVar*)para->GetVarList()->FindObject("out");

// Create a range for 0.97 < out < 1.0 and display it in blue
TParallelCoordRange* Range = new TParallelCoordRange(axis,0.97,1.0);
axis->AddRange(Range);
para->AddSelection("blue");
Range->Draw();

This code for instance specifies a region-of-interest in the output, when the value are greater than 0.97. A correlation is
highlighted between these values and a region, for which the fourth input variable has high value while the sixth input
variable values lie between 0.2 and 0.4. The result of this code is shown in Figure II.51.

page 107

QQ plot CHAPTER II. THE DATASERVER MODULE

Figure II.51: Graphs of "CobWeb" type between the 8 uniformly-distributed inputs and the output of a given problem.

II.5.9 QQ plot

Warning
This function requires the "mathmore" feature to have be installed along with your ROOT version. If not found,
this function cannot be used and will return nothing but an equivalent to this message.

Once dealing with an unknown set of points, it is possible to compare it to known statistical law (among the following al-
ready implemented list: normal, uniform, weibull, gumbelmax, exponential, beta, gamma and lognormal). For instance,
if one wants to compare "x2" variable from the geyser dataset to a normal law, one can have a look at the quantile
distribution from the sample and compare it to the expected behaviour by following the steps below.

TDataServer * tdsQQ = new TDataServer("tdsQQ", "Database of the QQ");
tdsQQ->fileDataRead("geyser.dat"); // read data file
tdsQQ->computeStatistic(); // to estimate mu and sigma
tdsQQ->drawQQPlot("x2",Form("normal(%g,%g)",tdsQQ->getAttribute("x2")->getMean(),tdsQQ-> ←↩

getAttribute("x2")->getStd()),400);

page 108

CHAPTER II. THE DATASERVER MODULE PP plot

Figure II.52: Plot resulting from the "drawQQPlot" method, comparing "x2" to a normal distribution.

It is obvious here, that the "x2" law, clearly doesn’t seem to follow a normal law (which was pretty obvious by looking at
Figure II.48 for instance). An heavy use of this method is provided in Section XIV.2.15.

II.5.10 PP plot

Warning
This function requires the "mathmore" feature to have be installed along with your ROOT version. If not found,
this function cannot be used and will return nothing but an equivalent to this message.

Once dealing with an unknown set of points, it is possible to compare it to known statistical law (among the following al-
ready implemented list: normal, uniform, weibull, gumbelmax, exponential, beta, gamma and lognormal). For instance,
if one wants to compare "x2" variable from the geyser dataset to a normal law, one can have a look at the probabiliity
distribution from the sample and compare it to the expected behaviour by following the steps below.

TDataServer * tdsPP = new TDataServer("tdsPP", "Database of the PP");
tdsPP->fileDataRead("geyser.dat"); // read data file
tdsPP->computeStatistic(); // to estimate mu and sigma
tdsPP->drawPPPlot("x2",Form("normal(%g,%g)",tdsPP->getAttribute("x2")->getMean(),tdsPP-> ←↩

getAttribute("x2")->getStd()),400);

page 109

Combining these aspects: performing PCA CHAPTER II. THE DATASERVER MODULE

Figure II.53: Plot resulting from the "drawPPPlot" method, comparing "x2" to a normal distribution.

It is obvious here, that the "x2" law, clearly doesn’t seem to follow a normal law (which was pretty obvious by looking at
Figure II.48 for instance). An heavy use of this method is provided in Section XIV.2.16.

II.6 Combining these aspects: performing PCA

This part is introducing an example of analysis that combines all the aspects discussed up to now: handling data,
perform a statistical treatment and visualise the results. This analysis is called PCA for Principal Component Analysis
and is often used to

• gather event in a sample that seem to have a common behaviour;

• reduce the dimension of the problem under study.

There is a very large number of articles, even books, discussing the theoretical aspects of principal component analysis
(for instance one can have a look at [18]) a small theoretical introduction can in any case be found in [30].

II.6.1 PCA usage within Uranie

Let’s use a relatively simple example to illustrate the principle and the way we can achieve a reduction of dimension
while keeping the inertia as large as possible. One can have a look at a sample of marks from different pupils, in
various kinds of subject, all gathered in the Notes.dat whose content is shown below.

#TITLE: Marks of my pupils
#COLUMN_NAMES: Pupil | Maths | Physics | French | Latin | Music
#COLUMN_TYPES: S|D|D|D|D|D

Jean 6 6 5 5.5 8
Aline 8 8 8 8 9
Annie 6 7 11 9.5 11
Monique 14.5 14.5 15.5 15 8
Didier 14 14 12 12 10
Andre 11 10 5.5 7 13
Pierre 5.5 7 14 11.5 10
Brigitte 13 12.5 8.5 9.5 12
Evelyne 9 9.5 12.5 12 18

page 110

CHAPTER II. THE DATASERVER MODULE PCA usage within Uranie

One can have a look at some of these variables against one another to have a sense of what’s about to be done. In
Figure II.54, the maths marks of the pupils are displayed against latin on the left and physics on the right. Whereas no
specific trend is shown on the left part, an obvious correlation can be seen from the right figure meaning one can try
extrapolate the maths marks from the value of the physics one.

Figure II.54: Representation of some variables of the Notes sample.

II.6.1.1 Perform the PCA

The way to perform this analysis is rather simple through Uranie: simply provide the dataserver that contains data to
an TPCA object, only precising the name of the variables to be investigated. This is exactly what’s done below:

// Read the database
TDataServer * tdsPCA = new TDataServer("tdsPCA", "my TDS");
tdsPCA->fileDataRead("Notes.dat");

// Create the PCA object precising the variables of interest
TPCA * tpca = new TPCA(tdsPCA, "Maths:Physics:French:Latin:Music");
tpca->compute();

Once done, the process described in the [30] is finished and then interpretation starts.

II.6.1.2 Interpretation of PCA results

The first result that one should consider is the non-zero eigenvalues (so the variance of the corresponding principal
components). These values are stored in a specific ntuple, that can be retrieve by calling the method getResultNtupleD().
This ntuple contains three kind of information: the eigenvalues itself ("eigen"), these values as contributions in percent
of the sum of eigenvalues ("eigen_pct") and the sum of these contributions ("sum_eigen_pct"). All these values can
be accessed through the usual Scan method (see Section XIV.2.17 to see the results).

The following lines are showing how to represent the eigenvalues as plots and the results are gathered in Figure II.55.
From this figure, one can easily conclude that only the three first principal components are useful (as it reached an
inertia of a bit more than 99% of the original one). This is the solution chosen for the rest of the graphical representations
below and this is the first nice results from this step: it is possible to reduce the dimension of our problem from the 5
different subjects to the three principal component that needs to be explicated.

page 111

PCA usage within Uranie CHAPTER II. THE DATASERVER MODULE

// Draw the eigen values in different normalisation
TCanvas *c = new TCanvas("cEigenValues", "Eigen Values Plot",1100,500);
TPad *apad3 = new TPad("apad3","apad3",0, 0.03, 1, 1); apad3->Draw(); apad3->cd();
apad3->Divide(3,1);
TNtupleD *ntd = tpca->getResultNtupleD();
apad3->cd(1); ntd->Draw("eigen:i","","lp");
apad3->cd(2); ntd->Draw("eigen_pct:i","","lp"); gPad->SetGrid();
apad3->cd(3); ntd->Draw("sum_eigen_pct:i","","lp"); gPad->SetGrid();
c->SaveAs("PCA_notes_musique_Eigen.png");

Figure II.55: Representation of the eigenvalues (left) their overall contributions in percent (middle) and the sum of the
contributions (right) from the PCA analysis.

As stated previously, one can have a look at the variables in their usual representation (that can be seen in Figure II.56)
that is called the correlation circle. This plot is obtained by calling the drawLoading method that takes two argu-
ments: the first one being the number of the PC used as x-axis while the second one is the number of the PC used as
y-axis. The code to get Figure II.56 is shown below:

// Draw all variable weight in PC definition
TCanvas *cLoading = new TCanvas("cLoading", "Loading Plot",800,800);
TPad *apad2 = new TPad("apad2","apad2",0, 0.03, 1, 1); apad2->Draw(); apad2->cd();
apad2->Divide(2,2);
apad2->cd(1); tpca->drawLoading(1,2);
apad2->cd(3); tpca->drawLoading(1,3);
apad2->cd(4); tpca->drawLoading(2,3);

Figure II.56 represents the correlation between the original variable and the principal component under study. Two
kinds of principal component are resulting from PCA:

• the size one where all variables are on the same size of the principal component. In our case, the first PC in
Figure II.56 represents the variability of marks.

• the shape one where variables are balanced from positive to negative value of the principal component. In our case,
the second PC in Figure II.56 represents the difference observed between scientific variables, such as maths and
physics, from literary ones, such as french and latin.

page 112

CHAPTER II. THE DATASERVER MODULE PCA usage within Uranie

Finally to complete the picture, the third PC is a shape one that represents the fact that music seems to have a very
specific behaviour, different from all the other studies.

Figure II.56: Representation of correlation between the original variables and the PC under study.

Finally, one can also have a look at the points distribution in the new PC space (that can be seen in Figure II.57). This
plot is obtained by calling the method drawPCA that takes two compulsory arguments: the first one being the number
of the PC used as x-axis while the second one is the number of the PC used as y-axis. An extra argument can be
provided that is used to specify a branch in the database that contains the name of the points (the name of the pupils)
which allows to get a nice final plot. The code to get Figure II.57 is shown below:

// Draw all point in PCA planes
TCanvas *cPCA = new TCanvas("cpca", "PCA",800,800);
TPad *apad1 = new TPad("apad1","apad1",0, 0.03, 1, 1); apad1->Draw(); apad1->cd();
apad1->Divide(2,2);
apad1->cd(1); tpca->drawPCA(1,2,"Pupil");
apad1->cd(3); tpca->drawPCA(1,3,"Pupil");
apad1->cd(4); tpca->drawPCA(2,3,"Pupil");

Figure II.57 shows where to find our pupils with respect to our new basis and the interpretation of the correlation plot
of the variable holds as well:

• looking at PC1, it seems to be defined by two extremes, Jean and Monique, the former being bad at every subjects
while the latter is good at (almost) all subjects.

• looking at PC2, it also seems to be defined by two extremes, Pierre and Andre, the former having way better marks
at literary subjects than at scientific ones while its the other way around for the latter.

page 113

PCA usage within Uranie CHAPTER II. THE DATASERVER MODULE

• looking at PC3, it seems to oppose Evelyn to all the other pupils, and this correspond to fact that every pupils is bad
at music, but Evelyn.

Figure II.57: Representation of the data points in the PC-defined plane.

All these interpretations remain graphical and give an easy way to summarise the impact of the PCA analysis. Disre-
garding the sources considered (the variables or the points), one can have quantitative interpretation coefficients that
detail more the "feeling" described above:

• the quality of the representation: it shows how well the source (either the subject or the pupil in our case) is repre-
sented by a given PC. Summing these values over the PC should lead to 1 for every sources.

• the contribution to axis: it shows how much the source (either the subject or the pupil in our case) contribute to the
definition of the given PC. Summing these values over the source (for the given PC) should lead to 1 for every PC.

Example of how to get these numbers can be found in the use-case macros, see Section XIV.2.17.

page 114

Chapter III

The Sampler module

III.1 Introduction

The Sampler module is used to produce design-of-experiments knowing the expected behaviour of the input variables
for the problem under consideration. The framework of our approach can be illustrated in the following schematic view:

Figure III.1: Schematic view of the input/output relation through a code

• We will denote as C the studied computational code which, generally, has two types of inputs:

– The constant parameters which are gathered in the vector c ∈ IRnC . They represent constants.

– The uncertain parameters which are gathered in the vector X ∈ IRnX

It shall be noticed that these parameters are supposed to be uncertain either because of a lack of knowledge on
their actual value or because of their intrinsic random nature.

• The result of the code C for a given set of parameters (c,X) gives the vector y ∈ IRnY = C(c,X) which contains all
the output variables of the analysis.

Different methods exist to obtain a design-of-experiments from uncertain parameters which can be classified into two
categories:

1. stochastic methods (see Section III.2). These methods consist in using a random number generator to produce
new samples. This is also called Monte-Carlo.

2. deterministic methods (see Section III.4). Two distinct calls with the same parameters will always give the
same point in a design-of-experiments. Some of these methods (those discussed below) are sequences which
are sometimes called quasi-Monte Carlo (qMC).

page 115

The Stochastic methods CHAPTER III. THE SAMPLER MODULE

III.2 The Stochastic methods

III.2.1 Introduction

The stochastic classes all inherit from the TSampler class through the TSamplerStochastic one. In these
classes the knowledge (or mis-knowledge) of the model is encoded in the choice of probability law used to describe
the inputs xi, for i ∈ [0, nX]. These laws are usually defined by:

• a range that describes the possible values of xi

• the nature of the law, which has to be taken in the list of TStochasticAttribute already presented in Sec-
tion II.2.5

A choice has frequently to be made between two implemented methods of drawing:

SRS (Simple Random Sampling): This method consists in independently generating the samples for each param-
eter following its own probability density function. The obtained parameter variance is rather high, meaning that
the precision of the estimation is poor leading to a need for many repetitions in order to reach a satisfactory
precision. An example of this sampling when having two independent random variables (uniform and normal
one) is shown in Figure III.3-left.

LHS (Latin Hypercube Sampling): this method [4] consists in partitioning the interval of each parameter so as to
obtain segments of equal probabilities, and afterwards in selecting, for each segment, a value representing this
segment. An example of this sampling when having two independent random variables (uniform and normal
one) is shown in Figure III.3-right.

Both methods consist in generating a Ncalc-sample represented by a matrix U called matrix of the design-of-experiments.
The number of columns of the matrix U correspond to the number of uncertain parameters nX , and the number of lines
is equal to the size of the sample Ncalc.

The first method is fine when the computation time of a simulation is "satisfactory". As a matter of fact, it has the
advantage of being easy to implement and to explain; and it produces estimators with good properties not only for
the mean value but also for the variance. Naturally, it is necessary to be careful in the sense to be given to the term
"satisfactory". If the objective is to obtain quantiles for extreme probability values α (i.e. α = 0.99999 for instance),
even for a very low computation time, the size of the sample would be too large for this method to be used. When a
computation time becomes important, the LHS sampling method is preferable to get robust results even with small-size
samples (i.e. Ncalc = 50 to 200) [5]. On the other hand, it is rather trivial to double the size of an existing SRS sampling,
as no extra caution has to be taken apart from the random seed.

In Figure III.2, we present two samples of size Ncalc = 8 coming from these two sampling methods for two random
variables U1 according to a gaussian law, and U2 a uniform law. To make the comparison easier, we have represented
on both figures the partition grid of equiprobable segments of the LHS method, keeping in mind that it is not used by
the SRS method. These figures clearly show that for LHS method each variable is represented on the whole domain of
variation, which is not the case for the SRS method. This latter gives samples that are concentrated around the mean
vector; the extremes of distribution being, by definition, rare.

Concerning the LHS method (right figure), once a point has been chosen in a segment of the first variable U1, no other
point of this segment will be picked up later, which is hinted by the vertical red bar. It is the same thing for all other
variables, and this process is repeated until the Ncalc points are obtained. This elementary principle will ensure that the
domain of variation of each variable is totally covered in a homogeneous way. On the other hand, it is absolutely not
possible to remove or add points to a LHS sampling without having to regenerate it completely. A more realistic picture

page 116

CHAPTER III. THE SAMPLER MODULE Introduction

is draw in Figure III.3 with the same laws, both for SRS on the left and LHS on the right. The "tufte" representation
(presented in Section II.5.6) clearly shows the difference between both methods when considering one-dimensional
distribution.

Figure III.2: Comparison of the two sampling methods SRS (left) and LHS (right) with samples of size 8.

Figure III.3: Comparison of deterministic design-of-experiments obtained using either SRS (left) or LHS (right) algo-
rithm, when having two independent random variables (uniform and normal one)

There are two different sub-categories of LHS design-of-experiments discussed here and whose goal might slightly
differs from the main LHS design discussed above:

• the maximin LHS: this category is the result of an optimisation whose purpose is to maximise the minimal distance
between any sets of two locations. This is discussed later-on in Section III.2.2.

• the constrained LHS: this category is defined by the fact that someone wants to have a design-of-experiments fulfilling

page 117

The main sampler classes CHAPTER III. THE SAMPLER MODULE

all properties of a Latin Hypercube Design but adding one or more constraints on the input space definition (generally
inducing correlation between varibles). This is also further discussed in Section III.2.2 and in Section III.2.4.

Once the nature of the law is chosen, along with a variation range, for all inputs xi, the correlation between these
variables has to be taken into account. This is further discussed in Section III.3

III.2.2 The main sampler classes

The sampler classes are built with the same skeleton. They consist in a three steps procedure: init, generateSample
and terminate. There are five different types of Stochastic sampler that can be used:

• TSampling: general sampler where the sampling is done with the Iman and Conover methods ([6]) that uses a
double Cholesky decomposition in order to respect the requested correlation matrix. This methods has the drawback
of asking a number of samples at least twice as large as the number of attribute.

• TBasicSampling: very simple implementation of the random sampling that can, as well, produce stratified sam-
pling. As it is fairly simple, there is no lower limit in the number of random samples that can be generated and
generation is much faster when dealing with a large number of attributes than with the TSampling. On the other
hand, even though a correlation can be imposed between the variables, it will be done in a simple way that cannot
by construction respect the stratified aspect (if requested, see [30] explanations).

• TMaxiMinLHS: class recently introduced to produced maximin LHS, whose purpose is to get the best coverage of
the input space (for a deeper discussion on the motivation, see [30]). It can be used with a provided LHS drawing or
it can start from scratch (using the TSampling class to get the starting point). The result of this procedure can be
seen in Figure XIV.13 which was procuded with the macro introduced in Section XIV.3.11;

Tip
The optimisation to get a maximin LHS is done on the mindist criterion: let D = [x1, · · · ,xN] ⊂ [0,1]d be
a design-of-experiments with N points. The mindist criterion is written as: mini, j ||xi−x j||2 where ||.||2 is
the euclidian norm.
This information can be computed on any grid, by calling the static function

double mindist = TMaxiMinLHS::getMinDist(TMatrixD LHSgrid);

• TConstrLHS: class recently introduced to produced constrained LHS, whose purpose is to get nicely covered
marginal laws while respecting one or more constraints imposed by the user. It can be used with a provided LHS
drawing or it can start from scratch (using the TSampling class to get the starting point) and it is discussed a bit
further in Section III.2.4. The result of this procedure can be seen in Figure XIV.14 which was procuded with the
macro introduced in Section XIV.3.12;

• TGaussianSampling: very basic sampler specially done for cases composed with only normal distributions. It
relies on the drawing of a sample A(nS, nX) nS being the number of sample and nX the number of inputs. The sample
is transformed to account for correlation (see [30]) and shifted by the requested mean (for every variables).

• TImportanceSampling: use the same method as TSampling but should be used when one TAttribute
has a son. In this case the range for the considered attribute is the sub-range used to define the son and there is
specific reweighting procedure to take into account the fact that the authorised range is reduced. LHS is therefore
used by default.

page 118

CHAPTER III. THE SAMPLER MODULE Simple example

III.2.3 Simple example

The following piece shows how to generate a sample using the TSampling class.

TUniformDistribution *xunif = new TUniformDistribution("x1", 3., 4.); x1 [1]
TNormalDistribution *xnorm = new TNormalDistribution("x2", 0.5, 1.5); x2 [2]
TDataServer * tds = new TDataServer("tdsSampling", "Demonstration Sampling");

tds->addAttribute(xunif);

tds->addAttribute(xnorm);

// Generate the sampling from the TDataServer object

TSampling *sampling = new TSampling(tds, "lhs", 1000); x3 [3]
sampling->generateSample(); x4 [4]
tds->drawTufte("x2:x1"); x5 [5]
Generation of a design-of-experiments with stochastic attributes

x1 Generating a uniform random variable in [3., 4.]x2 Generating a gaussian random variable with a mean of 0.5 and a standard deviation of 1.5x3 Construct the sampler object requesting a sample of 1000 events, using the Lhs algorithm.x4 Method to generate the sample.x5 Draw the plot as the right side of Figure III.3

III.2.4 TConstrLHS example

This section will discuss the way to produce a constrained LHS design-of-experiments from scratch, focusing on the
main problematic part: defining one or more constraints and on which variable to apply them. The logic behind the
heuristic is supposed to be known, so if it’s not the case, please have a look at the dedicated section in [30]. This
section will mostly rely on the way to define the constraints and the variables on which these should be applied on
which are specified by the method addConstraint. This methods takes 4 arguments:

1. a pointer to the function that will compute the constraints values;

2. the number of constraint defined in the function discussed above;

3. the number of parameters that are provided to the function discussed above;

4. the values of the parameters that are provided to the function discussed above;

The main object is indeed the constraint function and the way it is defined is discussed here. It is a C++ function (for
convenience as the platform is C++-coded) but this should not be an issue even for python users. The followings lines
are showing the example of the constraint function used to produce the plot in Section XIV.3.12.

void Linear(double *p, double *y)
{

double p1=p[0], p2=p[1];
double p3=p[2], p4=p[3];

// Linear constaint
y[0] = (((p1 + p2>=2.5) || (p1-p2<=0)) ? 0 : 1);
y[1] = ((p3 - p4<0) ? 0 : 1);

}

page 119

Description of a correlation CHAPTER III. THE SAMPLER MODULE

Here are few elements to discuss and explain this function:

• its prototype is the usual C++-ROOT one with a pointer to the input parameter p and a pointer to the output (here the
constraint results) y;

• the first lines are defining the parameters, meaning the couples (xrow,xcol) for all the constraints. By convention, the
first element of every line (p1 and p3) are of the row type (they will not change in the design-of-experiments through
this constraint, see [30] for clarification) while the second parameters (p2 and p4) are of the column type, meaning
their order in the design-of-experiments will change through permutations through this constraint.

• the rest of the lines are showing the way to compute the constraints and to interpret them thanks to the trilinear
operator (even though the classical if, else would perfectly do the trick as well. Let’s focus first on the second
constraint:

y[1] = ((p3 - p4<0) ? 0 : 1);

if p3 is lower than p4 (p3-p4<0) then the function will put 0 in y[1] (stating that this configuration is not fulfilling
the constraint), and it will put 1 otherwise (stating that the constraint is fulfilled). The other line is defining another
constraint which is composed of two tests on the same couple of variables:

y[0] = (((p1 + p2>=2.5) || (p1-p2<=0)) ? 0 : 1);

Here, two constraints are combined in once, as they affect the same couple of variables, the configuration will be
rejected either if p1+p2 is greater than 2.5 or if p1 is lower than p2.

Once done, this function needs to be plugged into our code in order to state what variables are p1, p2, p3 and p4 so
that the rest of the procedure discussed in [30] can be run. This is done in the addConstraint method, thanks to
the third and fourth paramaters which are taken from a single object: a vector<int> in C++ and a numpy.array
in python. It defines a list of indices (integers) that corresponds to the number of the input attributes as it is has been
added into the TDataServer object. For instance in our case, the list of input attributes is "x0:x1:x2" while
the constraints are coupling (x1,x0) and (x2,x1) respectively. Once translated in term of indices, the constraints are
coupling respectively (1,0) and (2,1), so the list of parameter should reflect this which is shown below:

vector<int> inputs = {1,0,2,1};
constrlhs->addConstraint(Linear, 2, inputs.size(), &inputs[0]);

Warning The consistency between the function and the list of parameters is up to you and you should keep
a carefull watch over it. It is true that an inequality can be written in two ways, as

x1− x0 < 0 ⇔ x0− x1 > 0

but when the constraint is defined as

y[0] = ((p[0] - p[1]<0) ? 0 : 1);

the results will be drastically different if the list of parameters is (1,0) (which should fulfill the constraint shown
above) or (0,1) which would results in the exact opposite behaviour (and might make the heuristic crash if
the constraint cannot be fulfilled).

III.3 Description of a correlation

We will describe in this section how to precise in Uranie the necessary information to take into account the correlations
between variables. There are two ways to specify this: setting the correlation coefficient by hand or couple the two
considered attributes with a copula. Both methods are described below.

page 120

CHAPTER III. THE SAMPLER MODULE Imposing the correlation coefficients

III.3.1 Imposing the correlation coefficients

It is possible to set the correlation coefficient by hand, using the setUserCorrelationmethod of both TSampling
and TBasicSampling.

TUniformDistribution *xunif = new TUniformDistribution("x1", 3., 4.); x1 [1]
TNormalDistribution *xnorm = new TNormalDistribution("x2", 0.5, 1.5); x2 [2]
TDataServer * tds = new TDataServer("tdsSampling", "Demonstration Sampling");

tds->addAttribute(xunif);

tds->addAttribute(xnorm);

// Generate the sampling from the TDataServer object

TSampling *sampling = new TSampling(tds, "lhs", 1000);

sampling->setUserCorrelation(xunif, xnorm, 0.90); x3 [3]
sampling->generateSample(); x4 [4]
tds->Draw("x2:x1","","");

Specification of a correlation

x1 Generating a uniform random variable in [3., 4.]x2 Generating a gaussian random variable with 0.5 as mean value 1.5 as standard deviation.x3 Specification of correlation of 0.90 between the two attributes xunif and xnorm.x4 Generate the sample by calling the generateSamplemethod in TSampling (respectively the generateCorrSample
method in TBasicSampling).

The coefficient provided is changing the correlation between the two considered attributes (for a more general discus-
sion on this, see [30]). As an example, Figure III.4 and Figure III.5 show the design-of-experiments created with the
TSampling class, using a normal and uniform distribution, using three different correlation coefficient values: 0, 0.45
and 0.9. The first one is showing the obtained 2D plan and their corresponding projections, while the second one is
showing the same information but displaying their rank instead of their values (this is further discussed in [30]).

Figure III.4: Tufte plot of the design-of-experiments created using a normal and uniform distribution, with a LHS method
with three correlation coefficient: 0, 0.45 and 0.9

page 121

Imposing the correlation coefficients CHAPTER III. THE SAMPLER MODULE

Figure III.5: Tufte plot of the rank of the design-of-experiments created using a normal and uniform distribution, with a
LHS method with three correlation coefficient: 0, 0.45 and 0.9

Instead of provided one-by-one the correlation factors, one can provide the correlation matrix using the setCorrelationMatrix
method of both TSampling and TBasicSampling. This method ask for a TMatrixD input and it will check that:

• the dimension is correct : (nX ,nX).

• the coefficient are all in the range [−1,1]

• the diagonal term are exactly at one (if not it sets them to this value).

III.3.1.1 Case of singular correlation matrix

In the case where the correlation matrix injected (at once or component by component) happen to be singular, the
default method used to correlate variables will failed and complains in this way (taking the TBasicSampling as an
example):

<URANIE::ERROR>
<URANIE::ERROR> *** URANIE ERROR ***
<URANIE::ERROR> *** File[${SOURCEDIR}/meTIER/sampler/souRCE/TBasicSampling.cxx] Line[427]
<URANIE::ERROR> TBasicSampling::generateCorrSample: the cholesky decomposition of the user ←↩

correlation matrix is not good.
<URANIE::ERROR> Maybe you can try with SVD decomposition.
<URANIE::ERROR> *** END of URANIE ERROR ***
<URANIE::ERROR>

There is a workaround, provided by Uranie and heavily discussed in [30]. The idea in a nutshell is to remplace the
Cholesky operation by a SVD one, to decompose the target correlation matrix. This can be done adding "svd" in the
Option_t *option field of either the constructor of the class or the generator method call. Here is an example for
the TBasicSampling class:

TBasicSampling *tbs = new TBasicSampling(tds,"lhs;svd",100); // example at constructor
//.. or ..
tbs->generateCorrSample("svd"); // example with generator function call

Here comes its equivalent piece of code for the TSampling class:

page 122

CHAPTER III. THE SAMPLER MODULE The copula classes

TSampling *ts = new TSampling(tds,"lhs;svd",100); // example at constructor
//.. or ..
ts->generateSample("svd"); // example with generator function call

In both cases, the use of this workaround should print this message to warn you about this.

<URANIE::INFO>
<URANIE::INFO> *** URANIE INFORMATION ***
<URANIE::INFO> *** File[${SOURCEDIR}/meTIER/sampler/souRCE/TBasicSampling.cxx] Line[371]
<URANIE::INFO> TBasicSampling::generateCorrSample: you’ve asked to use SVD instead of ←↩

Cholesky to decompose the correlation matrix.
<URANIE::INFO> *** END of URANIE INFORMATION ***
<URANIE::INFO>

An example of how to use this in real condition (with a proper singular correlation matrix) is shown in Section XIV.3.14.

III.3.2 The copula classes

Instead of using samplers with correlation matrix in the case of intricate variables, one can use classes relying on
Copula, in order to describe the dependencies. These classes inherit from the TCopula class successively through
the TSamplerStochastic and the TSampler classes. The idea of a copula is to define the interaction of vari-
ables using a parametric-function that can allow a broader range of entanglement than only using a correlation matrix
(various shapes can be done). There are two kinds of copulas provided in the Uranie platform:

• TArchimedian with 4 pre-defined parametrisation: Ali-Mikhail-Haq (TAMHCopula), Clayton (TClaytonCopula),
Frank (TFrankCopula) and Plackett (TPlackettCopula). These copulas, which depend only on the input
variables and a parameter θ , are shown from Figure III.6 to Figure III.9 for different θ values along with the formula
of the corresponding parametric function.

• TElliptical: it is a class to interface the TGaussian copula method.

Figure III.6: Example of sampling done with half million points and two uniform attributes (from 0 to 1), using AMH
copula and varying the parameter value.

page 123

The copula classes CHAPTER III. THE SAMPLER MODULE

Figure III.7: Example of sampling done with half million points and two uniform attributes (from 0 to 1), using Clayton
copula and varying the parameter value.

Figure III.8: Example of sampling done with half million points and two uniform attributes (from 0 to 1), using Frank
copula and varying the parameter value.

page 124

CHAPTER III. THE SAMPLER MODULE QMC method

Figure III.9: Example of sampling done with half million points and two uniform attributes (from 0 to 1), using Plackett
copula and varying the parameter value.

The following example shows how to create a copula and to use it in order to get a correlated sample.

TUniformDistribution *xunif = new TUniformDistribution("x1", 3., 4.);
TNormalDistribution *xnorm = new TNormalDistribution("x2", 0.5, 1.5);

TDataServer * tds = new TDataServer("tdsSampling", "Demonstration Sampling");
tds->addAttribute(xunif);
tds->addAttribute(xnorm);

// Generate the sampling from the TDataServer object
TAMHCopula *tamh = new TAMHCopula(tds, 0.75, 1000);
tamh->generateSample();
tds->Draw("x2:x1","","colZ");

III.4 QMC method

The deterministic samplings can produce design-of-experiments with well defined properties, that can be very useful
in specific cases such as:

• to cover at best the space of the input variables

• to explore the extreme cases

• to study combined or non-linearity effect

There are two kinds of quasi Monte-Carlo sampling methods implemented in Uranie: the regular ones and the sparse
grid ones. On the first hand, the former can be generated using two different sequences:

1. Sequences of Sobol [7]

2. Sequences of Halton [8]

page 125

QMC method CHAPTER III. THE SAMPLER MODULE

Figure III.10 shows a comparison of the design-of-experiments obtained with both sequences, along with the ones
produced with a basic stochastic sampling, following the LHS and SRS "recipes", all when dealing with two uniform
attributes. The coverage is clearly more regular in the case of quasi Monte-Carlo sequences which is the origin of their
name: low-discrepancy sequences. There are plenty definitions for the notion of discrepancy (see litterature for them)
but they all quantify how close the sequence is to a perfect equidistribution of points.

Warning
The Halton sequence has been designed initially to deal with uniform probability law. Extending their use to
all probability laws, particularly to infinite-based, it is crucial to set at least lower-bound to these. The Halton
sequence first value is indeed 0 and this means that going back from probability space to physical one, would
imply −∞ value if not properly bounded.
From version 4.3.0, the TQMC will complain about infinite-based law if lower-bounded and from version 4.6.0
it will be fully deprecated.

Figure III.10: Comparison of both quasi Monte-Carlo sequences with both LHS and SRS sampling when dealing with
two uniform attributes.

On the other hand, the sparse grid sampling can be very useful for integration purposes and can be used in some of
the meta-modelling definition, see, for instance, in Section V.3.1.2. In Uranie we can used the Petras algorithm [9] to
produce these sparse grids, shown for different levels in Figure III.11, that can be compared to regular algorithms ones
in Figure III.10 (in both cases, the problem is described with two uniform attributes).

Figure III.11: Comparison of design-of-experiments made with Petras algorithm, using different level values, when
dealing with two uniform attributes.

page 126

CHAPTER III. THE SAMPLER MODULE The random fields

In the case of regular sequence, the selected sequence is specified with the second argument option of the class
constructor TQMC:

TQMC(TDataServer *tds, Option_t *option, Int_t nCalcul);

First, a pointer to a TDataServer is constructed

TDataServer *tdsqmc = new TDataServer("tdsQMC", "Test for qMC");
tdsqmc->addAttribute(new TAttribute("x_{1}", -1.0 , 2.));
tdsqmc->addAttribute(new TNormalDistribution("x_{2}", 0.0 , 3.));
tdsqmc->addAttribute(new TAttribute("x_{3}", 1.0, 1.5));

Then, a pointer to a TQMC object is constructed from a TDataServer, of the opted sequence among ("sobol"|"halton"),
with the wished size. At the end, the method generateSample() is applied

TQMC * qmc = new TQMC(tdsqmc, "sobol", 300);
qmc->generateSample();

III.5 The random fields

The random fields allow to take into account the spatial characteristics of a random variable.

A TDataServer is associated to a spatial random variable from IR, IR2 or IR3 in IR. Currently only one Spectral
method, with two types of variograms (Gaussian and Sine Cardinal), is available in Uranie.

For instance, Uranie code is:

// Define the DataServer

TDataServer *tds = new TDataServer("TDSField", "Weight as Field");

tds->addAttribute(new URANIE::DataServer::TAttribute("x", 1, 51));

tds->addAttribute(new URANIE::DataServer::TAttribute("y", 1, 51));

tds->addAttribute(new URANIE::DataServer::TAttribute("Weight"));

// Gaussian Sampler Field

TSamplerField * tsf = new TSamplerField(tds); x1 [1]
tsf->SetScaleFactor(10.0);

tsf->SetRandomFunction(1000);

tsf->setVariogram("gauss");

tsf->SetVariance(1.0);

tsf->generateSample(); x2 [2]
// Graphic

TCanvas* canvas = new TCanvas();

canvas->Divide(1,2);

canvas->cd(1); tds->Draw("Weight:y:x");

canvas->Modified();

canvas->Update();

canvas->cd(2);

tsf->Draw2D("x","y","tri2Z"); x3 [3]
x1 Allocation of a pointer of a random variable sampler with variables described in the TDataServer "tds" that is

based on a "gaussian" variogram type. The constructor prototype is TSamplerField(URANIE::DataServer::TDataServer

*tds, Option_t *option = "Gauss").

page 127

The random fields CHAPTER III. THE SAMPLER MODULE

x2 The generateSample() method generates a sample which will be saved in the TDataServer.

x3 This step, along with the other drawing method few line earlier, gives the results shown in Figure III.12.

Figure III.12: Gaussian Random Field

It is possible to vary the value of the parameters used to construct the field, leading to different shapes. Examples
of this are shown for the two implemented types of variograms, Gaussian in Figure III.13 and for Sine Cardinal in
Figure III.14.

Figure III.13: Gaussian variograms. Several configurations (in terms of scale factor and variance parameters) are
shown as well.

page 128

CHAPTER III. THE SAMPLER MODULE OAT Design

Figure III.14: Sine cardinal variograms. Several configurations (in terms of scale factor and variance parameters) are
shown as well.

III.6 OAT Design

III.6.1 Introduction

The idea of the One factor At a Time (OAT) design-of-experiments is to observe the evolution of phenomena when
one input factor is modified while all the others remain unchanged.

This design-of-experiments can be used to compute partial derivatives or sensitivities. For the latter application, it is
interesting as it provides a very simple and inexpensive way to evaluate the sensitivity of a phenomena to its input
factors. However, it might not be the best solution as it does not explore multi-factorial and non-linear effects.

III.6.2 OAT design in Uranie

In Uranie, each factor of the OAT design takes at least three values: a nominal value, a lower value (smaller than the
nominal one) and an upper value (greater than the nominal one). When a factor is not "modified" it is set to its nominal
value. This leads to a design of 2n+1 experiments, where n is the number of factors, and ”+1” refers to a reference
experiment, where no factor is modified.

Two classes can produce OAT designs:

• TOATSampling: simple, but limited in its functionality. It is used by some classes of Uranie.

• TOATDesign: an improved version of the previous one, more user oriented.

As TOATSampling will become deprecated in a future version of Uranie the present document will focus on the
usage of TOATDesign.

III.6.3 TOATDesign

III.6.3.1 Construction of a simple OAT design-of-experiments

The easiest way to create an OAT design-of-experiments using TOATDesign is to proceed as follows:

1. create a dataserver with a list of attributes corresponding to the input factors;

2. set the default value of each attribute to the nominal value;

page 129

TOATDesign CHAPTER III. THE SAMPLER MODULE

3. create a TOATDesign object, with the dataserver as first parameter;

4. define the maximum range of variation of the factors using the setRange function;

5. generate the OAT design-of-experiments using the generateSample function.

At this point, the dataserver contains an OAT design-of-experiments where each factor of interest is modified twice.
Below is an example:

{
// step 1
TDataServer *tds = new TDataServer("tdsoat","Dataserver simple OAT design");
tds->addAttribute(new TAttribute("x1"));
tds->addAttribute(new TAttribute("x2"));

// step 2
tds->getAttribute("x1")->setDefaultValue(0.0);
tds->getAttribute("x2")->setDefaultValue(10.0);

// step 3
TOATDesign *oatSampler = new TOATDesign(tds);

// step 4
Bool_t use_percentage = kTRUE;
oatSampler->setRange("x1", 2.0);
oatSampler->setRange("x2", 40.0, use_percentage);

// step 5
oatSampler->generateSample();

// display
tds->scan();

}

This example produces:

**
* Row * tdsoat__n__iter * x1 * x2 * __nominal_set__ * __modified_att_ *
**
* 0 * 1 * 0 * 10 * 1 * -1 *
* 1 * 2 * -1 * 10 * 1 * 1 *
* 2 * 3 * 1 * 10 * 1 * 1 *
* 3 * 4 * 0 * 8 * 1 * 2 *
* 4 * 5 * 0 * 12 * 1 * 2 *
**

In the example above, we have two input factors: x1 and x2. Their nominal values are respectively 0.0 and 10.0, and
their maximum variation ranges are 2.0 and 40% of 10.0, i.e. 4.0.

Tip
To indicate that the range of "x2" is a percentage of its nominal value, we simply need to set the third
parameter of the setRange function to TRUE. This parameter is set to FALSE by default, which means that
the value of the range is considered to be "absolute".

The generated OAT design thus contains 5 experiments:

• the reference, where x1 and x2 are set to their nominal values;

page 130

CHAPTER III. THE SAMPLER MODULE TOATDesign

• two variations of x1, where it equals -1.0 and 1.0 while x2 remains equal to 10.0;

• two variations of x2, where it equals 8.0 and 12.0 while x1 is set back to 0.0;

It also contains two new attributes, automatically added by Uranie:

• __nominal_set__: identifies which set of nominal values is used as a reference. In this case, we have only one set,
thus __nominal_set__’s value remains equal to 1. This is further discussed in Section III.6.3.5

• __modified_att__: identifies which factor has been modified in the current experiment. The value is the index of the
corresponding attribute in the dataserver. A value equal to -1 means that all the factors have their nominal values.

Warning
The index of an attribute in the dataserver can be different from the one printed by the scan
function, or inside an output file. To be certain to retrieve the correct number, always use the
TDataServer::getAttributeIndex function.

III.6.3.2 Some options

When creating a new OAT sampler object, the following options are available:

• sampling mode: determines how the modified factor’s new values are selected inside the interval
[
nominal− range

2 ;nominal + range
2

]
.

It can be either:

– regular: an even number of new values and the nominal value are regularly distributed along the interval.

– lhs, srs or random: the new values are randomly chosen inside the interval using a Latin Hypercube Sampling
("lhs") or a Standard Random Sampling ("srs" and "random") (cf. Figure III.3). The sample’s distribution is given
by the type of the attribute representing the factor (cf. Section II.2.5).

• number of modifications: the number of new values taken by a modified factor. It must be greater or equal to 2. If
the sampling mode is "regular" and the given number M is odd, the actual number of modifications will be M−1.

In the example of Section III.6.3.1, we used the default options for the OAT sampler, namely:

• sampling mode: regular;

• number of modifications: 2.

In the next examples, we present the results of choosing different options.

III.6.3.3 Regular mode

In the example of Section III.6.3.1, if we change the "step 3" to:

TOATDesign oatSampler(tds, "regular", 4);

the OAT design becomes:

page 131

TOATDesign CHAPTER III. THE SAMPLER MODULE

* Row * tdsoat__n__iter * x1.x * x2. * __nominal_set__ * __modified_att_ *

* 0 * 1 * 0 * 10 * 1 * -1 *
* 1 * 2 * -1 * 10 * 1 * 1 *
* 2 * 3 * 1 * 10 * 1 * 1 *
* 3 * 4 * -0.5 * 10 * 1 * 1 *
* 4 * 5 * 0.5 * 10 * 1 * 1 *
* 5 * 6 * 0 * 8 * 1 * 2 *
* 6 * 7 * 0 * 12 * 1 * 2 *
* 7 * 8 * 0 * 9 * 1 * 2 *
* 8 * 9 * 0 * 11 * 1 * 2 *

Each factor is modified 4 times, and its values are regularly spaced over the interval of variation (see Section XIV.3.6
for complete code).

III.6.3.4 Random mode

In order to have randomly distributed values over the interval, the example’s code needs further modifications.

To produce a random sampling, the attributes representing the factors must belong to the TStochasticAttribute family
(cf. Section II.2.5). We thus need to modify the "step 1" of example of Section III.6.3.1 to:

// step 1
TDataServer *tds = new TDataServer("tds","Data server for simple OAT design");
tds->addAttribute(new TUniformDistribution("x1", -5.0, 5.0));
tds->addAttribute(new TNormalDistribution("x2", 11.0, 1.0));

Tip
There is no a priori relationship between the distribution of the attribute and the nominal value and range
of the factor it represents. However, a good practice is to insure that the probability density over the whole
factor’s range is never null.

The "step 2" of the example of Section III.6.3.1 does not need to be modified. The "step 3", on the other hand, becomes:

// step 3
TOATDesign oatSampler(tds, "lhs", 1000);

By choosing the "lhs" mode, we ask for a random sampling over the range of the factor (defined in "step 4"). Here, we
also ask for 1000 1 modifications of each factor.

The rest of the script remains unchanged. We modify the "//display" section in order to visualise histograms of the
sampling, instead of a long list of numbers:

// display
TCanvas c("can");
c.Divide(2,1);
c.cd(1);
tds->draw("x1","__modified_att__ == 1");
c.cd(2);
tds->draw("x2","__modified_att__ == 2");

1This is a ridiculously high number for an OAT design whose aim is, precisely, to provide a small and simple design-of-experiments. We do
this only to be able to visualise nice histograms !

page 132

CHAPTER III. THE SAMPLER MODULE TOATDesign

Tip
The two calls to draw are an illustration of the use of the "__modified_att__" attribute. Here, it allows to filter
out the data, by keeping only the experiments where the interesting factor is modified.

The resulting histograms are shown in figure Figure III.15. The left histogram shows the distribution of data for the
"x1" attribute (uniform distribution) and the right, for the "x2" attribute (gaussian distribution). The latter shows how the
gaussian distribution is truncated by the choice of the nominal value and the range (the complete code can be found in
Section XIV.3.7).

Figure III.15: Random values for OAT design

III.6.3.5 Multiple sets of nominal values

If the factors have more than one possible nominal value, the OAT sampler can automatically build a design-of-
experiments for each set of nominal values stored in the dataserver.

This information can be set manually, but an easier way is to write it inside a "Salome table" file (cf. Section II.3 for a
description of the format). Below is a simple example of such a file:

#FILE_NAME: myNominalValues.dat
#COLUMN_NAMES: x1 | x2

0.0 10.0
5.0 3.0
-5.0 17.0

Still starting from the script of the example of Section III.6.3.1, the only step requiring modifications is the first one:

// step 1
TDataServer *tds = new TDataServer("tds","Data server for simple OAT design");
tds->fileDataRead("myNominalValues.dat");

The "step 2" is now useless and must be removed. The nominal values of the factors will be automatically loaded from
the dataserver.

Now if we run the modified script, the result is:

page 133

TOATDesign CHAPTER III. THE SAMPLER MODULE

**
* Row * tdsoat__n__iter * x1 * x2 * __nominal_set__ * __modified_att_ *
**
* 0 * 1 * 0 * 10 * 1 * -1 *
* 1 * 2 * -1 * 10 * 1 * 0 *
* 2 * 3 * 1 * 10 * 1 * 0 *
* 3 * 4 * 0 * 8 * 1 * 1 *
* 4 * 5 * 0 * 12 * 1 * 1 *
* 5 * 6 * 5 * 3 * 2 * -1 *
* 6 * 7 * 4 * 3 * 2 * 0 *
* 7 * 8 * 6 * 3 * 2 * 0 *
* 8 * 9 * 5 * 2.4 * 2 * 1 *
* 9 * 10 * 5 * 3.6 * 2 * 1 *
* 10 * 11 * -5 * 17 * 3 * -1 *
* 11 * 12 * -6 * 17 * 3 * 0 *
* 12 * 13 * -4 * 17 * 3 * 0 *
* 13 * 14 * -5 * 13.6 * 3 * 1 *
* 14 * 15 * -5 * 20.4 * 3 * 1 *
**

The generated design contains 3× (2n+ 1) experiments. The attribute "__nominal_set__" now varies from 1 to 3,
indicating which set of nominal value is taken as reference. The complete code can be found in Section XIV.3.8.

III.6.3.6 Multiple ranges

We have seen that it is possible to interpret the range of variation as a percentage of the nominal value. This is often
enough to adapt the range to very different nominal values. However, in some contexts it can be useful to really modify
the range of a factor.

This information can also be read from a data file. For example, our previous file can be modified to add a new attribute
representing the range of one of the factors:

#FILE_NAME: myNominalValues.dat
#COLUMN_NAMES: x1 | x2 | rx1

0.0 10.0 2.0
5.0 3.0 0.4
-5.0 17.0 6.0

Tip
The name of the attribute and the order in which it appears in the file is meaningless. Actually, any attribute
can be considered as a range.

The modifications of "step 1" and the removal of "step 2" in the example of Section III.6.3.5 are still valid, while "step 4"
must be modified in order to tell the OAT sampler that the range of "x1" is represented by another attribute:

// step 4
Bool_t use_percentage = kTRUE;
oatSampler.setRange("x1", "rx1");
oatSampler.setRange("x2", 40.0, use_percentage);

Now, for each new set of nominal values, the value of "rx1" will become the range of "x1".

The result of the modified script (which can be found in Section XIV.3.8) is:

page 134

CHAPTER III. THE SAMPLER MODULE The Vectorial Quantification method

**
* Row * tds__n__iter * x1 * x2 * rx1 * __nominal_set__ * __modified_att_ *
**
* 0 * 1 * 0 * 10 * 2 * 1 * -1 *
* 1 * 2 * -1 * 10 * 2 * 1 * 0 *
* 2 * 3 * 1 * 10 * 2 * 1 * 0 *
* 3 * 4 * 0 * 8 * 2 * 1 * 1 *
* 4 * 5 * 0 * 12 * 2 * 1 * 1 *
* 5 * 6 * 5 * 3 * 0.4 * 2 * -1 *
* 6 * 7 * 4.8 * 3 * 0.4 * 2 * 0 *
* 7 * 8 * 5.2 * 3 * 0.4 * 2 * 0 *
* 8 * 9 * 5 * 2.4 * 0.4 * 2 * 1 *
* 9 * 10 * 5 * 3.6 * 0.4 * 2 * 1 *
* 10 * 11 * -5 * 17 * 6 * 3 * -1 *
* 11 * 12 * -8 * 17 * 6 * 3 * 0 *
* 12 * 13 * -2 * 17 * 6 * 3 * 0 *
* 13 * 14 * -5 * 13.6 * 6 * 3 * 1 *
* 14 * 15 * -5 * 20.4 * 6 * 3 * 1 *
**

If we compare this design to the previous one, we can see that the column for "x2" is unchanged, while "x1" is modified
according to the value of "rx1". We can also note that "rx1" is never modified (in the OAT way). This is because no
call to the function setRange was done for it. Only the attributes with an associated range are modified by the
sampling procedure.

III.6.3.7 Remarks

To finish this description of the OAT sampler of Uranie, here are some general remarks to answer frequently asked
questions or to inform the user about the evolution of the class.

• It is not possible to use random modes when data are loaded from a file.

• The value of a range can always be interpreted as percentage of the nominal value, even if the range is read from the
dataserver. Please refer to the developer documentation of the function URANIE::Sampler::TOATDesign::setRange
for details.

III.7 The Vectorial Quantification method

This method is called when instead of having a list of input parameters (in terms of stochastic distribution) that one
would like to transform into a design-of-experiments, the user has a dataset, made out of a very large number of points.
In this case, it is possible, using the TNeuralGas class, to create sub-sample of points that would be representative
of the complete provided-set, based on a NeuralGas algorithm. This might be useful in order to test the output of long
and complicated codes or computations without leaving aside a possible area of the input parameter values.

Figure III.16 shows the effect of the reduction of the sample in the simple case of a two-dimensional plane, when
considering the "geyser.dat" file and its sub-sample of 50 points.

page 135

The Vectorial Quantification method CHAPTER III. THE SAMPLER MODULE

Figure III.16: Example of a dataset reduction (the geyser one) using the NeuralGas algorithm, to go from 272 points
(left) to 50 one (right)

Here is an example of how to use the neuralgas algorithm to reduce a database.

TCanvas *c = new TCanvas("Can","Can",10,32,1300,600); x1 [1]
c->Divide(2,1);

TDataServer *tdsGeyser = new TDataServer("tdsgeyser", "Neural Gas for Geyser");

tdsGeyser->fileDataRead("geyser.dat");

TNeuralGas * tvq = new TNeuralGas(tdsGeyser,"", 50); x2 [2]
tvq->setDrawProgressBar(kFALSE);

TDataServer *tdsng = tvq->getSubSample("loop=20"); x3 [3]
c->cd(1);

tdsGeyser->draw("x2:x1");

((TH2F*)gPad->GetPrimitive("__tdshisto__0"))->SetTitle("Geyser, 272 points"); x4 [4]
c->cd(2);

tdsng->draw("x2:x1");

((TH2F*)gPad->GetPrimitive("__tdshisto__0"))->SetTitle("VQ, 50 points");

Construction of the plot

x1 Creation of TCanvas subdivided into two pieces to compare results.x2 Construction of the neuralgas object from the provided databasex3 Get the sub-sample as a new dataserver, after looping 20 the algorithmx4 Access the latest histogram drawn on current pad, to change its title

page 136

Chapter IV

The Launcher module

IV.1 Introduction

This chapter introduces the launcher module whose purpose is to get a complete response surface from a design-of-
experiments. This can be done using the relauncher module as well (see Chapter VIII) whose goals are the same. The
main difference lies in the way they both are dealing with parallelisation of computation: the launcher module relies on
an automatic detection of a possible cluster Section IV.4 whereas the relauncher is designed for a local parallelisation
(on the current machine with different technologies, as explained in Section VIII.4).

IV.1.1 Presentation

We present in this chapter the features of Uranie, related to the assessment of a design-of-experiments (matrix of "X")
to construct the output variables (matrix of "Y "). Uranie can manage two kinds of computations: analytic functions and
external codes.

In the first case of an analytic computation (Section IV.2), an analytic formula is used to compute outputs from inputs.

In the second case, Uranie calls an external computational code (Section IV.3). The definition of the code must contain:

1. the input files where the variables under study stand;

2. output files containing the computational results .

Input and output files can have multiple data storage formats (see Section IV.3.1).

Moreover, the code assessment can be either sequential or distributed (Section IV.4). In both cases, the same Uranie
macro will be used.

IV.1.2 Overview of a simple case

To illustrate these features, let us consider the definition of the flowrate problem, that we will implement as an analytic
function (see Section IV.1.2.2) as well as an external code (see Section IV.1.2.3).

page 137

Overview of a simple case CHAPTER IV. THE LAUNCHER MODULE

IV.1.2.1 Presentation of the problem

This problem is handled in [39], page 35, with the mathematical formula to be treated.

Figure IV.1: Sketch of the flowrate problem and its variables[2].

y = f (x) =
2πTu (Hu−Hl)

ln(r
rω
)
[
1+ 2LTu

ln(r
rω

)r2
ω Kω

+ Tu
Tl

]
EQUATION IV.1: Flowrate function

The eight parameters shown both in Figure IV.1 and in equation Equation IV.1 are introduced below by describing their
meaning along with their underlying hypothesis, bearing in mind that it is common, in the Uranie context, to remind in
the statistical approach.

1. rω ∈ [0.05,0.15] (m): radius of borehole

2. r ∈ [100,50 000] (m): radius of influence

3. Tu ∈ [63 070,115 600] (m2/year): Transmitivity of the superior layer of water

4. Tl ∈ [63.1,116] (m2/year): Transmitivity of the inferior layer of water

5. Hu ∈ [990,1 110] (m): Potentiometric "head" of the superior layer of water

6. Hl ∈ [700,820] (m): Potentiometric "head" of the inferior layer of water

7. L ∈ [1 120,1 680] (m): length of borehole

8. Kω ∈ [9 855,12 045] (m): hydraulic conductivity of borehole

This example has been treated by several authors in the dedicated literature, for instance in [40].

page 138

CHAPTER IV. THE LAUNCHER MODULE Overview of a simple case

IV.1.2.2 Case of an analytic function

We will focus on the flowrate benchmark (cf Section IV.1.2.1) to present the use of Uranie with an analytic function. In
this case, the analytic function must be written with "C" format according to the following prototype:

void myFunction (Double_t *param, Double_t *res)

It is the classical prototype of ROOT for these objects TF1, TF2 and TF3. The flowrate function is written in the macro
file "UserFunctions.C" which can be found in ${URANIESYS}/share/uranie/macros and which looks
like this:

#include "TMath.h"

void flowrateModel(double *x, Double_t *y)
{
Double_t drw = x[0], dr = x[1];
Double_t dtu = x[2], dtl = x[3];
Double_t dhu = x[4], dhl = x[5];
Double_t dl = x[6], dkw = x[7];

Double_t dnum = 2.0 * TMath::Pi() * dtu * (dhu -dhl);
Double_t dlnronrw = TMath::Log(dr / drw);
Double_t dden = dlnronrw * (1.0 + (2.0 * dl * dtu) / (dlnronrw * drw * drw * dkw) + ←↩

dtu / dtl);

y[0] = dnum / dden;
}

IV.1.2.3 Case of an external code

It is assumed that the code can be executed by the user; we will deal with the setup of the code on the machines the
user will use. Moreover, the environment variables PATH and LD_LIBRARY_PATH must be properly set up to allow
the execution of ROOT and/or Uranie and/or any commands needed for the execution of the computational code.

Here we do not have an analytic function like described above anymore, but a computational code with its input files,
with output variables being stored in ASCII files; these will be called output files.

We use the flowrate benchmark (cf Section IV.1.2.1) as this computational code for this example. Users must give to
the code the appropriate input files. The binary corresponding to the benchmark, also named flowrate, is available
in the bin directory of Uranie installation directory. Users can see options of flowrate by executing the command
flowrate -h.

flowrate -h
Usage: flowrate [-d] [-s] [-k|-f|-r|-kf|-ff] [-h|-?] [file]
-d: debug mode
-s: silent mode
-k: input file with keys [flowrate_input_with_keys.in]
-f: input file with flags [flowrate_input_with_flags.in]
-r: input file with only values in rows [flowrate_input_with_values_rows.in]
-kf: input file with keys with failure mode [flowrate_input_with_keys.in]
-ff: input file with flags with failure mode [flowrate_input_with_flags.in]
-h,-?: this help message

• -d option allows to give some intermediate values to users while executing flowrate, such as values read in input
files, or to show steps or information in execution (opening of input files, number of lines of these input files...).

• -s silent mode.

page 139

Overview of a simple case CHAPTER IV. THE LAUNCHER MODULE

• -k and -kf options allow to simulate the launch of flowrate with data files of "key=value" format (see Section IV.1.2.3.1.1).
The -k simply executes the flowrate code. The -kf allows to determine a set of values for which flowrate is considered
in failure. If user does not specify an input file, flowrate will look for both options the input file flowrate_input_file_with_keys.in
whom "key=value" format is described below.

• In the same way, -f and -ff options allow to simulate the launch of flowrate code with files with flags (see Sec-
tion IV.1.2.3.1.2). When -f allows a simple execution of flowrate, -ff allows to simulate a code failure for a specific set
of data. If the user does not specify an input file, flowrate will look for the input file flowrate_input_file_with_flags.in
whom "flags" format is described below.

• -r option allows to simulate the launch of flowrate code with files with values in rows (see Section IV.1.2.3.1.3). The
default input file is flowrate_input_with_values_rows.in whom "values in rows" format is described below.

There are eight mandatory input variables (rω , r, Tu, Tl , Hu, Hl , L, Kω) described in (Section IV.1.2.1). User can also
defines three optional variables chu, chl and cr which allow to calculate a variable called d which is written in output
files. However, these three values have an incidence on the execution of flowrate only with -kf and -ff options. The
formula used to calculate d is the following:

d=(Hu - chu)*(Hu - chu) + (Hl - chl)*(Hl - chl)

This equality means d is the squared radius of the circle C of centre (chu,chl).

If -kf or -ff options are used, flowrate tests if

d < cr

i.e. we consider couples of values (hu,hl) which are inside the circle C as a set of values where flowrate fails. If this
inequality is verified, flowrate crashes and no output file is produced. Without these options (-kf and -ff), this inequality
is not checked.

IV.1.2.3.1 Flowrate input files

IV.1.2.3.1.1 Input files with "key=value" format

In this section, we describe the file flowrate_input_with_keys.in. Executing flowrate with options -k and -kf without
specifying any input file, means that flowrate_input_with_keys.in is taken as a default entry. If the user creates "*.in"
input files, the hereafter format must be kept, with the same variables names (rω , r, Tu, Tl , Hu, Hl , L, Kω).

#
#
INPUT FILE with KEYS for the "FLOWREATE" code
\date 2008-04-22 12:53:35
#

date = 123456 ;

#########################
##
exclude points
##
chu = 1050;
chl = 770;
cr = 1100;
##

page 140

CHAPTER IV. THE LAUNCHER MODULE Overview of a simple case

#########################

#########################
##
parameters : 8
##
Rw = 0.0500 ;
R = 33366.67 ;
Tu = 63070.0 ;
Tl = 116.00 ;
Hu = 1110.00 ;
Hl = 768.57;
L = 1200.0 ;
Kw = 11732.14 ;
##
#########################

#########################
##
to simulate CPU time
##
normal 1 :
min 10000000 : 1.160u 0.000s 0:01.16 100.0%
max 100000000 : 11.600u 0.010s 0:11.61 100.0%
##
nLoop = 1;
##
#########################

end = 6;

When using this kind of input files, Uranie is able to make the parameters values vary so as to launch the code multiple
times with different values. Note that all the variables of this file are not modified: the date and nLoop variables will
remain unchanged during the study.

IV.1.2.3.1.2 Input files with flag format

In this section, we describe the file flowrate_input_with_flags.in. Executing flowrate with options -f and -ff without
specifying any input file, means that flowrate_input_with_flags.in is taken as a default entry. In the same way as for
files with "key=value" format, if the user wants to create a "*.in" input files with "flag" format, the same format has to be
kept as for the file flowrate_input_with_flags.in.

On the contrary of the "key=value" format, changes are necessary for Uranie to be able to modify the values. For
example, if one has the following input file:

#
INPUT FILE with FLAG for the "FLOWREATE" code
\date 2008-04-22 12:55:17
#

new Implicit_Steady_State sch {
frottement_paroi { 0.071623 19712.541454 } // values of Rw and R
tinit 0.0
tmax 1000000.
nb_pas_dt_max 1500
dt_min 1051.972855 // value of Hu
dt_max 805.249178 // value of Hl
facsec 1000000.

page 141

Overview of a simple case CHAPTER IV. THE LAUNCHER MODULE

kW 11401.611060 // value of Kw
information_Tu Champ_Uniforme 1 85927.853162 // value of Tu
information_Tl Champ_Uniforme 1 85.803614 // value of Tl
information_L {

precision 1162.689830 // value of L
}
convergence {

criterion relative_max_du_dt
precision 1.e-6

}

stop_criterium {
ch_abcsissa_hu 1050
ch_ordinate_hl 770
c_radius 1100

}

Solveur Newton3 {
max_iter_matrice 1
max_iter_implicite 1
date 5654321
seuil_convg_implicite 1.e-6
assemblage_implicite 10
solveur_lineaire BiCGS

preconditionneur ILU
seuil_resol_implicite 1.e-5

}
}

and one wants to change some values, then one shall replace these values with "flags", hinted with special characters.
For example one can replace the values with their names surrounded by "@":

#
INPUT FILE with FLAG for the "FLOWREATE" code
\date 2008-04-22 12:55:17
#

new Implicit_Steady_State sch {
frottement_paroi { @Rw@ @R@ }
tinit 0.0
tmax 1000000.
nb_pas_dt_max 1500
dt_min @Hu@
dt_max @Hl@
facsec 1000000.
kW @Kw@
information_Tu Champ_Uniforme 1 @Tu@
information_Tl Champ_Uniforme 1 @Tl@
information_L {

precision @L@
}
convergence {

criterion relative_max_du_dt
precision @Rw@

}

stop_criterium {
ch_abcsissa_hu 1050
ch_ordinate_hl 770
c_radius 1100

}

page 142

CHAPTER IV. THE LAUNCHER MODULE Analytic function

Solveur Newton3 {
max_iter_matrice 1
max_iter_implicite 1
date 5654321
seuil_convg_implicite 1.e-6
assemblage_implicite 10
solveur_lineaire BiCGS

preconditionneur ILU
seuil_resol_implicite 1.e-5

}
}

This file is not directly (without Uranie) exploitable by the flowrate code anymore (contrary to the file flowrate_input_with_keys.in)
because flags are not numerical values. Therefore, the flags we have in the modified file, such as @Rw@ for the vari-
able rw or @R@ for the variable r, have to be replaced by numerical values before it becomes usable.

IV.1.2.3.1.3 Input files with values in rows

We describe here the shape of the default file flowrate_input_with_values_rows.in searched by flowrate with the -r
option. Typically, the expected input file looks like the following: eight values which are the values of the eight variables
defined above (rω , r, Tu, Tl , Hu, Hl , L, Kω). To define the three optional variables, users must add three values just
after other values. In the contrary, the three default values are respectively chu=1050, chl=770 and cr=1100.

0.0500 33366.67 63070.0 116.00 1110.00 768.57 1200.0 11732.14

IV.1.2.3.2 Flowrate output files

The flowrate code generates two output files:

• _output_flowrate_withRow_.dat : file with "column" format and with a header containing the names of the cost variable
and the d variable. Then, the values of the cost variable and the d variable are displayed.

#COLUMN_NAMES: yhat | d

6.757218e+01 4.092561e+03

• _output_flowrate_withKey_.dat : file with "key=value" format without an header;

yhat = 6.757218e+01;
d = 4.092561e+03;

IV.2 Analytic function

The analytic functions compatible with Uranie must follow the prototype:

void MyFunction(Double_t *x, Double_t *y)

where:

• MyFunction is the name of the function;

• x is an array of Double_t which represents inputs;

page 143

Analytic function CHAPTER IV. THE LAUNCHER MODULE

• y is an array of Double_t which represents outputs or targets.

So, this prototype allows us to execute any function of IRnX on IRnY .

The example below is the content of the file UserFunctions.C in which the definition of the flowrate function
seen in Section IV.1.2.1 has been copied:

#include "TMath.h"

void flowrateModel(double *x, Double_t *y)
{

Double_t drw = x[0], dr = x[1];
Double_t dtu = x[2], dtl = x[3];
Double_t dhu = x[4], dhl = x[5];
Double_t dl = x[6], dkw = x[7];

Double_t dnum = 2.0 * TMath::Pi() * dtu * (dhu -dhl);
Double_t dlnronrw = TMath::Log(dr / drw);
Double_t dden = dlnronrw * (1.0 + (2.0 * dl * dtu) / (dlnronrw * drw * drw * dkw) + ←↩

dtu / dtl);

y[0] = dnum / dden;
}

In a Uranie script, after having defined the TDataServer object and created a sample, we load the previously defined
function and create a TLauncherFunction object with its name as second argument, as shown below:

// Create a TDataServer

TDataServer * tds = new TDataServer("tdsFlowrate","TDS for flowrate"); x1 [1]
// Add the eight attributes of the study with uniform laws

tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15)); x2 [2]
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));

tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));

tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));

tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));

tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));

tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));

tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

// Generate the sampling from the TDataServer

TSampling *sampling = new TSampling(tds, "lhs", 1000); x3 [3]
sampling->generateSample();

// Load the function in the UserFunction macros file

gROOT->LoadMacro("UserFunctions.C"); x4 [4]
// Create a TLauncherFunction from a TDataServer and an analytic function

TString FuncName="flowrateModel";

TLauncherFunction * tlf = new TLauncherFunction(tds, FuncName,"",FuncName); x5 [5]
// Define whether a progress bar should be drawn

tlf->setDrawProgressBar(kFALSE); x6 [6]
// Evaluate the function on all the design-of-experiments

tlf->run(); x7 [7]
tds->drawProfile("flowrateModel:rw");

page 144

CHAPTER IV. THE LAUNCHER MODULE Analytic function

Evaluate an analytic function

x1 Create a TDataServer;x2 Add attributes to the TDataServer;x3 Create and generate a sample;x4 Load the file UserFunctions.C, that allows to use the function flowrateModel;x5 Create a TLauncherFunction object from the TDataServer and the analytic function flowrateModel.
The inputs are all the TAttribute objects of the TDataServer, taken in the order of the calls to the
addAttribute methods (rω , r, Tu, Tl , Hu, Hl , L, Kω). WARNING WITH ROOT6: the second argument
should be either a string or a pointer if the function is defined in the same file (see Section I.2.5) and the last
argument that gives the name of the output attribute cannot be omitted anymore.x6 Define whether a progress bar should be drawn (here we switch it off).x7 Evaluate the function on the design-of-experiments contained in the TDataServer and store the output y
in a new TAttribute whose name is the name of the function flowrateModel (we can see the use of the
flowrateModel variable in the last drawProfile line).

At any moment, if one wants to verify the name of the function used, a call to the method GetName will return the
name of the TLauncherFunction function:

cout << tlf->GetName() << endl; // will print "flowrateModel"

If the attributes have not been defined in the order they will be used in the function, the user must specify them in the
right order in the third argument of the function as a string that contains the variables names separated by colons. In
similar manner, if there are attributes that are defined but not useful for a launcher definition, in order Uranie not to take
them into account, just specify the list of the useful attributes in the definition of the TLauncherFunction. The
following example will produce the same result as the previous one:

// Create a TDataServer

TDataServer * tds = new TDataServer("tdsFlowrate","TDS for flowrate");

// Add the eight attributes of the study with uniform laws

tds->addAttribute(new TUniformDistribution("a", 0., 1.)); x1 [1]
tds->addAttribute(new TUniformDistribution("b", 0., 1.));

tds->addAttribute(new TUniformDistribution("c", 0., 1.));

tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));

tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));

tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));

tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0)); x2 [2]
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));

tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));

tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));

tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

// Generate the sampling from the TDataServer

TSampling *sampling = new TSampling(tds, "lhs", 1000);

sampling->generateSample();

// Load the function in the UserFunction macros file

page 145

Analytic function CHAPTER IV. THE LAUNCHER MODULE

gROOT->LoadMacro("UserFunctions.C");

// Create a TLauncherFunction from a TDataServer and an analytic function

TString fName="flowrateModel";

TLauncherFunction *tlf = new TLauncherFunction(tds, fName, "rw:r:tu:tl:hu:hl:l:kw", fName); ←↩x3 [3]
// Evaluate the function on all the design-of-experiments

tlf->setDrawProgressBar(kFALSE);

tlf->run();

tds->drawProfile("flowrateModel:rw");

Specification of the input variables for an analytic function

x1 Three useless attributes have been added to the TDataServer;x2 The creation order of the other attributes have been mixed up;x3 In order for Uranie to treat only the wanted attributes (not a, b, c), and in the right order, we add the string
"rw:r:tu:tl:hu:hl:l:kw" in the definition of the TLauncherFunction.

Tip
Note that if the third argument is the empty string (""), the behaviour is the same as if the argument is not
specified. That is useful to specify a fourth argument (see below) without having to specify the third.

By default, Uranie assumes the function returns only one value. In case the function returns several values and one
wants to precise their name explicitely, it is necessary to specify their number to Uranie to create the different attributes
in the TDataServer, by using the setNOutput method. For example if we use the following definition in the
previous example:

tlf->setNOutput(2);

then, after running, two outputs would be available: flowrateModel_1 and flowrateModel_2, whose names
are created automatically from the function name and an index.

Finally, it is possible to specify the names of the output variables as the fourth argument of the TLauncherFunction.
This is highly recommended, and mainly useful in two cases:

• for renaming the output variable in order to ease its manipulation (e.g. y instead of flowrateModel);

• for getting more than one output variable if the function returns several, without using the setNOutput method.
As an example, assuming that the function returns two values (i.e. it defines y[0] and y[1]), we can have the
following call, that will produce values for outputs named y0, y1:

TLauncherFunction *tlf2out = new TLauncherFunction(tds, "flowrateModel", "rw:r:tu:tl:hu:hl ←↩
:l:kw", "y0:y1");

As seen previously, the TLauncherFunction::run can be called without argument to run the function with the
default inputs and outputs, but the method can also be called with arguments that specify the inputs and outputs to use
for a specific computation. For example, assuming that we have added two sets of input attributes, [r1

ω , r1, T 1
u , T 1

l , H1
u ,

H1
l , L1, K1

ω] and [r2
ω , r2, T 2

u , T 2
l , H2

u , H2
l , L2, K2

ω], to the dataserver, then we could get the result of the computation
on the first set, y1, and on the second set, y2, by using the following code:

page 146

CHAPTER IV. THE LAUNCHER MODULE External Code

tlf->run("rw1:r1:tu1:tl1:hu1:hl1:l1:kw1", "y1");
tlf->run("rw2:r2:tu2:tl2:hu2:hl2:l2:kw2", "y2");

More example of running functions with a TLauncherFunction object, are shown in the use-case chapter, from Sec-
tion XIV.4.1 to Section XIV.4.3.

Summary: TLauncherFunction object

• TLauncherFunction(TDataServer *tds, void* function(double *,double *), TString sinput, TString soutput)

Create a launcher with the analytic function function to apply on the TDataServer tds where the input
attributes are specified in sinput and the outputs in soutput.

• TLauncherFunction(TDataServer *tds, const char* functionname, TString sinput="", TString soutput="")

Create a launcher with the analytic function whose name is functionname (see Section I.2.5) to apply on the
TDataServer tds where the input attributes can be specified in sinput and the outputs in soutput.

• run(TString sinput="", TString soutput="", Option_t* option="")

Evaluate the function on the design-of-experiments with sinput as input attributes and soutput as output at-
tributes.

Warning
These arguments are optional.

• setNOutput(Int_t n)

The main interest of this method is to return the number of output variables in constructor (soutput=""), and, in this
case, cost variables names will be concatenation between the name of the function and the index.

IV.3 External Code

In Uranie, an external code is defined by a command line, and input and output attributes which are stored in ASCII
files, named respectively input files and output files.

If, because of the way the function are defined, a TLauncherFunction is bound to have only double-precision
attributes as input, dealing with a code allows more flexibility and it is now possible to handle both vectors and strings
as inputs and outputs.

To launch an external code, it is necessary to define a TLauncher object. This object is used to launch the code
defined in a TCode object and that use TInputFile input files and TOutputFile output files (as shown in
Figure IV.2).

page 147

External Code CHAPTER IV. THE LAUNCHER MODULE

Figure IV.2: Inheritance diagram for the class TLauncher

This section is organised as follow: we first describe the definition of TInputFile and TOutputFile in Sec-
tion IV.3.1, then the construction of a TCode in Section IV.3.2, and finally the construction of a TLauncher in
Section IV.3.3. A schematic view of the code launching process is represented in Figure IV.3.

Figure IV.3: Schematic description of the launcher procedure when using an external code. Yellow boxes show
instances of class, and green ones are precision about attributes. The design-of-experiments part can be replaced by
an already-existing database.

The paragraphs below describe the main part of this procedure, as it is displayed by Figure IV.3, remaining at the class
level. It can indeed be decomposed as follow:

• A design-of-experiments is produced (the corresponding part is highlighted in the red-dashed rectangle). On top of
this, a file is "attached" to every input attribute, defining a way to spot the place where to find information when the
launcher would have to run the code. This part is furthered discussed in Section IV.3.1.2

• One or more TOutputFile are created and the output attributes are attached to them, specifying, as for previous
step, how to extract the information once the launcher will be running the code. This part is also described in more
details in Section IV.3.1.3.

page 148

CHAPTER IV. THE LAUNCHER MODULE Code input and output files

• A TCode is created by giving the input TDataServer along with the string used to launch the code in a terminal.
The output files are then attached to the TCode object.

• The TLauncher object is created by giving the input TDataServer and the previously defined TCode. During
the creation, a working directory is made where input files are copied. Then the loop is performed, running the
code as many times as there are points in the design-of-experiments. This loop can be decomposed as well in few
key-steps:

1. An initialisation: a sub-directory is created for this specific computation, in which the input files are copied and
modified to used the requested input values defined in the design-of-experiments and stored in the TDSNtupleD.

2. Running the external code itself

3. Parsing the output files to collect the desired values and send them back to the launcher which fills the ntuple
of results. This ntuple is merged to the input one at the end of the process.

Precision on the described steps

• One can ask to use more than one process in order to proceed with the computation. In this case, the main
launcher calls the TLauncherMulti to distribute events one-by-one. The results are gathered and the output
TDataServer is saved every 5 events (disregarding the number of processes requested). This is further dis-
cussed in Section IV.4.

• The usual procedure is to write a file for every event processed (as most of the time the code to be run is slow) and
back up the complete output file every 5 events (as said previously). In the unusual case where the code is fast, this
step is considerably slowing down the process of running and collecting the outputs.

It is possible to skip this step, by calling the run method passing the following optional argument: "noIntermediate-
Saved". This has to be used with caution as the output file will be opened only once at the very end of the process,
so if this step is not reach for one reason or another, everything will be lost and one would have to re-run from the
beginning.

IV.3.1 Code input and output files

Uranie can manage different kinds of input and output files. We’ll describe below these different IO file formats after a
short introduction on the way these files are implemented.

IV.3.1.1 General discussion

All the input/output files that will be discussed in the following sections (meaning restrained to the Launcher module)
are based on a class named TamponTexte, which comprehends a file as a group of field, apart one to another
thanks to separators. It is absolutely crucial to keep this is mind.

With the introduction of the vectors and strings in version 3.10.0, more complex interactions with files were introduced:
how to differ two iterations of a single vector and how to differentiate a double from a string. This depends highly on the
nature of the input/output file under consideration, whether it is just a text file used as database (in this case it depends
mostly on the way you’ve written the code that generates/parses it) or whether it corresponds to a stricter kind of file,
for instance a piece of code (c++/python/zsh). In the latter case, strings and vectors are not written in the same way.
To take this into account, a rule has been defined (commonly to both input and output files, both in the Launcher and
Relauncher module). There is a method for any kind of file to define properties of vector and string objects:

page 149

Code input and output files CHAPTER IV. THE LAUNCHER MODULE

• setVectorProperties(string beg, string delim, string end): the first element is the string
beginning of the vector (usually "[" for python, "(" for zsh/sh, nothing...), the second one is the delimiter between
iterators (usually "," for c++/python, blank for zsh/sh...) and the last one is the end of the string (usually the opposite
character of the beginning one).

• setStringProperties(string beg, string end): the first and second elements are respectively the
beginning and ending character used for string (oftenly """).

In order to illustrate how to deal with a complicated case (when the order provided by the database is not the one
needed by the code, but also dealing with vectors and strings as inputs), one can have a look at the examples provided
from Section XIV.4.29 to Section XIV.4.33. The output files, on the other hand, are more thoroughly (and explicitly)
discussed in Section IV.3.1.3.

IV.3.1.2 Input files

When a code needs input parameters from one or more input files, Uranie must be able to duplicate and modify these
files in order to set the input parameter under discussion to its requested value. Uranie can do this using different
kinds of input files. Before going through the following sections, which will present the way input files are used with the
flowrate problem presented in Section IV.1.2, a small discussion will introduced the different kinds of input file, some
of their properties and the way they are usually declared.

The classes used to either do the substitution in the input file or to recreate a new input file to feed the code, were not
much discussed up to now in this documentation as they were created on the fly, by the TCode itself at the initialisation.
This is done by the mean of checking the list of EFileType for every attribute (one attribute can indeed have more
than one file and type in case the code, or codes, need to have this information in different files, with different formats).
An explicit declaration is however possibly needed for two reasons:

• Letting the TCode object do, as described above, one can not choose the order to which the attribute are attached
to the corresponding dumper object, and so, the order in which they will be written (which can be of uttermost
importance for some format). Indeed the TCode object will follow the order in which the attribute have been added
to the TDataServer by hand (but in the case the user just has to invert the corresponding attributes) or, more
likely, through a database (e.g. using the fileDataRead method).

• In the case of vector and strings handling, it might be necessary to specify the delimiter, beginning and ending sign
(as already introduced above and in the last part of Section II.3.1.1).

The classes to handles inputs files can be split into two different types:

• the one creating an input file from scratch: done with TInputFileRecreate class, it can use different imple-
mentations according to the type requested by the user, through the TAttribute::EFileType provided in
the setFileKey method (discussed below). The possible values are: kNewKey, kNewTDS, kNewRow and
kNewColumn. These flags are discussed below.

• the ones which modify an existing file: this is done with specific classes, depending on the type of inputs used by the
code and this is also precised by the user through the TAttribute::EFileType provided in the setFileKey
method. The possible values are: kKey (creating implicitly a TInputFileKey object), kFlag (creating a
TInputFileFlag object), and both kXMLAttribute and kXMLField (used in the TInputFileXML in-
stance).

page 150

CHAPTER IV. THE LAUNCHER MODULE Code input and output files

IV.3.1.2.1 Input files with "key=value" format

Let us consider the flowrate input file with "key = value" format, with the eight parameters (rω , r, Tu, Tl , Hu, Hl , L, Kω):

#
#
INPUT FILE with KEYS for the "FLOWREATE" code
\date 2008-04-22 12:53:35
#

date = 123456 ;

#########################
##
exclude points
##
chu = 1050;
chl = 770;
cr = 1100;
##
#########################

#########################
##
parameters : 8
##
Rw = 0.0500 ;
R = 33366.67 ;
Tu = 63070.0 ;
Tl = 116.00 ;
Hu = 1110.00 ;
Hl = 768.57;
L = 1200.0 ;
Kw = 11732.14 ;
##
#########################

#########################
##
to simulate CPU time
##
normal 1 :
min 10000000 : 1.160u 0.000s 0:01.16 100.0%
max 100000000 : 11.600u 0.010s 0:11.61 100.0%
##
nLoop = 1;
##
#########################

end = 6;

Please note that this file has been created out of Uranie and that the values are not managed by Uranie yet: it is just a
model of input file for the code.

Now we write the beginning of the Uranie script that is going to define attributes and assign them a place in the input
file:

{

// Define the DataServer

page 151

Code input and output files CHAPTER IV. THE LAUNCHER MODULE

TDataServer *tds = new TDataServer("tdsFlowrate", "Doe for Flowrate");

// Add the study attributes (min, max and nominal values)

tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15)); x1 [1]
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));

tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));

tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));

tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));

tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));

tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));

tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

// The reference input file

TString sJDDReference = TString("flowrate_input_with_keys.in"); x2 [2]
// Set the reference input file and the key for each input attributes

tds->getAttribute("rw")->setFileKey(sJDDReference, "Rw"); x3 [3]
tds->getAttribute("r")->setFileKey(sJDDReference, "R");

tds->getAttribute("tu")->setFileKey(sJDDReference, "Tu");

tds->getAttribute("tl")->setFileKey(sJDDReference, "Tl");

tds->getAttribute("hu")->setFileKey(sJDDReference, "Hu");

tds->getAttribute("hl")->setFileKey(sJDDReference, "Hl");

tds->getAttribute("l")->setFileKey(sJDDReference, "L");

tds->getAttribute("kw")->setFileKey(sJDDReference, "Kw");

...

Specification of a "key=value" input file for the input variables

x1 In this first part, definition of the attributes of the TDataServerx2 Definition of the reference input file (the file copied before);x3 At each of these lines, definition of the place the parameter will be set, thanks to the setFileKey method,
that takes as parameters the input file name and the name of the variable to replace. For example, the "rw"
parameter will be set in the file flowrate_input_with_keys.in where the Rw value stands.

After these definitions, if we create the code launcher and launch it (what will be presented in the following sections),
then the input file would be modified by writing each sample value in a new input file. For example, the following input
file is one of the generated ones:

#
#
INPUT FILE with KEYS for the "FLOWREATE" code
\date 2008-04-22 12:53:35
#

date = 123456 ;

#########################
##
exclude points
##
chu = 1050;

page 152

CHAPTER IV. THE LAUNCHER MODULE Code input and output files

chl = 770;
cr = 1100;
##
#########################

#########################
##
parameters : 8
##
Rw = 5.194485e-02 ;
R = 8.610663e+03 ;
Tu = 7.644908e+04 ;
Tl = 1.003881e+02 ;
Hu = 1.058603e+03 ;
Hl = 7.224698e+02;
L = 1.148747e+03 ;
Kw = 1.003128e+04 ;
##
#########################

#########################
##
to simulate CPU time
##
normal 1 :
min 10000000 : 1.160u 0.000s 0:01.16 100.0%
max 100000000 : 11.600u 0.010s 0:11.61 100.0%
##
nLoop = 1;
##
#########################

end = 6;

In this file, we will note the different values of the parameters, that have been modified compared to the "model"
presented in the beginning of this section.

Tip
No matter the number of times the key appears in the input file, the value will only be replaced once!

IV.3.1.2.2 Input files with flag format

Let us consider the flowrate input file with flag format, with the eight parameters (rω , r, Tu, Tl , Hu, Hl , L, Kω). As seen
in Section IV.1.2.3.1.2, it is necessary to write "flags" where the values will be written, as in the example below:

#
INPUT FILE with FLAG for the "FLOWREATE" code
\date 2008-04-22 12:55:17
#

new Implicit_Steady_State sch {
frottement_paroi { @Rw@ @R@ }
tinit 0.0
tmax 1000000.
nb_pas_dt_max 1500

page 153

Code input and output files CHAPTER IV. THE LAUNCHER MODULE

dt_min @Hu@
dt_max @Hl@
facsec 1000000.
kW @Kw@
information_Tu Champ_Uniforme 1 @Tu@
information_Tl Champ_Uniforme 1 @Tl@
information_L {

precision @L@
}
convergence {

criterion relative_max_du_dt
precision @Rw@

}

stop_criterium {
ch_abcsissa_hu 1050
ch_ordinate_hl 770
c_radius 1100

}

Solveur Newton3 {
max_iter_matrice 1
max_iter_implicite 1
date 5654321
seuil_convg_implicite 1.e-6
assemblage_implicite 10
solveur_lineaire BiCGS

preconditionneur ILU
seuil_resol_implicite 1.e-5

}
}

Please note that this file has not been created out of Uranie since the flags have been written manually: this file is just
a model of input files for the code.

Now we write the beginning of the Uranie script that is going to define attributes and to assign them a place in the input
file:

// Define the DataServer

TDataServer *tds = new TDataServer("tdsFlowrate", "Doe for Flowrate");

// Add the study attributes (min, max and nominal values)

tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15)); x1 [1]
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));

tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));

tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));

tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));

tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));

tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));

tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

// The reference input file

TString sJDDReference = TString("flowrate_input_with_flags.in"); x2 [2]
// Set the reference input file and the key for each input attributes

tds->getAttribute("rw")->setFileFlag(sJDDReference, "@Rw@"); x3 [3]
tds->getAttribute("r")->setFileFlag(sJDDReference, "@R@");

tds->getAttribute("tu")->setFileFlag(sJDDReference, "@Tu@");

tds->getAttribute("tl")->setFileFlag(sJDDReference, "@Tl@");

page 154

CHAPTER IV. THE LAUNCHER MODULE Code input and output files

tds->getAttribute("hu")->setFileFlag(sJDDReference, "@Hu@");

tds->getAttribute("hl")->setFileFlag(sJDDReference, "@Hl@");

tds->getAttribute("l")->setFileFlag(sJDDReference, "@L@");

tds->getAttribute("kw")->setFileFlag(sJDDReference, "@Kw@");

Specification of a flag input file for the input variables

x1 In this first part, definition of the attributes of the TDataServer;x2 Definition of the reference input file (the file copied before);x3 For every attribe, the position to write the information in the file is specified thanks to the setFileFlag
method. It takes as first parameter the input file name and then the flag where the value will be set. For
example, the "rw" parameter will be set in the file flowrate_input_with_keys.in where the @Rw@ flag
stands.

After these definitions, if we create the code launcher and run it (what will be presented in the following sections), then
the input file would be modified by writing each sample value in a new input file. For example, the following input file is
one of the generated ones:

#
INPUT FILE with FLAG for the "FLOWREATE" code
\date 2008-04-22 12:55:17
#

new Implicit_Steady_State sch {
frottement_paroi { 6.371966e-02 4.913216e+04 }
tinit 0.0
tmax 1000000.
nb_pas_dt_max 1500
dt_min 1.086881e+03
dt_max 7.372423e+02
facsec 1000000.
kW 1.190644e+04
information_Tu Champ_Uniforme 1 7.628909e+04
information_Tl Champ_Uniforme 1 7.386808e+01
information_L {

precision 1.402143e+03
}

convergence {
criterion relative_max_du_dt

precision 1.e-6
}

stop_criterium {
ch_abcsissa_hu 1050

ch_ordinate_hl 770
c_radius 1100

}

Solveur Newton3 {
max_iter_matrice 1
max_iter_implicite 1

date 5654321
seuil_convg_implicite 1.e-6
assemblage_implicite 10
solveur_lineaire BiCGS
preconditionneur ILU

page 155

Code input and output files CHAPTER IV. THE LAUNCHER MODULE

seuil_resol_implicite 1.e-5
}

}

In this file, we will note the different values of the parameters that have been modified compared to the "model"
presented in the beginning of this section.

Tip
If a flag exists several times in a file, the value will be replaced at all the occurrences of the flag.

IV.3.1.2.3 Creation of input files without model files

In case the user does not want to create a model file, it is possible to fully create the input file. To do so, it is necessary
to use the setFileKey method on an attribute and to specify the format of the file to be created. Uranie is able to
generate input files with "key = value" format, "values in row" or "values in column".

• For the "key = value" format, the setFileKey method must be called with a string that describes the input format
(see the C++ reference page for the available formats) as third parameter (if the string is empty, the default format
will be used), and the flag TAttributeFileKey::kNewKey as fourth parameter. As an example the definition
below:

TString sIn = TString("test_input_with_keys.in");
tds->getAttribute("rw")->setFileKey(sIn,"Rw","%e",TAttributeFileKey::kNewKey);
tds->getAttribute("r")->setFileKey(sIn,"R","%e",TAttributeFileKey::kNewKey);
tds->getAttribute("tu")->setFileKey(sIn,"Tu","%e",TAttributeFileKey::kNewKey);
tds->getAttribute("tl")->setFileKey(sIn,"Tl","%e",TAttributeFileKey::kNewKey);
tds->getAttribute("hu")->setFileKey(sIn,"Hu","",TAttributeFileKey::kNewKey);
tds->getAttribute("hl")->setFileKey(sIn,"Hl","",TAttributeFileKey::kNewKey);
tds->getAttribute("l")->setFileKey(sIn,"L","",TAttributeFileKey::kNewKey);
tds->getAttribute("kw")->setFileKey(sIn,"Kw","",TAttributeFileKey::kNewKey);

will lead in the creation of files test_input_with_keys.in, as:

Rw = 1.136676e-01 ;
R = 2.705506e+04 ;
Tu = 9.259556e+04 ;
Tl = 6.400877e+01 ;
Hu = 1.087919e+03 ;
Hl = 7.600170e+02 ;
L = 1.537756e+03 ;
Kw = 1.060694e+04 ;

• For the "value in row" format, the setFileKey method must be called with a string that describes the input format
(see the C++ reference page for the available formats) as third parameter (if the string is empty, the default format
will be used), and the flag TAttributeFileKey::kNewRow as fourth parameter. As an example the definition
below:

TString sInR = TString("test_input_with_row.in");
tds->getAttribute("rw")->setFileKey(sInR,"Rw","%e",TAttributeFileKey::kNewRow);
tds->getAttribute("r")->setFileKey(sInR,"R","%e",TAttributeFileKey::kNewRow);
tds->getAttribute("tu")->setFileKey(sInR,"Tu","%e",TAttributeFileKey::kNewRow);
tds->getAttribute("tl")->setFileKey(sInR,"Tl","%e",TAttributeFileKey::kNewRow);
tds->getAttribute("hu")->setFileKey(sInR,"Hu","",TAttributeFileKey::kNewRow);

page 156

http://www.cplusplus.com/reference/clibrary/cstdio/printf/
http://www.cplusplus.com/reference/clibrary/cstdio/printf/

CHAPTER IV. THE LAUNCHER MODULE Code input and output files

tds->getAttribute("hl")->setFileKey(sInR,"Hl","",TAttributeFileKey::kNewRow);
tds->getAttribute("l")->setFileKey(sInR,"L","",TAttributeFileKey::kNewRow);
tds->getAttribute("kw")->setFileKey(sInR,"Kw","",TAttributeFileKey::kNewRow);

will lead in the creation of files test_input_with_row.in, as:

1.136676e-01 2.705506e+04 9.259556e+04 6.400877e+01 1.087919e+03 7.600170e+02 1.537756e+03 ←↩
1.060694e+04

• Caution must be taken with vectors: before this version, the Row format and the DataServer format (for output files)
were equivalent up to the headers. Now this is different, as vector are dumped on a single line for DataServer
format (also called Salome-table) and with one value per line in Row files. A new flag as then be created as can
be seen for instance when comparing Section XIV.4.30 and Section XIV.4.32. For the new DataServer format, the
setFileKey method must be called with a string that describes the input format (see the C++ reference page
for the available formats) as third parameter (if the string is empty, the default format will be used), and the flag
TAttributeFileKey::kNewTDS as fourth parameter. As an example the definition below:

TString sInTds = TString("test_input_tds.in");
tds->getAttribute("rw")->setFileKey(sInTds,"Rw","%e",TAttributeFileKey::kNewTDS);
tds->getAttribute("r")->setFileKey(sInTds,"R","%e",TAttributeFileKey::kNewTDS);
tds->getAttribute("tu")->setFileKey(sInTds,"Tu","%e",TAttributeFileKey::kNewTDS);
tds->getAttribute("tl")->setFileKey(sInTds,"Tl","%e",TAttributeFileKey::kNewTDS);
tds->getAttribute("hu")->setFileKey(sInTds,"Hu","",TAttributeFileKey::kNewTDS);
tds->getAttribute("hl")->setFileKey(sInTds,"Hl","",TAttributeFileKey::kNewTDS);
tds->getAttribute("l")->setFileKey(sInTds,"L","",TAttributeFileKey::kNewTDS);
tds->getAttribute("kw")->setFileKey(sInTds,"Kw","",TAttributeFileKey::kNewTDS);

will lead in the creation of files test_input_with_tds.in, as:

#COLUMN_NAMES: rw|r|tu|tl|hu|hl|l|kw
#COLUMN_TYPES: D|D|D|D|D|D|D|D

1.136676e-01 2.705506e+04 9.259556e+04 6.400877e+01 1.087919e+03 7.600170e+02 1.537756e+03 ←↩
1.060694e+04

Once again, this file and the previous one looks very familiar, but the input file created with vectors, using respectively
DataServer and Row format in Section XIV.4.30 and Section XIV.4.32 are not.

• For the "values in column" format, the setFileKey method must be called with a string that describes the input
format (see the C++ reference page for the available formats) as third parameter (if the string is empty, the default
format will be used), and the flag TAttributeFileKey::kNewColumn as fourth parameter. As an example
the definition below:

TString sInC = TString("test_input_with_column.in");
tds->getAttribute("rw")->setFileKey(sInC,"Rw","%e",TAttributeFileKey::kNewColumn);
tds->getAttribute("r")->setFileKey(sInC,"R","%e",TAttributeFileKey::kNewColumn);
tds->getAttribute("tu")->setFileKey(sInC,"Tu","%e",TAttributeFileKey::kNewColumn);
tds->getAttribute("tl")->setFileKey(sInC,"Tl","%e",TAttributeFileKey::kNewColumn);
tds->getAttribute("hu")->setFileKey(sInC,"Hu","",TAttributeFileKey::kNewColumn);
tds->getAttribute("hl")->setFileKey(sInC,"Hl","",TAttributeFileKey::kNewColumn);
tds->getAttribute("l")->setFileKey(sInC,"L","",TAttributeFileKey::kNewColumn);
tds->getAttribute("kw")->setFileKey(sInC,"Kw","",TAttributeFileKey::kNewColumn);

will lead in the creation of files test_input_with_column.in, as:

1.136676e-01
2.705506e+04
9.259556e+04
6.400877e+01

page 157

http://www.cplusplus.com/reference/clibrary/cstdio/printf/
http://www.cplusplus.com/reference/clibrary/cstdio/printf/

Code input and output files CHAPTER IV. THE LAUNCHER MODULE

1.087919e+03
7.600170e+02
1.537756e+03
1.060694e+04

IV.3.1.2.4 Input files with XML format

Uranie is also able to generate data in XML input files. For example, let us consider the following input file that contains
the eight parameters previously seen (rω , r, Tu, Tl , Hu, Hl , L, Kω):

<?xml version="1.0"?>
<problem>
<description name="flowrate" version="1.0" title="UseCase flowrate with XML input file" ←↩

date="2008-04-22 12:55:17">
<tool name="uranie" version="0.3"/>
</description>

<steady_state name="sch">
<frottement_paroi rw="0.0500" r="33366.67"/>
<tinit>0.0</tinit>
<tmax>1000000</tmax>
<nb_pas_dt_max>1500</nb_pas_dt_max>
<parameter>
<tonode>mailleur</tonode><toport>dt_min</toport>

<value><double>1110.00</double></value>
</parameter>
<parameter>
<tonode>mailleur</tonode><toport>dt_max</toport>
<value><double>768.57</double></value>
</parameter>
<facsec>1000000.</facsec>
<kW value="11732.14"/>

<informations>
<parameter name="Tu">
<Champ_Uniforme>1</Champ_Uniforme>
<value><double>63070.0</double></value>
</parameter>
<parameter name="Tl">
<Champ_Uniforme>1</Champ_Uniforme>
<value><double>116.00</double></value>
</parameter>
<parameter name="L" precision="1200.0"/>
</informations>

<convergence>
<criterion>relative_max_du_dt</criterion>
<precision>1.e-6</precision>
</convergence>

<stop_criterium ch_abcsissa_hu="1050" ch_ordinate_hl="770" c_radius="1100" nLoop="1"/>

<solveur name="Newton3">
<max_iter_matrice>1</max_iter_matrice>
<max_iter_implicite>1</max_iter_implicite>
<date>5654321</date>
<seuil_convg_implicite>1.e-6</seuil_convg_implicite>
<assemblage_implicite>10</assemblage_implicite>

<solveur_lineaire name="BiCGS">
<preconditionneur>ILU</preconditionneur>
<seuil_resol_implicite>1.e-5</seuil_resol_implicite>

page 158

CHAPTER IV. THE LAUNCHER MODULE Code input and output files

</solveur_lineaire>
</solveur>

</steady_state>

</problem>

The transformation of an XML file is described by using XSLT transformation directives. When these directives have
been described in the script, Uranie generates an XSLT transformation file, that will be directly applied on the input
XML file to transform it. This XSLT file will describe how to copy the reference XML file to an XML file whose values
are changed. So the description of the location of the values to change is naturally written with XSLT directives. Below
is a short summary of the main XSLT commands:

Summary of XSLT instructions

• To specify an attribute, put a "@" before the attribute name (e.g. @min);

• Nothing is needed before a tag name (e.g. parameter), but to specify a tag tree, tags will be separated by "/" (e.g.
/value/double);

• The expression of a condition is written between brackets "[]" (e.g. [@name=’E’]);

• To write composite conditions, use the "and" keyword between "[]" (e.g. [tonode=’mailleur’ and toport=’h_mm’]).

We can see above that there are two kinds of place a variable value may be changed: in an attribute or in a field.
For Uranie to be able to modify the value, it is necessary to specify the kind of replacement to make, using the
TAttributeFileKey::kXMLAttribute key for an attribute, or the TAttributeFileKey::kXMLField
key for a field.

The example below demonstrates how to modify the attribute values in the file presented earlier:

TString sJDDReferenceXML = TString("flowrate_input_with_xml.xml");
tds->getAttribute("rw")->setFileKey(sJDDReferenceXML, "frottement_paroi/@rw", "%e", ←↩

TAttributeFileKey::kXMLAttribute);
tds->getAttribute("r")->setFileKey(sJDDReferenceXML, "frottement_paroi/@r", "%e", ←↩

TAttributeFileKey::kXMLAttribute);
tds->getAttribute("tu")->setFileKey(sJDDReferenceXML, "parameter[@name=’Tu’]/value/double", ←↩

"%e", TAttributeFileKey::kXMLField);
tds->getAttribute("tl")->setFileKey(sJDDReferenceXML, "parameter[@name=’Tl’]/value/double", ←↩

"%e", TAttributeFileKey::kXMLField);
tds->getAttribute("hu")->setFileKey(sJDDReferenceXML, "parameter[tonode=’mailleur’ and ←↩

toport=’dt_max’]/value/double", "%e", TAttributeFileKey::kXMLField);
tds->getAttribute("hl")->setFileKey(sJDDReferenceXML, "parameter[tonode=’mailleur’ and ←↩

toport=’dt_min’]/value/double", "%e", TAttributeFileKey::kXMLField);
tds->getAttribute("l")->setFileKey(sJDDReferenceXML, "parameter[name=’L’]/@precision", "%e" ←↩

, TAttributeFileKey::kXMLAttribute);
tds->getAttribute("kw")->setFileKey(sJDDReferenceXML, "kW/@value", "%e", TAttributeFileKey ←↩

::kXMLAttribute);

Note that the key that describes the kind of replacement is different depending on whether the value is stored as an
attribute (kXMLAttribute) or a field (kXMLField).

When Uranie is run, an XSLT file is created to describe the changes to make in the original XML file. Below is an
example of such a generated XSLT file:

page 159

Code input and output files CHAPTER IV. THE LAUNCHER MODULE

<?xml version="1.0" encoding="iso-8859-1"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:template match="frottement_paroi/@rw">
<xsl:attribute name="rw">
<xsl:value-of select="0.133648"/>
</xsl:attribute>
</xsl:template>

<xsl:template match="frottement_paroi/@r">
<xsl:attribute name="r">
<xsl:value-of select="6989.96"/>
</xsl:attribute>
</xsl:template>

<xsl:template match="parameter[@name=’Tu’]/value/double">
<double>
<xsl:value-of select="63442"/>
</double>
</xsl:template>

<xsl:template match="parameter[@name=’Tl’]/value/double">
<double>
<xsl:value-of select="77.2926"/>
</double>
</xsl:template>

<xsl:template match="parameter[tonode=’mailleur’ and toport=’dt_max’]/value/double">
<double>
<xsl:value-of select="1051.48"/>
</double>
</xsl:template>

<xsl:template match="parameter[tonode=’mailleur’ and toport=’dt_min’]/value/double">
<double>
<xsl:value-of select="750.107"/>
</double>
</xsl:template>

<xsl:template match="parameter[name=’L’]/@precision">
<xsl:attribute name="precision">

<xsl:value-of select="1543.31"/>
</xsl:attribute>
</xsl:template>

<xsl:template match="kW/@value">
<xsl:attribute name="value">
<xsl:value-of select="11745.4"/>
</xsl:attribute>
</xsl:template>

<!-- Copy all the rest of the file -->
<xsl:template match="node()|@*">
<xsl:copy>
<xsl:apply-templates select="node()|@*"/>
</xsl:copy>
</xsl:template>

</xsl:stylesheet>

When applied to the flowrate_input_with_xml.xml reference input file, this XSLT file produces the XML file

page 160

CHAPTER IV. THE LAUNCHER MODULE Code input and output files

Uranie will effectively use:

<?xml version="1.0"?>
<problem>
<description name="flowrate" version="1.0" title="UseCase flowrate with XML input file" ←↩

date="2008-04-22 12:55:17">
<tool name="uranie" version="0.3"/>
</description>

<steady_state name="sch">
<frottement_paroi rw="0.133648" r="6989.96"/>
<tinit>0.0</tinit>
<tmax>1000000</tmax>
<nb_pas_dt_max>1500</nb_pas_dt_max>
<parameter>
<tonode>mailleur</tonode><toport>dt_min</toport>
<value><double>750.107</double></value>
</parameter>
<parameter>
<tonode>mailleur</tonode><toport>dt_max</toport>
<value><double>1051.48</double></value>
</parameter>
<facsec>1000000.</facsec>
<kW value="11745.4"/>
<informations>
<parameter name="Tu">
<Champ_Uniforme>1</Champ_Uniforme>
<value><double>63442</double></value>
</parameter>
<parameter name="Tl">
<Champ_Uniforme>1</Champ_Uniforme>
<value><double>77.2926</double></value>
</parameter>
<parameter name="L" precision="1200.0"/>
</informations>

<convergence>
<criterion>relative_max_du_dt</criterion>
<precision>1.e-6</precision>
</convergence>

<stop_criterium ch_abcsissa_hu="1050" ch_ordinate_hl="770" c_radius="1100" nLoop="1"/>

<solveur name="Newton3">
<max_iter_matrice>1</max_iter_matrice>
<max_iter_implicite>1</max_iter_implicite>
<date>5654321</date>

<seuil_convg_implicite>1.e-6</seuil_convg_implicite>
<assemblage_implicite>10</assemblage_implicite>
<solveur_lineaire name="BiCGS">
<preconditionneur>ILU</preconditionneur>
<seuil_resol_implicite>1.e-5</seuil_resol_implicite>
</solveur_lineaire>
</solveur>

</steady_state>

</problem>

page 161

Code input and output files CHAPTER IV. THE LAUNCHER MODULE

Warning
Obviously, the use of the XML input needs an XSLT processor installed.

Tip
It is important to note that Uranie can manage inputs split between multiple input files, just by specifying the
name of these different files, whatever the kind of input file under consideration.

Summary: Input files

• setFileKey(TString sfile, TString skey = "", TString sformatToSubstitute = "%e", TAttributeFileKey::EFileType
sFileType = TAttributeFileKey::kKey)

Defines:

– The input file sfile where to change the values of the attribute.

– The key skey to substitute in the input file, if different than the name of the attribute (which is the default value
taken if an empty string is given). In case of a "flagged file" the key is the flag. In case of an XML file, the key is
the XSLT path of the tag.

– The format to substitute sformatToSubstitute; the default value %e means that scientific format is used.

– The type of input files sFileType, whose default default value is kKey.

Note that the behaviour depends on the sFileType flag: the input file must exist for kKey, kFlag,
kXMLAttribute or kXMLField, or will be created for kNewRow, kNewColumn, kNewKey or kNewTDS.

• setFileFlag(TString sfile, TString sflag = "", TString sformatToSubstitute = "%e")

Equivalent to setFileKey(sfile, skey, sformatToSubstitute, TAttributeFileKey::kFlag),
defines an input file with flags sflag.

IV.3.1.3 Output files

After the code has run, it has created output files we want to extract values from. We present here the different kinds
of output files Uranie can manage, and how to retrieve information from them.

Uranie can retrieve information from files whose formats are "key = value", "values in row", "values in column",
"dataserver value" and XML.

IV.3.1.3.1 Output files with "key=value" format

TOutputFileKey retrieves data from a file where values are stored in the format "key = value". An example of such
a file is given below:

yhat = 6.757218e+01;
d = 4.092561e+03;

page 162

CHAPTER IV. THE LAUNCHER MODULE Code input and output files

To get data from such a file, it is necessary to create a TOutputFileKey object, and add to it the attributes of the
file:

TOutputFileKey *foutk = new TOutputFileKey("_output_flowrate_withKey_.dat");
foutk->addAttribute(new TAttribute("yhat"));
foutk->addAttribute(new TAttribute("d"));

When working with "key = value" files, the default name of the attribute to create (here yhat or d) is the name of the
attribute in the output file. In order to create an attribute with a name different from the name in the file, it is necessary
to create an attribute and set it to the output file:

TAttribute *attr = new TAttribute("y");
attr->setFileKey("_output_flowrate_withKey_.dat", "yhat");
foutk->addAttribute(attr);

It is also possible to retrieve only the values of the desired variables. In the previous example, it would have been
possible to retrieve only the values of d just by deleting the line that treats yhat output.

IV.3.1.3.2 Output files with row format

TOutputFileRow retrieves data from a file where values are stored in rows. An example of such a file is given
below:

#COLUMN_NAMES: yhat | d

6.757218e+01 4.092561e+03

To get data from such a file, it is necessary to create a TOutputFileRow object, and add to it the attributes of the
file:

TOutputFileRow *foutr = new TOutputFileRow("_output_flowrate_withRow_.dat");
foutr->addAttribute(new TAttribute("yhat"));
foutr->addAttribute(new TAttribute("d"));

When working with "values in row" files, the addition order of the attributes determines which value will be stored in
each variable. In the previous example, the first value encountered in the file will be stored in the yhat attribute, and
the second one in d. As a consequence, in order to get only the values from a given column, it is necessary to specify
the column number (first column is number 1, not 0). When this number is not specified, the value used is the one
following the previous value. For example, if we suppose the file test.dat contains 8 values stored in row, we can
have:

foutr = new TOutputFileRow("test.dat");
foutr->addAttribute(new TAttribute("y2"), 2); // get the 2nd column value
foutr->addAttribute(new TAttribute("y3")); // get the 3rd column value
foutr->addAttribute(new TAttribute("y8"), 8); // get the 8th column value
foutr->addAttribute(new TAttribute("y5"), 5); // get the 5th column value
foutr->addAttribute(new TAttribute("y6")); // get the 6th column value

Warning If one is not considering vectors, Row and DataServer (Salome-table) format output are equivalent.
Else, it differs a lot as it can be seen by comparing Section XIV.4.25 and Section XIV.4.27.

page 163

Code input and output files CHAPTER IV. THE LAUNCHER MODULE

IV.3.1.3.3 Output files with column format

TOutputFileColumn retrieves data from a file where values are stored in columns. An example of such a file is
given below:

2.618019e+01
3.602045e+03

To get data from such a file, it is necessary to create a TOutputFileColumns object, and add to it the attributes
of the file:

TOutputFileColumn *foutc = new TOutputFileColumn("_output_flowrate_withColumn_.dat");
foutc->addAttribute(new TAttribute("yhat"));
foutc->addAttribute(new TAttribute("d"));

When working with "values in column" files, the addition order of the attributes determines which value will be stored
in each variable. In the example, the first value encountered in the file will be stored in the yhat attribute, and the
second one in d. As a consequence, in order to get only the values from a given row, it is necessary to specify the row
number (first row is number 1, not 0). When this number is not specified, the value caught is supposed to have the next
index that the previous value. For example, if we suppose the file test.dat contains 8 values stored in column, we
can have:

foutc = new TOutputFileColumn("test.dat");
foutc->addAttribute(new TAttribute("y2"), 2); // get the 2nd row value
foutc->addAttribute(new TAttribute("y3")); // get the 3rd row value
foutc->addAttribute(new TAttribute("y8"), 8); // get the 8th row value
foutc->addAttribute(new TAttribute("y5"), 5); // get the 5th row value
foutc->addAttribute(new TAttribute("y6")); // get the 6th row value

IV.3.1.3.4 Output files with DataServer format

Another output format is the format of the TDataServer: the first line describes the data and the data follows.

#COLUMN_NAMES: yhat | d

6.757218e+01 4.092561e+03

To get data from such a file, it is necessary to create a TOutputFileDataServer object, and add to it the
attributes to be read from the file:

TOutputFileDataServer *foutds = new TOutputFileDataServer("_output_flowrate_withRow_.dat");
foutds->addAttribute(new TAttribute("yhat"));
foutds->addAttribute(new TAttribute("d"));

Here the order in which the parameters are retrieved is not important: when looking for the "d" attribute for example,
as the name "d" is the second name of the #COLUMN_NAMES: line, Uranie will retrieve the second value of the line
(i.e. 3.602045e+03).

Warning If one is not considering vectors, Row and DataServer (Salome-table) format output are equivalent.
Else, it differs a lot as can be seen by comparing Section XIV.4.25 and Section XIV.4.27.

page 164

CHAPTER IV. THE LAUNCHER MODULE Code input and output files

IV.3.1.3.5 Output files with XML format

The last output format is the XML format, where values can be retrieved from XML fields or attributes. Note this kind of
output needs the LibXML2 library.

<?xml version="1.0"?>
<steady_state name="flowrate">
<parameter>
<tonode>mesher</tonode>
<toport>dt_hl</toport>
<value>

<double>2.618019e+01</double>
</value>

</parameter>
<distance value="3.602045e+03"/>

</steady_state>

To get data from such a file, it is necessary to create a TOutputFileXML object, and add to it the attributes
to catch from the file. When adding attributes, it is necessary to pass the name of the attribute to create or the
attribute itself to the addAttribute method, as well as its XSL path and the kind of XML object to get data between
kXMLAttribute and kXMLField. For example to get values from the XML file generated by flowrate, use the
following code:

TOutputFileXML *foutXML = new TOutputFileXML("_output_flowrate_withXML_.dat");
foutXML->addAttribute(TString("yhat"), "/steady_state[@name=’flowrate’]/parameter/value/ ←↩

double", URANIE::DataServer::TAttributeFileKey::kXMLField);
foutXML->addAttribute(new URANIE::DataServer::TAttribute("d"), "/steady_state[@name=’ ←↩

flowrate’]/distance/@value", URANIE::DataServer::TAttributeFileKey::kXMLAttribute);

As for the "key=value" and the DataServer formats, the order the parameters are provided is not important.

page 165

TCode definition CHAPTER IV. THE LAUNCHER MODULE

Summary: Output files

• TOutputFileKey(TString str)

Create an object to read information from an ASCII file with the "key = value" format.

addAttribute(TAttribute * att, TString skey="")

Add the attribute att to the file and specify its key skey.

• TOutputFileRow(TString str)

Create an object to read information from an ASCII file with the row format.

addAttribute(TAttribute * att, Int_t nrow=0)

Add the attribute att to the file and specify its row number nrow.

• TOutputFileColumn(TString str)

Create an object to read information from an ASCII file with the column format.

addAttribute(TAttribute * att, Int_t nline=0)

Add the attribute att to the file and specify its line number nline.

• TOutputFileDataServer(TString str)

Create an object to read information from an ASCII file with the DataServer formalism.

addAttribute(TAttribute * att, Int_t nline=0)

Add the attribute att to the file and specify its line number nline.

• TOutputFileXML(TString str)

Create an object to read information from an XML file.

addAttribute(TAttribute * att, TString xmlPath, TAttributeFileKey::EFileType FileType)

Add the attribute att to the file, specify the XML path of the data xmlPath, and the type of XML data FileType,
which can be kXMLAttribute or kXMLField.

IV.3.2 TCode definition

A TCode object is used to define an external code. In order to create such an object, the user must call the constructor
whose arguments are a pointer on the useful TDataServer and a TString that contains the command to execute
the external code. For example:

TCode *mycode = new TCode(tds, "flowrate -s -k");

This line will create the TCode object mycode, link it with the TDataServer, and assign the command line
flowrate -s -k to it.

Some parameters can be set to the code: its working directory (Section IV.3.2.1), the definition of unmodified input files
(Section IV.3.2.2), and the location of output files (Section IV.3.2.3).

IV.3.2.1 Working directory of the computations

By default, the computations are made in a new directory named URANIE in the current folder. To modify this be-
haviour, it is possible to specify the working directory by using the setWorkingDirectory method:

page 166

CHAPTER IV. THE LAUNCHER MODULE TCode definition

mycode->setWorkingDirectory(gSystem->pwd()+TString("/working_directory"));

With the previous line, the code will run in sub-directories of the newly created working_directory folder.

Tip
It is also possible to specify the working directory by using the setWorkingDirectory method on a
TLauncher object (see Section IV.3.3). In case both methods are used, the code will use the path defined
in the TLauncher, then the one defined in the TCode.

IV.3.2.2 Unmodified input files

While the variables with modifiable values are stored in the TDataServer (see Section IV.3.1), the code may need
input files that contain parameters Uranie does not have to modify. To add such a file to the TCode object, just use
the addInputFile method after having specified the directory to find it with the setReferenceDirectory
method.

TCode *mycode2 = new TCode(tds, "flowrate -s -k");
mycode2->setReferenceDirectory(gSystem->pwd()+TString("/reference_directory"));
mycode2->addInputFile("flowrate_input_with_flags_1.in");
mycode2->addInputFile("flowrate_input_with_flags_2.in");

The previous lines will lead in the copy of the files $PWD/reference_directory/flowrate_input_with_flags_1.in
and $PWD/reference_directory/flowrate_input_with_flags_2.in in the working directory of the
code. Note that the reference directory definition should be made with an absolute path.

The method getReferenceDirectory will return this reference directory as a TString.

IV.3.2.3 Output file of the code

In order to specify the name of the output file of the code, it is necessary to use the addOutputFile(outfile)
method, that defines the TOutputfile object outfile as an output file for the code:

foutk = new TOutputFileKey("_output_flowrate_withKey_.dat");
TCode *mycode3 = new TCode(tds, "flowrate -s -k");
mycode3->addOutputFile(foutk);

After having created the output file object fout, this code adds it as an output file to the mycode TCode object.

page 167

Launcher definition CHAPTER IV. THE LAUNCHER MODULE

Summary: TCode object

• TCode(TDataServer * tds, TString scmd)

Create a TCode object from the TDataServer tds and with the command line scmd.

• setWorkingDirectory(TString str)

Set the directory for the code to run in. If not used, the code runs in the URANIE folder created in the current folder.

• addInputFile(TString str)

Add the input file str to the TCode object.

• addOutputFile(TOutputFile * ifile)

Add the (previously created) output file ifile. ifile can be an object of the following classes:
TOutputFileRow, TTOutputFileColumn, TTOutputFileKey, TTOutputFileDataServer and
TOutputFileXML

IV.3.3 Launcher definition

In order to run an external code, it is necessary to define an object that can launch this code. This object is a
TLauncher. To create it, the constructor just needs a TDataServer and a TCode reference, as shown in the
example below:

TDataServer *tds = new TDataServer("tdsFlowrate", "Doe for Flowrate"); x1 [1]
// (add data to the TDataServer)

TCode *mycode = new TCode(tds, "command"); x2 [2]
TLauncher *mylauncher = new TLauncher(tds, mycode); x3 [3]
Creating a TLauncher

x1 Creation of a TDataServer. Then attributes and data can be appended (for further explanations and exam-
ples, please refer to the Chapter II).x2 Creation of a TCode. See the Section IV.3.2 for a presentation of the construction of a TCode object.x3 Construction of a TLauncher. As presented before, the constructor only needs the pointers on the TDataServer
and on the TCode.

In order to manipulate the code, different methods can be used:

• setWorkingDirectory: set the directory in which the code will be run and where the temporary folders needed
by the code will be stored.

mylauncher->setWorkingDirectory(gSystem->Getenv("HOME") + TString("/tmp/"));

The code runs in $HOME/tmp/. Note that, as seen in Section IV.3.2.1, if this function is not called on the current
TLauncher object, the working directory can be set on the TCode object. If none of these methods are used, it
will be set to a directory named URANIE created in the reference directory.

The method getWorkingDirectory will return this directory as a TString.

page 168

CHAPTER IV. THE LAUNCHER MODULE Launcher definition

• setSave(i): activate the save mode and set the maximum number i of folders to be kept. A positive value for i
stands for the explicit maximum number of saves, while no value or -1 value allow to keep all the patterns (all patterns
are launched in a different working directory UranieLauncher_i). Default parameter is -1.

If setSave is not called, the temporary output folders of the code will be overwritten at each computing step, while
they will be left unmodified if the method is called.

mylauncher->setSave(); // will save each launch
mylauncher->setSave(-1); // will save each launch
mylauncher->setSave(10); // will save 10 launches

The method getSave will return a boolean describing the state of the save flag, and the method unsetSave will
deactivate the save mode.

Warning
In case of multi-process distributed computation, in order to prevent all the processes from trying and ac-
cessing the same data at the same time, a call to the setSave method is mandatory. As a consequence,
if it is not manually set, Uranie will set it automatically.

• setClean(kTrue/kFalse): set the clean flag to the value true or false. If it is set to kTrue, all the working
directories are cleaned before launching. Then if the save flag is set to kTRUE, the working directories are cleaned
a second time after the TLauncher run. If not specified, default parameter is kTrue, which means the working
directory will be cleaned (i.e. temporary folders will be erased).

mylauncher->setClean(); // set the clean flag to "true"
mylauncher->setClean(kTRUE); // set the clean flag to "true"
mylauncher->setClean(kFALSE); // set the clean flag to "false"

The method getClean will return the clean flag as a boolean.

• setVarDraw(str,select,opt): activate and define the graphics during the launching. By default, there is
no graphic during the launching process. To activate it, it is necessary to define the information of the graphics (the
X, Y and Z attributes, the selection and the options of the graphic). The method’s parameters are:

– str: the list of attributes to be drawn;

– select: the selection of patterns to visualise (default value is "");

– opt: the option of the graphics. Default value is "". To see all available values, please refer to the ROOT
THistPainter reference page.

mylauncher->setVarDraw("hu:hl"); // draw hu function of hl
mylauncher->setVarDraw("hu:hl","yhat>0"); // same for data where yhat>0
mylauncher->setVarDraw("hu:hl","yhat>0","SURF"); // same drawn as surface plot

• setDrawProgressBar(bool): activate and draw the progress bar that gives an idea of the remaining time
before finishing the loop. The default is to have this bar drawn, so this method is usually only used when one decides
not to displays the progress bar (if the output is redirected in an output file for instance).

mylauncher->setDrawProgressBar(); // draw the progress bar
mylauncher->setDrawProgressBar(false); // do not draw the progress bar
bool draw = mylauncher->getDrawProgressBar(); // check if progress bar is drawn

• After all the Launcher elements are set, it is then possible to launch it, by using the run method.

page 169

http://root.cern.ch/root/html/THistPainter.html
http://root.cern.ch/root/html/THistPainter.html

Launcher definition CHAPTER IV. THE LAUNCHER MODULE

mylauncher->run();

We present below an example that uses the different methods described above:

TDataServer *tds = new TDataServer("tdsFlowrate", "DataBase flowrate");
// (add data to the TDataServer)

TCode *mycode = new TCode(tds, "command");

TLauncher *mylauncher = new TLauncher(tds, mycode);

mylauncher->setSave();
mylauncher->setClean();
mylauncher->setVarDraw("hu:hl","yhat>0","");
mylauncher->setWorkingDirectory(gSystem->Getenv("PWD") + TString("/tmpLanceurUranie/ ←↩

flowrate"));

mylauncher->run();

Summary: TLauncher object

• TLauncher(TDataServer *tds, TCode *tc)

Create a launcher with the external code tc to apply on the TDataServer tds.

• setWorkingDirectory(TString str)

Sets the working directory where to realise the computations to str.

• setSave(Int_t nSave)

Activates the save mode and sets number of max saves to perform: a positive value stands for the explicit value of
max saves, -1 allows to set max number of saves to the number of patterns.

• setClean(Bool_t bbool=kTRUE)

Set the clean flag, which means that before launching, all the working directory are cleaned, and, if save is FALSE,
after the launching all the working directory are also cleaned.

• setVarDraw(TString str, TString select="", TString opt="")

Activates and defines the graphics during the launching. By default, there is no graphic during the launching process.
To activate it, you must defines the information of the graphics: the X, Y and Z attributes, the select and the options
of the graphic.

• setDrawProgressBar(Bool_t bbool=kTRUE)

Activates and draws the progress bar that gives an idea of the remaining time before finishing the loop. The default
is to have this bar drawn.

• run()

Runs the code.

page 170

CHAPTER IV. THE LAUNCHER MODULE Distribution

IV.4 Distribution

To reduce elapsed time of computation, as the computations are independent, we can execute in parallel several of
these computations; it is the computing distribution scheme.

IV.4.1 Multi-core computer

In order to launch an Uranie script on a multi-core computer, the only modification to the code is the addition of the
parameter "localhost=X" to the run function of the Launcher object (where X stands for the number of processors
to use).

For example, the macro launchCodeFlowrateKeySampling.C can be launch on 5 processes with the follow-
ing run definition:

mylauncher->run("localhost=5");

We can verify 5 processes are launched:

Figure IV.4: Multi-core computer

IV.4.2 Cluster

Uranie can also be launched on clusters with SLURM (curie at CCRT), LSF (tantale, platine at CCRT) or SGE (mars)
with BSUB directives. Moreover, the same macro of Uranie is used when launched in a distributed mode or in a serial
mode. It is only necessary to create a specific job file. It is also possible to use batch clusters in order to run several
instances of a parallel code, mixing two levels of parallelism: one for the code, one for the design-of-experiments. This
is achieved by specifying the number of cores to be used per job with the setProcsPerJob(nbprocs) method
of TLauncher.

TCode *mycodeSlurm = new TCode(tds, "flowrate -s -f");
TOutputFileKey *foutSlurm = new TOutputFileKey("_output_flowrate_withKey_.dat");
mycodeSlurm->addOutputFile(foutSlurm);
TLauncher *mylauncherSlurm = new TLauncher(tds, mycodeSlurm);
mylauncherSlurm->setSave();
mylauncherSlurm->setClean();
mylauncherSlurm->setProcsPerJob(4);
mylauncherSlurm->setDrawProgressBar(kFALSE);
mylauncherSlurm->run();

This Uranie script excerpt will result in the execution of jobs with the command where thecommand is the command
to be typed to run the code under study (either a root -l -q script.C or an executable if the code under
consideration has been compiled).

page 171

Cluster CHAPTER IV. THE LAUNCHER MODULE

IV.4.2.1 LSF clusters

An example of a job file is given below:

#BSUB -n 10 x1 [1]
#BSUB -J FlowrateSampling x2 [2]
#BSUB -o FlowrateSampling.out x3 [3]
#BSUB -e FlowrateSampling.err x4 [4]
Environement variables x5 [5]
source uranie-platine.cshrc

Clean the output file of bsub

rm -rf FlowrateSampling.out

Launch the 1000 points of the design-of-experiments in 10 proc

root -l -q launchCodeFlowrateSampling.C

Example of LSF cluster run

x1 Define the number of processes to use, here 10.

x2 Define the name of the job, FlowrateSampling

x3 Name of the output file for the job.

Warning
If the #BSUB -o line is forgotten, the output will be sent by email.

x4 Name of the error output file for the job.

x5 All the lines following the BSUB instructions define the commands each node must run.

Once the job file is created, it can be launch by using the command:

bsub < BSUB_File

where BSUB_FILE is the name of the file created below.

In order to see one’s own jobs, run:

bjobs

IV.4.2.2 SGE clusters

An example of a job file is given below:

page 172

CHAPTER IV. THE LAUNCHER MODULE Advanced usage of batch systems

#$ -S /bin/csh x1 [1]
#$ -cwd x2 [2]
#$ -q express_par x3 [3]
#$ -N testFlowrate x4 [4]
#$ -l h_rt=00:55:00 x5 [5]
#$ -pe openmpi 16 x6 [6]
###

Cleaning

rm -f FlowrateFGA.*.log _flowrate_sampler_launcher_.* *~
x7 [7]

rm -fr URANIE

###

Execution

root -l -q launchCode.C

End Of File

Example of SGE cluster run

x1 Define the shell to use (here CSH).x2 Run the job from the current working directory. Allow to keep the environment variables defined.x3 Specify the queue to use (here express_par).x4 Name the job (here testFlowrate).x5 Maximum time the job will last, in hh:mm:ss format.x6 All the lines following the QSUB instructions define the commands each node must run.x7 All the lines following the QSUB instructions define the commands each node must run.

Once the job file is created, it can be launched by using the command:

qsub QSUB_FILE

where QSUB_FILE is the name of the previously-created file.

To see the running and pending jobs of the cluster, run the command:

qstatus -a

In order to see only one’s own jobs:

qstat

IV.4.3 Advanced usage of batch systems

The execution of large number of runs on a batch machine can sometimes require adjustments. The mechanism
employed by Uranie relies on low-level mechanisms which are piloted from the ROOT process. This can lead to
bottlenecks or performance degradation. Also, the execution of many processes at the same time can put a heavy
burden on the file system. The following precautions should therefore be taken:

page 173

Multi-step launching mechanism CHAPTER IV. THE LAUNCHER MODULE

• Standard output of the different processes should be kept at a reasonable level.

• IO should be made as much as possible on the local disks.

• When large number of processes run, the memory of the master node which runs jobs and also manages the
execution can saturate. Uranie gives a possibility to dedicate this master node entirely to the execution management:
launcher->setEmptyMasterNode();

• When large number of processes (more than 500 for instance) run, they can terminate simultaneously and conse-
quently the system has difficulties detecting the end of the jobs. It is useful to use a temporising mechanism provided
by the setDelay(nsec) method. This will make the last job start nsec seconds after the first one.

IV.4.4 Multi-step launching mechanism

In order to distribute computation the TLauncher run method creates directories, copies files, executes jobs and
creates the output DataServer. All these operations are performed simultaneously, so that it is possible to delete
execution directories as the computation are performed (see the use of the setSave(Int_t nb_save)).

However, it can be interesting to separate these operations when some of the runs fail or for batch systems. The
TLauncherByStep, inherited from TLauncher does just that: instead of the run method, it has three methods
which must be called sequentially:

• preTreatment() which creates the directories and prepares the input files before execution,

• run(Option_t* option) which performs the execution of the code,

• postTreatment() which retrieves the information from the output files and fills the TDataserver.

The run method can be called with the following options:

• option "curie" will use the SLURM exclusive mechanism to perform the computation on the curie TGCC machine.
In this case, unlike the TLauncher mechanism, the root script should be called directly on the interactive node,
and the script will create the batch file and submit it.

TCode *mycode = new TCode(tds, "flowrate -s -f");
TOutputFileKey *fout = new TOutputFileKey("_output_flowrate_withKey_.dat");
mycode->addOutputFile(fout);
TLauncherByStep *mylauncherBS = new TLauncherByStep(tds, mycode);
mylauncherBS->setSave();
mylauncherBS->setClean();
mylauncherBS->setProcsPerJob(4);
mylauncherBS->preTreatment();
mylauncherBS->setDrawProgressBar(kFALSE);
mylauncherBS->run("curie");

After the batch is completed, the assembly of the DataServer can be achieved by calling the postTreatment
method.

mylauncherBS->postTreatment();

page 174

CHAPTER IV. THE LAUNCHER MODULE Multi-step remote launching to clusters

IV.4.5 Multi-step remote launching to clusters

This is a new way to distribute computation on one or several clusters. The idea is very specific to some specific
running conditions, summarised below:

• the cluster(s) must be reachable through ssh connections: Uranie has to be compiled, on the local machine you’re
working on, with a libssh library (whose version must be greater than 0.8.1).

• the code to be run has to be installed on the remote cluster(s) (with the same version, but this is up to the user to be
sure of it).

• the cluster(s) on which one wants to run, must be SLURM-based (so far that is the only solution implemented).

• the job submission strategy of the cluster(s) have to allow the user to submit many jobs. The idea is indeed to run
the estimations of the design-of-experiments by splitting in many jobs (up to one per locations) and send these jobs
one by one through SSH tunneling in a given queue on the given cluster.

The main interesting consequence of this is that it allows to use clusters on which Uranie has not been installed on, as
long as the user has an account and credential on it, an his code is accessible there as well.

Apart from the way the distribution is done, which is very specific and discussed below, it internal logic follows the
example provided in Section IV.4.4 as it can be used to split the operations when some of the runs fail or for batch
systems. The TLauncherByStepRemote indeed inherits from TLauncher and it contains three methods which
must be called sequentially:

• preTreatment() which creates the directories and prepares the input files before execution,

• run(Option_t* option) which performs the execution of the code,

• postTreatment() which retrieves the information from the output files and fills the TDataserver.

The new steps are now discussed in the following subparts.

IV.4.5.1 Generate a header for scheduler

This generates and sends the scheduler a header file, produced thanks to a skeleton that is filled with information
provided within the code and can be used by single and remote job submission. This skeleton will only differ depending
on the scheduler used by the HPC platform that the user wants to use. It contains a set of common options that can
be replaced within the macro file. The following file is an example

#!/bin/bash
##
###################MARENOSTRUM 4 BASIC HEADER###################
##

########################SLURM DIRECTIVES########################
@filename@
#SBATCH -J @filename@
#SBATCH --qos=@queue@
#SBATCH -A @project@
#SBATCH -o @filename@.%j.out
#SBATCH -e @filename@.%j.err
#SBATCH -t @wallclock@
#SBATCH -n @numProcs@

###################END SLURM DIRECTIVES######################
source @configEnv@

page 175

Multi-step remote launching to clusters CHAPTER IV. THE LAUNCHER MODULE

Additionally, the user can edit that file to add additional options always following the variable nomenclature @directive_name@.
The skeleton will be handled internally by Uranie using the cluster configuration defined by the user within the macro.

IV.4.5.2 Define the propertie of the launcher(s)

The next steps is to configure the launcher or launchers (as one can split the bunch of computations to be done by
creating several instances of TLauncherByStepRemote). In order to do this, a number of function has been
implemented such as:

• tlch->setNumberOfChunks(Int_t numberofChunks): define the number of chunk;

• tlch->setJobName(TString path): define the job name

• The following lines are defining the compiling option as launchers can send code and compile it locally (new features
for this remote launching): these following method will fill the CMakeLists.txt.in that is shown below.

– tlch->addCompilerDirective(TString directive, TString value): tlch->addCodeExternalLibrary(TString libName, TString
libPath="" , TString includePath=""); tlch->addCodeLibrary(TString libName, TString sourcesList); tlch->addCodeDependency(TString
destinationLib, TString sourceLibList);

• tlch->run("nsplit=<all,n,[start-end]"):

The following skeleton is a CMake file used to compile code on the cluster if one wants to carry a piece of code from
the workstation to the clusters.

#---
Check if cmake has the required version
#---
cmake_minimum_required(VERSION 2.8.12)
PROJECT(@exe@ LANGUAGES C CXX)
if(COMMAND cmake_policy)

cmake_policy(SET CMP0003 NEW)
cmake_policy(SET CMP0002 OLD)

endif(COMMAND cmake_policy)

#---
CMAKE_MODULE_PATH is used to:
-define where are located the .cmake(which contains functions and macros)
-define where are the external libraries or modules, third party()
#---
list(APPEND CMAKE_MODULE_PATH @workingDir@/CODE) # DON’T TOUCH

#---
Compiler Generic Information for all projects
#---
set(CMAKE_VERBOSE_MAKEFILE FALSE)

if (CMAKE_COMPILER_IS_GNUCXX)
set(CMAKE_C_FLAGS_DEBUG "-g -ggdb -pg -fsanitize=undefined")
set(CMAKE_C_FLAGS_RELEASE "-O2")
set(CMAKE_CXX_FLAGS_DEBUG ${CMAKE_C_FLAGS_DEBUG})
set(CMAKE_CXX_FLAGS_RELEASE ${CMAKE_C_FLAGS_RELEASE})

endif ()
set(CMAKE_BUILD_TYPE RELEASE)

add_library(@exe@_compiler_flags INTERFACE)
target_compile_features(@exe@_compiler_flags INTERFACE cxx_std_11)

page 176

CHAPTER IV. THE LAUNCHER MODULE Multi-step remote launching to clusters

set(gcc_like_cxx "$<COMPILE_LANG_AND_ID:CXX,ARMClang,AppleClang,Clang,GNU>")
target_compile_options(@exe@_compiler_flags INTERFACE
"$<${gcc_like_cxx}:$<BUILD_INTERFACE:-Wall;-Wextra;-Wshadow;-Wformat=2;-Wunused>>"

)

#---
Build shared libs (if on libraries must be on remote)
#---
option(BUILD_SHARED_LIBS "Build using shared libraries" @sharedLibs@) #ON/OFF {default off}
#---
Set OUTPUT PATH , it will be the working dir using URANIE TLAUNCHERREMOTE
DO NOT CHANGE workingDir KEYWORD since it retrieves the info from TLauncherRemote->run();
IF not changed, this will be sourceDirectory (where you launch root) +/URANIE/JobName/
Folders will make will be build and bin,
#---
set(CMAKE_BINARY_DIR @workingDir@)
set(EXECUTABLE_OUTPUT_PATH ${CMAKE_BINARY_DIR}/bin)
set(LIBRARY_OUTPUT_PATH ${CMAKE_BINARY_DIR}/lib)
#---
Set Libraries
#---

SET External LIBRARIES
#---
Uranie cmake libraries are located on sources folder
#---
ROOT
#include_directories(${ROOT_INCLUDE_DIR} ${INCLUDE_DIRECTORIES})
#URANIE
#URANIE_USE_PACKAGE(@workingDir@)
#URANIE_INCLUDE_DIRECTORIES(${LIBXML2_INCLUDE_DIR}
${ICONV_INCLUDE_DIR_WIN}
)

@addExternalLibrary@

User libraries
@addLibrary@

add the executable
add_executable(@exe@ ${PROJECT_SOURCE_DIR}/CODE/@exe@)

#Link targets with their libs or libs with others libs
@addDependency@

IV.4.5.3 Full script exemple

The following piece o code shows an exemple of submitting script using the TLauncherByStepRemote class.

#include "TLauncherByStepRemote.h"
#include <libssh/libssh.h>
#include <libssh/sftp.h>
#include <stdlib.h> //for using the function sleep
{

// ===
// ======================== Classical code =========================
// ===
//Number of samples

page 177

Multi-step remote launching to clusters CHAPTER IV. THE LAUNCHER MODULE

Int_t nS = 30;

// Define the DataServer
TDataServer *tds = new TDataServer("tdsflowrate", "DataBase flowrate");
// Add the eight attributes of the study with uniform law
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

// Handle a file with flags, usual method
TString sFileName = TString("flowrate_input_with_flags.in");
tds->getAttribute("rw")->setFileFlag(sFileName, "@Rw@");
tds->getAttribute("r")->setFileFlag(sFileName, "@R@");
tds->getAttribute("tu")->setFileFlag(sFileName, "@Tu@");
tds->getAttribute("tl")->setFileFlag(sFileName, "@Tl@");
tds->getAttribute("hu")->setFileFlag(sFileName, "@Hu@");
tds->getAttribute("hl")->setFileFlag(sFileName, "@Hl@");
tds->getAttribute("l")->setFileFlag(sFileName, "@L@");
tds->getAttribute("kw")->setFileFlag(sFileName, "@Kw@");

// Create a basic doe
TSampling *sampling = new TSampling(tds, "lhs", nS);
sampling->generateSample();

// Define the code with command line....
TCode *mycode = new TCode(tds, "flowrate -s -f ");

// ... and output attribute and file
TAttribute * tyhat = new TAttribute("yhat");
tyhat->setDefaultValue(-200.0);
fout->addAttribute(tyhat);
TOutputFileRow *fout = new TOutputFileRow("_output_flowrate_withRow_.dat");
mycode->addOutputFile(fout);

// ===
// ================== Specific remote code =========================
// ===

// Create the remote launcher, the third argument is the type of cluster to be used.
TLauncherByStepRemote *tlch = new TLauncherByStepRemote(tds, mycode, ←↩

TLauncherByStepRemote::EDistrib::kSLURM);

// Provide the name of the cluster
tlch->getCluster()->setCluster("marenostrum4");
// Define the header file
tlch->getCluster()->setOutputHeaderName("a1.sh");
tlch->getCluster()->selectHeader("mn4_slurm_skeleton.in");

tlch->getCluster()->setRemotePath("./multiTestSingle");
tlch->getCluster()->addClusterDirective("filename"," multiTestSingle");
tlch->getCluster()->addClusterDirective("queue","debug");
tlch->getCluster()->addClusterDirective("project","[...]"); //Earth
tlch->getCluster()->addClusterDirective("numProcs","1");
tlch->getCluster()->addClusterDirective("wallclock","5:00");
tlch->getCluster()->setNumberOfCores(1);
tlch->getCluster()->addClusterDirective("configEnv","/home/[...]");

page 178

CHAPTER IV. THE LAUNCHER MODULE Multi-step remote launching to clusters

// Define the username and authentification method chosen
tlch->getCluster()->setClusterUserAuth("login","public_key");
//END OF SLURM SCRIPT
tlch->setClean();
tlch->setSave();
tlch->setVarDraw("hu:hl","yhat>0","");
/////////////////////
tlch->setNumberOfChunks(5);
tlch->setJobName("job3_tlch1");

tlch->run();
//tlch->run("nsplit=[0-1]");
//tlch->run("nsplit=0");
//tlch->run("nsplit=1");
//tlch->run("nsplit=[2-3]");
//tlch->run("nsplit=[3-5]");
//tlch->run("nsplit=all");
//tlch->run(); //simultaneous,nonblocking
tlch->postTreatment();
//SOME RESULTS

tds->exportData("_output_flowrate_withRow_.dat","rw:r:tu:tl:hu:hl:l:kw:yhat");
tds->draw("rw:r:tu:tl:hu:hl:l:kw:yhat","","para");

}

page 179

Multi-step remote launching to clusters CHAPTER IV. THE LAUNCHER MODULE

page 180

Chapter V

The Modeler module

V.1 Introduction

The Modeler module discusses the generation of surrogate models which aim to provide a simpler, and hence faster,
model in order to emulate the specified output of a more complex model (and generally time and memory consuming)
as a function of its inputs and parameters, provided through a TDataServer. The input dataset can either be an
existing set of elements (provided by someone else, resulting from simulations or experiments) or it can be a design-
of-experiments generated on purpose, for the sake of the ongoing study. The meta-model generation is encoded in
Uranie with several different kinds of surrogate model, and also different kinds of possible output format. Once created,
the resulting model can indeed be transmitted to another code and re-used within or without Uranie, in order to avoid
regeneration but also to keep track of achieved performances, as these models can sometimes be created based on a
certain randomness (as discussed in the few sections below).

There are several predefined surrogate-models proposed in the Uranie platform:

• The linear regression, discussed in Section V.2

• The chaos polynomial expansion, discussed in Section V.3

• The artificial neural networks, discussed in Section V.5

• The Kriging method, or gaussian process, discussed in Section V.6

It is recommended to follow the law of parsimony (also called Ockham’s razor) meaning that the simplest model should
be tested first, unless one has insight that it is not well suited for the problem under consideration.

The process of creating a surrogate model within Uranie can be summarised in four simple steps and sketched ac-
cordingly as shown in Figure V.1. Most of these models are also inheriting from the TModeler class, meaning that
they will have common methods and options listed below:

page 181

Introduction CHAPTER V. THE MODELER MODULE

Summary: Common method to main classes

• constructors. There are two types (for most of the following models) of constructor:

– Model(TDataServer*, TString, Option_t*): the architecture is a specific form for all model to condensate infor-
mation. Usually it contains input names separated by ":", output name and sometime more information. The "," is
used, as a separator, to split between fields. Options are discussed below.

– Model(TDataServer*, const char*, const char*, Option_t*): the input and output name fields are separated.
The possible other arguments have to be passed either through the option field, or through specific setters.

– Sometimes, a constructor is written to take a model from a PMML file.

• options: to be passed as last argument in the constructor, there are two options at this level

– nostoreyhat: the results of the modelling is not stored in the TDataServer (it is by default).

– nointercept: no intercept will be added (only for regressions, for which there is one by default).

• methods: setters and getters. Among the most important one, there is:

– getR2: return the R2 value

– getParameters: return a TVectorD (a ROOT-class) of the parameters’ value.

Figure V.1: Simplified decomposition of the model creation process into a four important-step recipe.

As shown in Figure V.1, all these surrogate models need to have a set of elements, that can be a design-of-experiments
possibly made specifically for this analysis, or a set of measurements or calculations completely independent of Uranie.
This set of elements is used as input to create the model that can then be dumped in different format to be re-used
within Uranie or by any other code. It is important to enforce that only the C format can be charge, in ROOT directly via
the command:

gROOT->LoadMacro("file_name.C");

The Fortran format cannot be loaded in Uranie, but for some surrogate model it is possible to load the PMML file in the
model and then export it in C file, Uranie can load.

Example:

TANNModeler* tann = new TANNModeler(tds, "rw:r:tu:tl:hu:hl:l:kw,3,yhat");
....
tann->exportFunction("pmml", "file_name.pmml", "function_name","new");

page 182

CHAPTER V. THE MODELER MODULE The TLinearRegression class

....
TANNModeler* tannPMML = new TANNModeler(tds,"file_name.pmml","function_name");
tannPMML->exportFunction("c++", "new_file_name","function_name");
gROOT->LoadMacro("new_file_name.C");

The table below summarises which type of export can be used with which class of the modeler module.

c++ fortran pmml
TAnisp X - -
TANNModeler X X X
TGLM X - -
TKernel X - -
TkNN X X -
TKriging X - X
TLinearRegression X X X
TPolynomialChaos X - -
TPolynomialRegression X X -

Table V.1: Type of export allowed for different classes

V.2 The TLinearRegression class

When using the TLinearRegression class, one assumes that there is only one output variable and at least one
input variable. The data from the training database, shown in Figure V.1, are stored here in a matrix A(nS,nX) where
nS is the number of elements in the set and nX is the number of input variables to be used. The idea is to write
any output as y = ∑

p
i=1 βihi, where β are the regression coefficients and hi, are the regressors: p simple functions

depending on one or more input variables1 that will be the new basis for the linear regression. A classical simple
case is to have p = nX and {hi(x) = xi}i=1,...,nX . The chosen regressors are precised during the construction of the
TLinearRegression object, as it takes the TDataServer as first input, a string encoding the regressors to be
used and a string encoding the output name.

As a result, a vector of parameters is computed and used to re-estimate the output parameter value. Few quality criteria
are also computed, such as R2 and the adjusted one R2

adj (the value of R2 tends to increase when additional variables
are added to the regression equation even if these variables do not significantly improve the regression, this is why the
adjusted version, R2

adj has been created, see [30] for a discussion on these criteria).

Here is an usage-example of the TLinearRegression class:

{
TDataServer * tds = new TDataServer();
tds->fileDataRead("flowrate_sampler_launcher_500.dat"); // Read the database

TLinearRegression *tlin = new TLinearRegression(tds, "rw:r:tu:tl:hu:hl:l:kw", "yhat"); // ←↩
Create the linear regression

tlin->estimate(); // Estimate the parameters

cout << " ** R2[" << tlin->getR2() << "] R2A[" << tlin->getR2Adjusted() << "] QR2[" << ←↩
tlin->getQ2() << "]" << endl;

tlin->exportFunction("c++", "myASCIIFile", "myFunction");
}

1technically, one can also choose 1 as a regressor: this would bring a constant term in the regression.

page 183

Chaos polynomial expansion CHAPTER V. THE MODELER MODULE

It results to this output:

** R2[0.948985] R2A[0.948154] QR2[0.946835]

Summary: TLinearRegression object

On top of the methods introduced in the summary block of Section V.1, this class contains:

• Double_t getR2Adjusted():

Returns the adjusted value of the R2 coefficient.

V.3 Chaos polynomial expansion

The basic idea of chaos polynomial expansion (later referred to as PC) is that any square-integrable function can
be written as f (x) = ∑α fαΨα(x) where { fα} are the PC coefficients, {Ψα} is the orthogonal polynomial-basis. The
index over which the sum is done, α , corresponds to a multi-index whose dimension is equal to the dimension of vector
x (i.e. nX) and whose L1 norm (|α|1 = ∑

nX
i=1 αi) is the degree of the resulting polynomial. More theoretical discussion

can be found on this in [30].

In Uranie only a certain number of laws can be used and they have their own preferred orthogonal polynomial-basis.
The association of the law and the polynomial basis is show in Table V.2. This association is not compulsory, as
one can project any kind of law on a polynomial basis which will not be the best-suited one, but the very interesting
interpretation of the coefficients will then not be meaningful anymore.

Distribution \ Polynomial type Legendre Hermite Laguerre Jacobi
Uniform X
LogUniform X
Normal X
LogNormal X
Exponential X
Beta X

Table V.2: List of best adapted polynomial-basis to develop the corresponding stochastic law

Presentation of the test cases

The Ishigami function is usually used as a "benchmark" in the domain of sensitivity because we are able to calculate
the exact values of the sensitivity index (discussed in Chapter VI and in [30]). This function is defined by the following
equation:

f (x1,x2,x3) = sinx1 + A sin2 x2 + Bx4
3 sinx1

EQUATION V.1: Ishigami function

where the xi follow a uniform distribution on [−π,π], and A, B are constants. We take A=7, B=0.1 (as done in [41]).

page 184

CHAPTER V. THE MODELER MODULE Nisp in a nutshell

V.3.1 Nisp in a nutshell

The wrapper of the Nisp library, Nisp standing for Non-Intrusive Spectral Projection, is a tool allowing to access to Nisp
functionality from the Uranie platform. The main features are detailed below.

The Nisp library [10] uses spectral methods based on polynomial chaos in order to provide a surrogate model and
allow the propagation of uncertainties if they arise in the numerical models. The steps of this kind of analysis, using
the Nisp methodology are represented schematically in Figure V.2 and are introduced below:

• Specification of the uncertain parameters xi,

• Building stochastic variables associated xi,

• Building a design-of-experiments

• Building a polynomial chaos, either with a regression or an integration method (see Section V.3.1.1 and Sec-
tion V.3.1.1)

• Uncertainty and sensitivity analysis

Figure V.2: Schematic view of the Nisp methodology

V.3.1.1 The regression method

The regression method is simply based on a least-squares approximation: once the design-of-experiments is done, the
vector of output y(nS) is computed with the code. By writing the correspondence matrix H(nS, p) and the coefficient-
vector β , this estimation is just a minimisation of ||y−Hβ ||2. As already stated in Section V.2, this leads to write
the general form of the solution as β = (HT H)−1HT y which also shows that the way the design-of-experiments is
performed can be optimised depending on the case under study (and might be of the utmost importance in some rare
case).

In order to perform this estimation, it is mandatory to have more points in the design-of-experiments than the number
of coefficient to be estimated (in principle, following the rule nS ≥ 1.5×Ncoeff leads to a safe estimation). For more
information on this method, see [30].

V.3.1.2 The integration method

The integration method relies on a more "complex" design-of-experiments. It is indeed recommended to have dedicated
design-of-experiments, made with a Smolyak-based algorithms (as the ones cited in Figure V.2). These design-of-
experiments are sparse-grids and usually have a smaller number of points than the regularly-tensorised approaches.
In this case, the number of samples has not to be specified by the user. Instead, the argument requested describes

page 185

Step 1: Specification of the uncertain parameters CHAPTER V. THE MODELER MODULE

the level of the design-of-experiments (which is closely intricated, as the higher the level is, the larger the number of
samples is). Once this is done, the calculation is performed as a numerical integration by quadrature methods, which
requires a large number of computations.

In the case of Smolyak algorithm, this number can be expressed by the number of dimensions nX and the requested
level l as Nd = 2l × lnX−1 which shows an improvement with respect to the regular tensorised formula for quadrature
(∼ 2l.nX).

V.3.2 Step 1: Specification of the uncertain parameters

First, it is necessary to build a dataserver containing the uncertain parameters xi. These parameters are represented
by random variables which follow one of these statistical laws given in Table V.2.2

Example:

Within the framework of our case-test example, we are going to build a TDS containing 3 attributes which follow a
uniform law on the interval [−π,π].

TDataServer *tds = new TDataServer("tdsishigami", "Ex. Ishigami");
tds->addAttribute(new TUniformDistribution("x1", -1*TMath::Pi(), TMath::Pi()));
tds->addAttribute(new TUniformDistribution("x2", -1*TMath::Pi(), TMath::Pi()));
tds->addAttribute(new TUniformDistribution("x3", -1*TMath::Pi(), TMath::Pi()));

V.3.3 Step 2: Building stochastic variables

Now, it is necessary to build the stochastic variables ξi associated to the uncertain parameters specified above. For
that, we create a TNisp object from a TDataServer object by using the constructor TNisp(TDataServer

*tds). This constructor builds automatically attributes representing the stochastic variables from the information
contained in the tds.

Explanation:

Families of orthogonal polynomials are automatically associated to the attributes representing the uncertain parameters
xi. Given the type of expected law, the corresponding orthogonal polynomial family will be used (as already spotted in
Table V.2). However, Uranie gives the possibility to change the family of orthogonal polynomials associated by default
to an attribute. It is then necessary to modify, if needed, at the TNisp call level, the type of polynomial (by using
getStochasticBasis of the TDataServer library) in order to have the stochastic variables ξi represented by
attributes following the chosen law.

Example:

In our example, we do not modify the type of the orthogonal polynomials. Then we call, at once, the constructor
TNisp.

// Define of TNisp object
TNisp * nisp = new TNisp(tds);

The stochastic variables are represented by 3 internal attributes following a uniform law on [0,1]. A print of the TNisp
object contents, by using the method printLog, gives the listing below:

** TNisp::printLog[]
Number of simulation :1
Number of variable :3
Level :0

2The followings laws are under development: Triangular and LogTriangular laws.

page 186

CHAPTER V. THE MODELER MODULE Step 3: Constitution of the sample

Stochastic variables:
-->psi_x1: Uniforme 0 1

-->psi_x2: Uniforme 0 1
-->psi_x3: Uniforme 0 1
Uncertain variables:
-->x1: Uniforme -3.14159 3.14159
-->x2: Uniforme -3.14159 3.14159
-->x3: Uniforme -3.14159 3.14159

fin of TNisp::printLog[]

V.3.4 Step 3: Constitution of the sample

Now, it is necessary to generate and evaluate the sample.

V.3.4.1 Generation of the sample

There are two different ways to generate the sample:

• Using the generateSample functionality of the library Nisp

• Using the Sampler library of Uranie

V.3.4.1.1 By Nisp library

The Nisp library permits to build a sample thanks to the generateSample(TString method,Int_t n)
method. The parameter n represents the level or the size of the sampler depending on the chosen methodology.
The parameter method represents the building methodology of the sampler. The methods offered by Nisp are the
following:

Name of the method Size Level
Lhs X
Quadrature X
MonteCarlo X
SmolyakFejer X
SmolyakTrapeze X
SmolyakGauss X
SmolyakClenchawCurtis X
QmcSobol X
Petras X

Table V.3: Methods of sampler generation

Example:

Within the framework of our test case, we build a sampler of type Petras of level 8.

Int_t level = 8;
nisp->generateSample("Petras",level);

page 187

Step 4: Building the polynomial chaos CHAPTER V. THE MODELER MODULE

V.3.4.1.2 Using the Sampler library

To build a sample using the Sampler library, see Chapter III.

Once the sample has been built, it is necessary to transfer it to the TNisp object. To do that, we use the setSample(TString
"method",Option_t *option) method where the parameter method is the type of the method used by the
library Sampler and the optional parameter option is the keyword "savegvx" to use if one wants to save the ξi in the
TDataServer.

Below is an example using the functionality:

Int_t nombre_simulations = 100;
TSampling *fsampling = new TSampling(tds, "lhs", nombre_simulations);
fsampling->generateSample();

nisp->setSample("Lhs");

V.3.4.2 Evaluation of the sampler

We evaluate the sample using the Uranie Launcher library

// Realisation du plan d’experiences
TLauncherFunction * tlf = new TLauncherFunction(tds, "FctIshigami","","Ishigami");
tlf->setDrawProgressBar(kFALSE);
tlf->run();

V.3.5 Step 4: Building the polynomial chaos

Given that we have the set (uncertain parameter, stochastic variables and sampler), we can build a TPolynomialChaos
object by means of the constructor TPolynomialChaos(TDataServer *tds, TNisp *nisp).

// build a polynomial chaos
TPolynomialChaos * pc = new TPolynomialChaos(tds,nisp);

One can calculate the coefficients of these polynomials with the computeChaosExpansion(TString method)
method where the parameter method is either the keyword Integration or the keyword Regression.

Example:

Within the framework of our example, we use the "Integration" method.

Int_t degree = 8;
pc->setDegree(degree);
pc->computeChaosExpansion("Integration");

V.3.6 Step 5: Uncertainty and sensitivity analysis

Now, we can do the uncertainty and sensitivity analyses. With the Nisp library, we have access to these following
functionality:

• Mean: getMean(yi) where parameter yi is either the name or the index of the output variable,

• SVariance: getVariance(yi) where parameter yi is either the name or the index of the output variables,

page 188

CHAPTER V. THE MODELER MODULE Other functionalities

• Co-variance: getCovariance(y1i , y2i) where parameters y1i and y2i are either the names or the indexes of the
output variables,

• Correlation: getCorrelation(y1i , y2i) where parameters y1i and y2i are either the names or the indexes of the
output variable,

• Index of the first order sensitivity getIndexFirstOrder(xi, yi) where parameter xi is the name or the index of
the input variable and the parameter yi is the name or the index of the output variable,

• Index of total sensitivity: getIndexTotalOrder(xi, yi) where parameter xi is the name or the index of the input
variable and the parameter yi is the name or the index of the output variable,

Example:

Within the framework of our example, the instructions are the following:

// Uncertainty and sensitivity analysis
cout << "Variable Ishigami ================" << endl;
cout << "Mean = " << pc->getMean("Ishigami") << endl;
cout << "Variance = " << pc->getVariance("Ishigami") << endl;
cout << "First Order[1] = " << pc->getIndexFirstOrder("x1","Ishigami") << endl;
cout << "First Order[2] = " << pc->getIndexFirstOrder("x2","Ishigami") << endl;
cout << "First Order[3] = " << pc->getIndexFirstOrder("x3","Ishigami") << endl;
cout << "First Order[1] = " << pc->getIndexTotalOrder("x1","Ishigami") << endl;
cout << "First Order[2] = " << pc->getIndexTotalOrder("x2","Ishigami") << endl;
cout << "First Order[3] = " << pc->getIndexTotalOrder("x3","Ishigami") << endl;

The following lines are obtained in the terminal:

Variable Ishigami ================
Mean = 3.5
Variance = 13.8406
First Order[1] = 0.313997
First Order[2] = 0.442386
First Order[3] = 6.50043e-07
Total Order[1] = 0.557568
Total Order[2] = 0.442477
Total Order[3] = 0.24357

V.3.7 Other functionalities

There are other Nisp functionalities accessible from Uranie:

Auto-determination of the degree

Recently a new possibility has been introduced in order to be more efficient and less model dependant when consid-
ering the regression procedure. It is indeed possible to ask for an automatic determination of the best polynomial
degree possible. In order to do so, the maximum polynomial degree allowed is computed using the rule of thumb
defined above, and the method computeChaosExpansion is called with the option "AutoDegree". A polynomial
chaos expansion is done from a minimum degree value (one per default, unless otherwise specified thanks to the
setAutoDegreeBoundaries method) up to the maximum allowed value. To compare the results one to another
and be able to decide which one is the best, a Leave-One-Out method (LOO, which consists in the prediction of a value
for yi using the rest of the known values in the training basis, i.e. y1, . . . , yi−1, yi+1, . . . , ynS for i = 1 . . . nS) and the
total Mean Square Error (MSE) are used as estimator. These notions are better introduced in [30]. The best estimated
degree is evaluated and the polynomial chaos expansion is re-computed, but all results (LOO, MSE...) are stored for
all the considered degrees.

page 189

Other functionalities CHAPTER V. THE MODELER MODULE

This possibility comes with a bunch of new function implemented to modify the behaviour by default. The basic con-
figuration is to start with a degree one polynomial expansion and to scan up to a certain degree pmax that would still
satisfy this rule of thumb

NCoeff =
(nX + pmax)!
nX !× pmax!

≤ nS

χ

χ being a normalisation factor chosen to be 1.5. The usable methods are listed below:

• setAutoDegreeFactor(double autodeg): change the value of the χ factor for the auto normalisation
(not recommended). The provided number should be greater than one.

• setAutoDegreeBoundaries(int amin, int amax): change the degree boundaries from one to amin
and, if amax is provided, from the level determined by the automatic procedure described above to the chosen amax
value. If amax is greater than the automatic determined limit, the default is not changed.

Save data

It is possible to save polynomial chaos data in a f.dat file with the save(TString sfile) method where sfile is
the name of the data file. This file will contains the following data:

• stochastic dimension,

• type of the orthogonal polynomial (Legendre, Laguerre or Hermite),

• the degree of the polynomial chaos,

• the number of polynomial chaos coefficients,

• the number of output,

• a list of the coefficient values where the first element is the the mean of the output.

// Save the polynomial chaos
pc->save("NispIshigami.dat");

Here is a file .dat corresponding to our example:

nx= 3 Legendre Legendre Legendre no= 8 p= 164 ny= 1 Coefficients[1]= 3.500000e+00 1.625418e ←↩
+00 2.962074e-17

-2.589041e-17 1.575324e-15 5.233520e-17 -3.175950e-18 -5.947228e-01 -1.278829e-17 1.354792e ←↩
-15 -1.290638e+00

-1.858390e-18 5.947865e-18 4.838275e-16 8.497435e-18 1.372419e+00 -1.722653e-19 1.330604e ←↩
-17 -1.575058e-17

5.159489e-18 -1.604235e-15 -1.386085e-17 7.823196e-18 -5.101110e-16 1.268601e-17 1.724496e ←↩
-17 -1.606472e-17

3.412272e-18 1.035117e-17 1.366688e-18 -1.952291e+00 1.603873e-17 1.960259e-16 9.769466e-18 ←↩
-5.051477e-16

1.949287e-01 5.167621e-17 2.218591e-17 -3.783569e-17 1.636383e-17 -1.089702e+00 2.653437e ←↩
-18 1.820189e-17

-3.300252e-17 -1.109147e-17 2.613944e-17 -3.982929e-17 -2.644820e-16 -4.711621e-18 4.091730 ←↩
e-01 5.633658e-17

3.207523e-17 8.469377e-18 -1.623212e-17 -5.221323e-18 -1.348604e-17 -2.549941e-03 -1.380621 ←↩
e-17 4.408383e-18

2.216698e-16 1.055488e-17 -5.971197e-16 -1.077924e-17 -7.500053e-18 -1.398875e-18 8.323369e ←↩
-18 -1.828664e-16

-1.891202e-17 2.846158e-17 1.240056e-18 -7.184406e-17 -4.183157e-17 1.999887e-17 -1.078061e ←↩
-17 1.320948e-18

page 190

CHAPTER V. THE MODELER MODULE Other functionalities

4.955143e-20 6.740688e-18 1.357408e+00 -1.599643e-17 -3.404927e-16 -3.826895e-18 -1.184481e ←↩
-16 1.175915e-17

-2.549941e-03 -1.266838e-02 4.550685e-17 1.601655e-17 1.855980e-16 1.171108e-17 1.632677e ←↩
-01 3.035872e-17

-4.384243e-18 -3.127246e-17 1.740356e-17 -3.455894e-19 3.372673e-18 -3.556473e-16 -9.162355 ←↩
e-18 -3.247428e-01

4.190780e-17 -1.547995e-17 -5.808814e-17 9.922144e-18 2.618348e-17 7.213333e-18 -5.300321e ←↩
-06 -4.983518e-18

-3.503280e-16 -6.190117e-18 3.713020e-16 1.065906e-17 -5.448912e-06 3.825624e-18 1.359954e ←↩
-17 -7.719858e-18

-1.803757e-18 4.289915e-17 -1.214645e-18 5.479922e-17 -3.330110e-18 1.579483e-03 2.670695e ←↩
-18 9.359714e-19

2.512771e-02 2.635458e-17 2.622223e-16 -1.309301e-18 8.084506e-18 -1.189488e-17 -4.330879e ←↩
-18 1.247133e-15

-1.863642e-17 2.096038e-16 -2.331035e-18 3.034432e-16 -1.363808e-17 -3.762944e-18 -1.524500 ←↩
e-17 -8.487270e-19

-1.420178e-17 -4.964460e-18 5.812476e-16 2.572312e-17 -2.088466e-17 1.795371e-17 2.011599e ←↩
-16 1.878423e-17

1.608204e-15 2.092277e-17 1.776101e-17 -5.185917e-17 -3.704922e-18 -7.070417e-17 2.010136e ←↩
-17 2.640413e-17

9.647070e-18 -3.393909e-01 -2.530162e-17 8.354699e-16 -1.223963e-18 6.813105e-16 -1.721674e ←↩
-17 2.512771e-02

9.392854e-18 1.579483e-03

Saving the macro

It is possible to save the problem in a C macro with the exportFunction(char *sfile,char *sfunction)
method where sfile is the name of the .C file and sfunction is the name of the macro.

//save the pv in a program (C langage)
pc->exportFunction("NispIshigami","NispIshigami");

Here is the NispIshigami.C file corresponding to our example:

#include <math.h>

double NispIshigami_beta[1][165]={
3.5,1.62542,2.96207e-17,-2.58904e-17,1.57532e-15,5.23352e-17,-3.17595e-18,-0.594723,
-1.27883e-17,1.35479e-15,-1.29064,-1.85839e-18,5.94787e-18,4.83828e-16,8.49743e-18,1.37242,
-1.72265e-19,1.3306e-17,-1.57506e-17,5.15949e-18,-1.60424e-15,-1.38608e-17,7.8232e-18,
-5.10111e-16,1.2686e-17,1.7245e-17,-1.60647e-17,3.41227e-18,1.03512e-17,1.36669e-18,
-1.95229,1.60387e-17,1.96026e-16,9.76947e-18,-5.05148e-16,0.194929,5.16762e-17,2.21859e-17,
-3.78357e-17,1.63638e-17,-1.0897,2.65344e-18,1.82019e-17,-3.30025e-17,-1.10915e-17,
2.61394e-17,-3.98293e-17,-2.64482e-16,-4.71162e-18,0.409173,5.63366e-17,3.20752e-17,
8.46938e-18,-1.62321e-17,-5.22132e-18,-1.3486e-17,-0.00254994,-1.38062e-17,4.40838e-18,
2.2167e-16,1.05549e-17,-5.9712e-16,-1.07792e-17,-7.50005e-18,-1.39887e-18,8.32337e-18,
-1.82866e-16,-1.8912e-17,2.84616e-17,1.24006e-18,-7.18441e-17,-4.18316e-17,1.99989e-17,
-1.07806e-17,1.32095e-18,4.95514e-20,6.74069e-18,1.35741,-1.59964e-17,-3.40493e-16,
-3.82689e-18,-1.18448e-16,1.17591e-17,-0.00254994,-0.0126684,4.55068e-17,1.60165e-17,
1.85598e-16,1.17111e-17,0.163268,3.03587e-17,-4.38424e-18,-3.12725e-17,1.74036e-17,
-3.45589e-19,3.37267e-18,-3.55647e-16,-9.16236e-18,-0.324743,4.19078e-17,-1.548e-17,
-5.80881e-17,9.92214e-18,2.61835e-17,7.21333e-18,-5.30032e-06,-4.98352e-18,-3.50328e-16,
-6.19012e-18,3.71302e-16,1.06591e-17,-5.44891e-06,3.82562e-18,1.35995e-17,-7.71986e-18,
-1.80376e-18,4.28991e-17,-1.21465e-18,5.47992e-17,-3.33011e-18,0.00157948,2.67069e-18,
9.35971e-19,0.0251277,2.63546e-17,2.62222e-16,-1.3093e-18,8.08451e-18,-1.18949e-17,
-4.33088e-18,1.24713e-15,-1.86364e-17,2.09604e-16,-2.33103e-18,3.03443e-16,-1.36381e-17,
-3.76294e-18,-1.5245e-17,-8.48727e-19,-1.42018e-17,-4.96446e-18,5.81248e-16,2.57231e-17,
-2.08847e-17,1.79537e-17,2.0116e-16,1.87842e-17,1.6082e-15,2.09228e-17,1.7761e-17,
-5.18592e-17,-3.70492e-18,-7.07042e-17,2.01014e-17,2.64041e-17,9.64707e-18,-0.339391,
-2.53016e-17,8.3547e-16,-1.22396e-18,6.81311e-16,-1.72167e-17,0.0251277,9.39285e-18,
0.00157948
};

page 191

Other functionalities CHAPTER V. THE MODELER MODULE

int NispIshigami_indmul[165][3]={
0,0,0,1,0,0,0,1,0,0,0,1,2,0,0,1,1,0,1,0,1,0,2,0,0,1,1,0,0,2,3,0,0,2,1,0,2,0,1,1,2,0,1,1,1,
1,0,2,0,3,0,0,2,1,0,1,2,0,0,3,4,0,0,3,1,0,3,0,1,2,2,0,2,1,1,2,0,2,1,3,0,1,2,1,1,1,2,1,0,3,
0,4,0,0,3,1,0,2,2,0,1,3,0,0,4,5,0,0,4,1,0,4,0,1,3,2,0,3,1,1,3,0,2,2,3,0,2,2,1,2,1,2,2,0,3,
1,4,0,1,3,1,1,2,2,1,1,3,1,0,4,0,5,0,0,4,1,0,3,2,0,2,3,0,1,4,0,0,5,6,0,0,5,1,0,5,0,1,4,2,0,
4,1,1,4,0,2,3,3,0,3,2,1,3,1,2,3,0,3,2,4,0,2,3,1,2,2,2,2,1,3,2,0,4,1,5,0,1,4,1,1,3,2,1,2,3,
1,1,4,1,0,5,0,6,0,0,5,1,0,4,2,0,3,3,0,2,4,0,1,5,0,0,6,7,0,0,6,1,0,6,0,1,5,2,0,5,1,1,5,0,2,
4,3,0,4,2,1,4,1,2,4,0,3,3,4,0,3,3,1,3,2,2,3,1,3,3,0,4,2,5,0,2,4,1,2,3,2,2,2,3,2,1,4,2,0,5,
1,6,0,1,5,1,1,4,2,1,3,3,1,2,4,1,1,5,1,0,6,0,7,0,0,6,1,0,5,2,0,4,3,0,3,4,0,2,5,0,1,6,0,0,7,
8,0,0,7,1,0,7,0,1,6,2,0,6,1,1,6,0,2,5,3,0,5,2,1,5,1,2,5,0,3,4,4,0,4,3,1,4,2,2,4,1,3,4,0,4,
3,5,0,3,4,1,3,3,2,3,2,3,3,1,4,3,0,5,2,6,0,2,5,1,2,4,2,2,3,3,2,2,4,2,1,5,2,0,6,1,7,0,1,6,1,
1,5,2,1,4,3,1,3,4,1,2,5,1,1,6,1,0,7,0,8,0,0,7,1,0,6,2,0,5,3,0,4,4,0,3,5,0,2,6,0,1,7,0,0,8
};
void NispIshigami_legendre(double *phi,double x, int no) {

int i;
x=2.*x-1.;
phi[0]=1.; if(no>0) phi[1]=x;
for(i=1;i<no;i++) phi[i+1]= ((2.*i+1.) * x * phi[i] - i * phi[i-1]) / (i+1.);
for(i=0;i<=no;i++) phi[i] = phi[i] * sqrt(2.* i + 1.);

}
void NispIshigami(double *x, double *y)
{

//////////////////////////////
//
// ***
// ** Uranie v2.3/1
// ** Export Nisp :
// ** Date : Thu Jun 16 15:54:02 2011
// ***
//
//
// ***
// ** TDataServer : tdsishigami **
// **
// ** Ex. Ishigami **
// ***
//
//
//////////////////////////////
int i,j,k,nx,ny,no,p;
nx=3;ny=1;no=8;p=165;
double psi[165],phi[3][9],xi[3],s;
for(i=0;i<nx;i++) xi[i]=x[i];
NispIshigami_legendre(phi[0],xi[0],8);
NispIshigami_legendre(phi[1],xi[1],8);
NispIshigami_legendre(phi[2],xi[2],8);
for(k=0;k<=p;k++) {

for(psi[k]=1.,i=0;i<nx;i++) psi[k]=psi[k]*phi[i][NispIshigami_indmul[k][i]];
}
for(j=0;j<ny;j++) {

for(s=0.,k=0;k<=p;k++) s+=NispIshigami_beta[j][k]*psi[k];
y[j]=s;

}
}

Index of sensitivity of a group of input variables

It is possible to compute the sensitivity index for a group of input variable xi for a given yi output variable.

cout << "value indice: " << pc->getIndex("x1:x3","Ishigami") << endl;

Within the framework of our example, this results in the following message:

page 192

CHAPTER V. THE MODELER MODULE Other functionalities

value indice: 0.557523

Index of sensitivity of a group of input variables in interaction

It is possible to compute the sensitivity index for a group of input variable xi in interaction for a given yi output variable.

cout << "value indice: " << pc->getIndexInteraction("x1:x3","Ishigami") << endl;

Within the framework of our example, this leads to the following line in the terminal:

value indice: 0.243525

Recover the various dimensions

It is possible to recover:

• the number of input variables with getDimensionInput(),

• the number of output variables with getDimensionOutput()

• the number of coefficients with getDimensionExpansion()

cout << "nx = "<< pc->getDimensionInput() << endl;
cout << "ny = "<< pc->getDimensionOutput() << endl;
cout << "p = "<< pc->getDimensionExpansion() << endl;

With our example, this leads to the following line in the terminal:

nx = 3
ny = 2
p = 165

Calculate output values

It is possible to compute the output of a polynomial chaos for a given xi input vector.

xi[0]=0.8;
xi[1]=0.2;
xi[2]=0.7;
pc->computeOutput(xi);
cout << "Ishigami = " << pc->getOutput(0) << endl;

With our example, this leads to the following line in the terminal:

Ishigami = 7.80751

Summary: TNisp object

• TNisp(TDataServer*):

Construct a TNisp object from the dataserver.

• generateSample(TString type, int n, Option_t * option)

Generate the sample following the method type (amongst "Lhs", "QmcSobol", "Quadrature", "Petras", "Smolyak-
Gauss", "SmolyakTrapeze", "SmolyakFejer", "SmolyakClenshawCurtis"), with a given number of points n (or a level
depending on chosen type). Options are introduced in Section V.1.

page 193

Adaptive development in polynomial chaos: the Anisp method CHAPTER V. THE MODELER MODULE

V.4 Adaptive development in polynomial chaos: the Anisp method

The Wrapper of the Anisp library is a tool allowing to access to Anisp functionalities from Uranie platform. At present,
the main features are detailed below.

The Anisp library models uncertainties. It allows to use spectral methods based on polynomial chaos in modelling and
propagation studies and adaptive numerical integration if uncertainties arise in the numerical models. Concretely, the
Anisp library uses adaptive numerical integration to compute an adapted polynomial expansion with less simulations
and a smaller polynomial basis. The steps of an uncertainty analysis by using the Anisp methodology are the following:

• Specification of the uncertain parameters xi,

• Creation of the TAnisp object and specification of the Anisp parameters (tolerance, maximum number of simula-
tions, ...),

• The building of stochastic variables associated ξi, the building of an adaptive sampling and building of an adapted
chaos polynomial are automatically handled by the Anisp method,

• Uncertainty and sensitivity analysis.

The functionality of Anisp, accessible from Uranie, are explained following a scenario based on an usual example, the
Ishigami test case. This scenario is decomposed according to the steps described below.

V.4.1 Step 1: Specification of the uncertain parameters

First, it is necessary to build a dataserver containing the uncertain parameters xi. These parameters are represented
by random variables which follow one of these statistical laws:

• Uniform law,

• Normal law.

For other laws, it is necessary to use TAttributeFormula and to configure them from Uniform and Normal laws.

Example 1:

Within the framework of our case-test example, we are going to build a TDataServer containing 3 attributes which
follow a uniform law on the interval [-π ,+π].

TDataServer *tds = new TDataServer("tdsishigami", "Ex. Ishigami");
tds->addAttribute(new TUniformDistribution("x1", -1*TMath::Pi(), TMath::Pi()));
tds->addAttribute(new TUniformDistribution("x2", -1*TMath::Pi(), TMath::Pi()));
tds->addAttribute(new TUniformDistribution("x3", -1*TMath::Pi(), TMath::Pi()));

Example 2 (using a TAttributeFormula):

We are going to build a TDataServer containing 3 attributes, the first 2 follow a uniform law on the interval [-
1/2,+1/2] and the third is a TAttributeFormula. As a consequence x3 follows Log-Uniform on the interval [exp(-
1/2),exp(+1/2)].

TDataServer *tdsVenise = new TDataServer("tdsVenise","Ex. Venise");
tdsVenise->addAttribute(new TUniformDistribution("x1", -0.5, 0.5));
tdsVenise->addAttribute(new TUniformDistribution("x2", -0.5, 0.5));
tdsVenise->addAttribute(new TAttributeFormula("x3","TMath::Exp(x2)"));

page 194

CHAPTER V. THE MODELER MODULE Step 2: Creation of the TAnisp Object

Warning
If a TAttributeFormula uses x2 to configure x3 then x2 must not be an argument of the TCode or the
TLauncherFunction used to launch computations.

V.4.2 Step 2: Creation of the TAnisp Object

Now, we create the TAnisp object by using one of the two constructors: TAnisp(TDataServer* ,const
char *, TString, TString, Option_t *) and TAnisp(TDataServer* ,TCode *, Option_t

*). The first constructor is when we want to approximate a function (see TLauncherFunction) and the second
when it’s a numerical code (see TCode and TLauncher).

Example:

In our example, we use the first constructor because Ishigami is an analytic function. The first TString argument
indicates the names and order (according to the TDataServer attributes) of the input arguments for the function and
the second TString the name of the output argument:

//Definition of the TAnisp object
TAnisp * tanisp = new TAnisp(tds, "FctIshigami","x1:x2:x3","Ishigami");

Warning
There must be only one output argument, this is one of the limitation of the Anisp method.

Now, we can specify some of the parameters of the Anisp method, if the defaults are not adapted to the case. The
parameters we can specify are:

• the tolerance of the integration algorithm: it determines the precision we want;

• the maximum number of simulations: it stops the computations if it is exceeded;

• the minimum level of interactions (kmin): it specifies the minimum level of interaction investigated, it must be inferior
to the number of variables and it increases the initialisation number of simulations of the algorithm;

• the greater index: maximum value in a dimension of a multi-index integration, it’s value is limited to 6 in the case of a
Normal variable;

• the maximum number of multi-index integration: it is a memory criterion, it’s default value is 5000;

• the graphical output parameter: to set or unset the console and graphical outputs;

• the maximum degree: it specify the maximum degree in a dimension for the polynomials;

• the root of the names of the Anisp files: the Anisp library created several files, the user can specify the root of their
names, "fichierAnisp_" is the default value.

For each of these parameters there is a method to set the value, in order: setTolerance, setNumberMaxOfSimulations,
setKMin, setGreaterIndice, setMaxIndices, setlog, setDegreeMax and setRootFilename.

There is also three methods which allow to set several parameters:

page 195

Step 2: Creation of the TAnisp Object CHAPTER V. THE MODELER MODULE

• setAllAnispParameters modifies all the parameters;

• setAnispParametersmodifies only some parameters: tolerance, kmin, number maximum of simulation, greater
index, maximum indices and the graphical outputs parameter;

• setLightAnispParameters modifies only the computation parameters: tolerance, kmin and number maxi-
mum of simulations.

Example:

//Tolerance of the algorithm
Double_t tol = 1.0E-2;
//Maximum number of simulations
Int_t max = 200;
//minimum level of interactions
Int_t kmin = 1;
//setting these parameters
tanisp->setLightAnispParameters(tol,kmin,max);

//root name
TString racine = TString("IshigamiAnisp_");
tanisp->setRootFilename(racine);

// set graphical outputs
tanisp->setlog(kTRUE);

page 196

CHAPTER V. THE MODELER MODULE Step 2: Creation of the TAnisp Object

Summary: TAnisp object

• TAnisp(TDataServer *tds, const char* f, TString sin="", TString sout="", Option_t *option="")

Create a TAnisp object for a function f, inputs and outputs being specified respectively in sin and sout.

• TAnisp(TDataServer *tds, void* f(double *,double *), const char* fname, TString sin="", TString sout="",
Option_t *option="")

Create a TAnisp object for a function f, whose name is fname, inputs and outputs being specified respectively in
sin and sout.

• TAnisp(TDataServer *tds, TCode * mycode, Option_t * option="")

Create a TAnisp object for the external code mycode.

• setTolerance(Double_t tol)

Set the tolerance.

• setKMin(Int_t kmin)

Set the minimum level of interaction.

• setNumberMaxOfSimulations(Int_t nmos)

Set the maximum number of simulations.

• setGreaterIndice(Int_t lev)

Set the indice maximum value.

• setMaxIndices(Int_t mi)

Set the maximum number of indices.

• setlog(Bool_t mylog)

Set the graphical output parameter.

• setDegreeMax(Int_t deg)

Set the maximum degree.

• setRootFilename(TString name)

Set the root name.

• setAllAnispParameters(double t,int km,int nmos, int lev,int mi,bool mylog,int deg, TString name)

Set all the Anisp parameters

• setAnispParameters(Double_t tol,Int_t kmin,Int_t nmos, Int_t lev,Int_t mi,Bool_t mylog)

Set some Anisp parameters.

• setAnispParameters(Double_t tol,Int_t kmin,Int_t nmos)

Set computations parameters of Anisp.

page 197

Step 3: Running the Anisp method CHAPTER V. THE MODELER MODULE

V.4.3 Step 3: Running the Anisp method

The construction of the associated stochastic variables ξ i, the generation of the adaptive sampling and the adapted
polynomial chaos expansion are automatically handled by the Anisp method. Once the TAnisp object is created and
new parameters set (if necessary), the user is left with the runAnisp method of the class TAnisp.

Example:

//run of Anisp
tanisp->runAnisp();

After using the runAnisp method, it’s possible for the user to set new parameters and then restart the algorithm
where it has stopped by using the method restartAnisp of the class TAnisp.

Example:

//new parameters
tol = 1.0E-6; max = 1000; kmin = 2;
tanisp->setLightAnispParameters(tol,kmin,max);
//restart of Anisp
tanisp->restartAnisp();

Summary: running of the Anisp method

• runAnisp()

Launch the Anisp method.

• restartAnisp()

Launch the Anisp method from the last iteration of a previous run.

V.4.4 Step 4: Uncertainty and sensitivity analysis

Now, we can do the uncertainty and sensitivity analysis. With the Anisp library, we have access to the functionality of
the Nisp library.

Indeed the TAnisp object create a TPolynomialChaos object during the call of the runAnisp and restartAnisp
methods. The user can then use the getTPolynomialChaos method to get back the TPolynomialChaos ob-
ject and perform the uncertainty and sensitivity analysis by using the dedicated method of this class.

Another way is to use the exportFunction method which creates a C++ file containing the polynomial under the form of
a C++ function. The user can then perform on it any statistical analysis.

Example:

//getting the TPolynomialChaos object
TPolynomialChaos * pc;
TPolynomialChaos P1(tanisp->getTPolynomialChaos());
pc = &P1;

//Uncertainty and sensitivity analysis using TPolynomialChaos functionality
cout<<endl;
cout<<"Mean = "<< pc->getMean(0)<< endl;
cout<<"Variance = "<< pc->getVariance(0)<< endl;
cout<<endl;

page 198

CHAPTER V. THE MODELER MODULE The artificial neural network

cout<<"First Order[1] = "<< pc->getIndexFirstOrder(0,0)<<endl;
cout<<"First Order[2] = "<< pc->getIndexFirstOrder(1,0)<<endl;
cout<<"First Order[3] = "<< pc->getIndexFirstOrder(2,0)<<endl;
cout<<endl;
cout<<"Total Order[1] = "<< pc->getIndexTotalOrder(0,0)<<endl;
cout<<"Total Order[2] = "<< pc->getIndexTotalOrder(1,0)<<endl;
cout<<"Total Order[3] = "<< pc->getIndexTotalOrder(2,0)<<endl;
cout<<endl;
cout<<"Ordered functionnal ANOVA"<<endl;
Double_t seuil = 0.98;
pc->getAnovaOrdered(seuil,0);

// Export of the polynomial in a C++ file
tanisp->exportFunction("c++","AnispIshigami.C","AnispIshigami");

Summary: Uncertainty and sensitivity analysis

• getTPolynomialChaos()

Get the TPolynomialChaos object.

• exportFunction(const char *lang, const char *file="", const char *name="", Option_t *option="")

Export the polynomial in a C++ file.

V.5 The artificial neural network

Warning
This surrogate model, as implemented in Uranie, requires the Opt++ prerequisite (as discussed in Sec-
tion I.1.2.2).

The Artificial Neural Networks (ANN) in Uranie are Multi Layer Perceptron (MLP) with one or more hidden layer (con-
taining ni

H neurons, where i is use to identify the layer) and one or more output attribute. We can export them in ASCII
file as "C", "Fortran" and "PMML" formats to reuse them later on within Uranie or not.

V.5.1 The working principle

The artificial neural networks done within Uranie need input from OPT++ and can also benefit from the computation
power of graphical process unit (GPU) if available. Their implementation is done through the TANNModeler Uranie-
class, and their conception and working flow is detailed in three steps in the following part, summarised in Figure V.3.
For a thoroughly description of the artificial neural network, see [30]

page 199

The working principle CHAPTER V. THE MODELER MODULE

Figure V.3: Schematic description of the working flow of an artificial neural network as used in Uranie

The first step is the creation of the artificial neural network in Uranie; there are several compulsory information that
should be given at this stage:

• a pointer to the TDataServer object

• the input variables to be used (as for the linear regression, it is perfectly possible to restrain to a certain number of
inputs)

• the number of neurons in the hidden layer

• the name of the output variable

The three last information are gathered in a single string, using commas to separate clearly the different parts. This is
further discussed in Section V.5.2.

The second step is the training of the ANN. Every formal neuron is a model that does not talk to any other neuron on
the considered hidden layer, and that is characterised by (taking, for illustration purpose, an index j ∈ [1, nH]):

• the weight vector that affects it, w1
0, j . . . w1

nX , j, using the Figure V.3 (the superscript 1 stands for the layer index, as
there is only one hidden layer in Uranie implementation).

• an activation function θ that goes along with the way the inputs and output are normalised.

Combining these with the inputs give the internal state of the considered neuron,

s = θ(w0 +
nX

∑
i=1

wixi)

that is function of the weights’ value, which are estimated from the training. To perform it, one can specify the tolerance
parameter to stop the learning process (the default value being 1e-06). It is however necessary to give the number of
times (a random permutation of) the test base will be presented for training and the number of times the ANN is trained

page 200

CHAPTER V. THE MODELER MODULE Constructor

(from random start weights) with a given permutation of the test database. The training session ends, keeping the best
performance model obtained. This is further discussed in Section V.5.3 (and in [30]).

Finally, the constructed neural network can be (and should be) exported. Different format are available to allow the
user to plug the resulting function in its code whether it is using Uranie or not.

Warning It is recommended to save the best estimated model, as running twice the same code will not give
the same results. There is indeed a stochastic part in the splitting of the training database that will induce
differences from one run to another.

This is further discussed in Section V.5.4.

V.5.2 Constructor

The TANNModeler constructor is specified with a TDataServer which contains the input attributes and the output
attribute and with an integer to define the number of hidden neurons in the hidden layer. All these information are
stored in a string. These string is the second argument of the constructor.

TDataServer * tds = new TDataServer("tds","my TDS");
tds->fileDataRead("flowrate_sampler_launcher_500.dat");

TANNModeler* tann = new TANNModeler(tds, "rw:r:tu:tl:hu:hl:l:kw,4,yhat");

In case one wants to use several hidden layer, the number of hidden neurons in each layer has to be specified in the
architecture string, separated by commas. For example with three layers of 2, 3 and 4 neurons (dummy example for
illustration purpose only), one would write something like this:

TANNModeler* tannML = new TANNModeler(tds, "rw:r:tu:tl:hu:hl:l:kw,2,3,4,yhat");

To split the data of the TDataServer in two databases, learning and test, we specify either a proportion (real value
between 0.0 and 1.0) of patterns or the number of patterns (integer greater than 2) to build the learning database. The
other patterns are stored in the test database. No validation base is explicitly created by Uranie.

Summary: TANNModeler constructors

1. TANNModeler(TDataServer *tds, TString sstruct, Double_t dratio = 0.80)

Constructs on TModeler object from a TDataServer with the structure "sstruct" which contains the input
attributes ("x1:x2:x3"), the number of hidden units ("8") (separated by commas if one wants to use more than one
hidden layer) and the output attribute ("y") for the following example "x1:x2:x3,8,y". The dratio is the percentage
(if lesser than 1) or the number (if greater than 1) of patterns to build the learning database.

V.5.3 Training

The training and testing database split is done based on the ratio introduced in the TANNModeler constructor,
introduced previously. This is further discussed in [30].

tann->setNormalization(TANNModeler::kMinusOneOne);
tann->setFcnTol(1e-8);
tann->train(3, 2, "test");

page 201

Export CHAPTER V. THE MODELER MODULE

Summary: TANNModeler training

1. setNormalization(TANNModeler::ENorm [TANNModeler::kMinusOneOne | TANNModeler::kCR | TAN-
NModeler::kZeroOne])

Defines the type of normalisation for the input and output data and the transfer function in the hidden layer, given
a chosen enumerator. The correspondence is as follow:

• TANNModeler::kMinusOneOne: hyberbolic tangent ("tanh")

• TANNModeler::kCR: sigmoid

• TANNModeler::kZeroOne: sigmoid

The default normalisation is kCR, then the transfer function of the hidden neurons is a sigmoid.

2. setFcnTol(Double_t dTol)

Specifies the tolerance parameter to stop the learning process for the ANN. The default value is 1e-06

3. train(Int_t niter = 10, Int_t ninit = 10, Option_t *option = "text")

Launch the training process of the neural network for niter iterations which contained ninit initialisation each
other and with the option "option".

V.5.4 Export

tann->exportFunction("c++", "uranie_ann_flowrate","ANNflowrate");
tann->exportFunction("fortran", "uranie_ann_flowrate","ANNflowrate");
tann->exportFunction("pmml", "uranie_ann_flowrate.pmml", "ANNflowrate4","new");

Summary: TANNModeler export

1. exportFunction(const char* lang, const char* file="", const char* name="", Option_t *option = "")

Export the ANN in an ASCII file with name "file" for the language (C C++/Fortran/PMML) in a function with name
"name". If file is empty, the filename will be "Output name"_nH"Number of Hidden units"."lang". If the name is
empty, then the function is called "Fct_"Output name".

V.6 The kriging method

Warning
This surrogate model, as implemented in Uranie, requires the NLopt prerequisite (as discussed in Sec-
tion I.1.2.2).

First developed for geostatistic needs, the kriging method, named after D. Krige and also called Gaussian Process
method (denoted GP hereafter) is another way to construct a surrogate model. It recently became popular thanks to a
series of interesting features:

page 202

CHAPTER V. THE MODELER MODULE Running a kriging

• it provides a prediction along with its uncertainty, which can then be used to plan the simulations and therefore
improve the predictions of the surrogate model

• it relies on relatively simple mathematical principle

• some of its hyper-parameters can be estimated in a Bayesian fashion to take into account a priori knowledge.

Kriging is a family of interpolation methods developed in the 1970s for the mining industry [11]. It uses information
about the "spatial" correlation between observations to make predictions with a confidence interval at new locations. In
order to produce the prediction model, the main task is to produce a spatial correlation model. This is done by choosing
a correlation function and search for its optimal set of parameters, based on a specific criterion.

The gpLib library [12] provides tools to achieve this task. Based on the gaussian process properties of the kriging
[13], the library proposes various optimisation criteria and parameter calculation methods to find the parameters of the
correlation function and build the prediction model.

The present chapter describes the integration of the gpLib inside Uranie, and how to create a new kriging model and
use it. We first give a quick reminder of what kriging is. Next, we describe how to create a new prediction model
using Uranie. Then, we explain how to use this model to predict new observations. Finally, we present some advanced
usages of the Uranie/gpLib interface.

The aim of developing a meta-model is to emulate a code or a function which takes a certain number of inputs (that
one can write like x = (x1 . . . xnX)) and gives a scalar y as a result. If one has a set of nS measurements, meaning that
the relation yi = y(xi) is perfectly known for i = 1 . . . nS, the gaussian process model can be used to re-estimate the
observations and provide an expected value for new measurements.

V.6.1 Running a kriging

The kriging procedure in Uranie can be schematised in five steps, depicted in Figure V.4 and an example can be found
in Section XIV.6.14. As for the polynomial chaos expansion discussed in Section V.3, the classes are mainly interfaces,
here to the classes extracted from the gpLib library. Here is a brief description of the steps:

• get a training site. Either produced by a design-of-experiments from a model definition, or taken from anywhere else,
it is mandatory to get this basis (the larger, the better).

• define the kriging options. This is heavily discussed in Section V.6.2, all the options discussed in the aforementioned
section will be inputs of the TGPBuilder class that will be build the kriging model.

• set the parameter’s values. It can be set by hands, but it is highly recommended to proceed through an optimisation,
to get the best possible parameters.

• build the kriging method. This is done with a specific method of TGPBuilder which returns a TKriging object.
This object is the one that would be saved (if requested) and used to perform the next step.

• test the obtained kriging model. This is done by running the kriging model over a new basis (the test one) using a
TLauncher2 object (which is the equivalent of a TLauncher but from the URANIE::Relauncher module). This
module will be discussed later on in Chapter VIII. With this approach, a one-by-one estimation of the prediction is
performed. To get the complete prediction with the new location covariance matrix (see [30] for this theory behind
this discussion) a different method has been introduced, see Section V.6.3.2.

page 203

Construction of a kriging model CHAPTER V. THE MODELER MODULE

Figure V.4: Schematic description of the kriging procedure as done within Uranie

V.6.2 Construction of a kriging model

V.6.2.1 Description of the main classes

The Uranie wrapper to the gpLib is based on 4 main classes:

• TGPBuilder: allow to search for the optimal parameters of the correlation function and to build the kriging model;

• TCorrelationFunction: parent class of the correlation functions used to model the spatial correlation of the
observations;

• TGPCostFunction: parent class of the criteria used to find the optimal parameters of the correlation function;

• TKriging: used to predict new values (with confidence interval).

Most of the time, users will only need to use the TGPBuilder and TKriging classes.

V.6.2.2 Example: construction of a simple Kriging model

The example code below creates a prediction model of the type "simple kriging" (it can be found in Section XIV.6.9).

{
// Load observations
TDataServer *tdsObs = new TDataServer("tdsObs", "observations");
tdsObs->fileDataRead("utf_4D_train.dat");

// Construct the GPBuilder
TGPBuilder *gpb = new TGPBuilder(tdsObs, // observations data

"x1:x2:x3:x4", // list of input variables
"y", // output variable
"matern3/2"); // name of the correlation function

// Search for the optimal hyper-parameters
gpb->findOptimalParameters("ML", // optimisation criterion

100, // screening design size
"neldermead", // optimisation algorithm
500); // max. number of optimisation iterations

// Construct the kriging model
TKriging *krig = gpb->buildGP();

// Display model information
krig->printLog();

}

page 204

CHAPTER V. THE MODELER MODULE Construction of a kriging model

In this script, after loading the observation data into a dataserver, we create a TGPBuilder object. To do so, one
should provide the observations, the name of the attributes corresponding to the inputs, the name of the attribute
corresponding to the output, and the name of the correlation function (here, it is a Matern 3/2 correlation function. The
training (utf_4D_train.dat) and testing (utf_4D_test.dat) database can both be found in the document
folder of the Uranie installation (${URANIESYS}/share/uranie/docUMENTS). Please refer to Table V.6 or [30]
for the list of available correlation functions).

The next step is to find the optimal parameters of the correlation function. To achieve this, we can use the TGPBuilder::findOptimalParameters
function. It is a "helper function" where all the tedious work is done automatically. The drawback is that the user cannot
modify some properties (parameters range, optimisation precision, etc.), or use some interesting features of Uranie
(non-random sampling, evolutionary optimisation algorithms, distributed computing, etc.). Section V.6.4 gives some
examples of how to search for optimal parameters without using the function findOptimalParameters.

The search for the optimal parameters requires the user to choose:

• an optimisation criterion (in the example: the Maximum likelihood);

• the size of the screening design-of-experiments;

• an optimisation algorithm;

• a maximum number of optimisation runs.

The search for optimal parameters will start by the search of a "good" starting point for the optimisation. This is done
by evaluating the criterion on a LHS design-of-experiments of the input space. This "screening" procedure is optional
and can be skipped by setting the design size to 0.

The optimisation procedure will start either at the "best" location found by the screening, or at a default location.
The chosen optimisation algorithm is then used to search for an optimal solution. Depending on various conditions,
convergence can be difficult to achieve. The number of optimisation runs is thus limited to 1000 by default, but can
be increased or decreased by the user. The list of available optimisation criteria is available in Table V.4. The list of
optimisation algorithms is available in Table V.5. You can also refer to the developer documentation.

When the search is finished, and if everything went well, we can create a kriging model using the function TGPBuilder::buildGP.
This function returns the pointer to a TKriging object which can be used for the prediction of new points. The function
TKriging::printLog shows some of the properties of the model, like the parameters of the correlation function
and the leave one out performances (RMSE and Q2):

** TKriging::printLog[]

Input Variables: x1:x2:x3:x4
Output Variable: y
Deterministic trend:
Correlation function: URANIE::Modeler::TMatern32CorrFunction
Correlation length: normalised (not normalised)

1.6181e+00 (1.6172e+00)
1.4372e+00 (1.4370e+00)
1.5026e+00 (1.5009e+00)
6.7884e+00 (6.7944e+00)

Variance of the gaussian process: 70.8755
RMSE (by Leave One Out): 0.499108
Q2: 0.849843

page 205

Construction of a kriging model CHAPTER V. THE MODELER MODULE

Warning
Internally, the inputs are automatically normalised to the interval [0, 1]. As a consequence, the "normalised"
correlation lengths correspond to distances in the normalised space, and the "not normalised" lengths corre-
spond to distances in the original space.

V.6.2.3 Regularisation

Sometimes, the optimisation fails due to an ill-conditioned covariance matrix. The corresponding cost is set to an
absurd value and this is signalled, at the end, by a warning message of the form (when XX estimations fail out of the
total number TOT):

<WARNING> TGPBuilder::Screening procedure. The Cholesky decomposition has failed XX out of ←↩
TOT times </WARNING>

It can then be useful to apply a regularisation parameter (mathematically similar to the "nugget effect" of geostatistics).

To apply the regularisation, we simply have to write:

gpb->setRegularisation(1e-6);

before calling findOptimalParameters. Typical values for the regularisation parameter lie between 1e-12 and
1e-6.

V.6.2.4 Deterministic trend and bayesian prior

Defining a deterministic trend is done at the construction of the TGPBuilder object. It can be generated automatically
by using a keyword ("const" or "linear")

// Load observations
TDataServer *tdsObs = new TDataServer("tdsObs", "observations");
tdsObs->fileDataRead("utf_4D_train.dat");

// Construct the GPBuilder
TGPBuilder *gpb = new TGPBuilder(tdsObs, // observations data
"x1:x2:x3:x4", // list of input variables
"y", // output variable
"matern3/2", // name of the correlation function
"linear"); // trend defined by a keyword

or manually by writing a formula where the terms are separated by colon character (":")

// Load observations
TDataServer *tdsObs = new TDataServer("tdsObs", "observations");
tdsObs->fileDataRead("utf_4D_train.dat");

// Construct the GPBuilder
TGPBuilder *gpb = new TGPBuilder(tdsObs, // observations data
"x1:x2:x3:x4", // list of input variables
"y", // output variable
"matern3/2", // name of the correlation function
"1:x1:x2+x4^2"); // custom trend

When using the "const" keyword, the trend is a constant value. When using "linear", the trend is a linear combination
of all the normalised input variables (plus a constant).

When using a formula, each sub-element must be either a constant or a combination of one or more inputs. It must
also respect ROOT’s formula syntax (cf. TFormula description for details).

page 206

https://root.cern.ch/root/html534/TFormula.html

CHAPTER V. THE MODELER MODULE Construction of a kriging model

Warning
Custom trend applies on "original space" variables, while automatic trend applies on "normalised space"
variables.

This shows the impact of all deterministic trend cases implementation:

• "": no trend given.

• "const": There is an extra parameter β0 to determine, as E(y) = β0.

• "linear": There are nX +1 extra parameters to be determined, as E(y) = β0 +∑
nX
k=1 βkxk.

• "a:b:c": This is customised trend. The given string is split according to ":". There will be as many new parameters
as there are entries and "a", "b", and "c" can be functions of various input variables. For instance with a line like
”1 : x1 : cos(0.45× x2

2 +0.38)”, the trend would be E(y) = β0 +β1× x1 +β2× cos(0.45× x2
2 +0.38)

If we have an a priori knowledge on the mean and variance of the trend parameters, we can use it to perform a bayesian
study, as in the example below (which can be found in Section XIV.6.11):

{
// Load observations

TDataServer *tdsObs = new TDataServer("tdsObs", "observations");
tdsObs->fileDataRead("utf_4D_train.dat");

// Construct the GPBuilder
TGPBuilder *gpb = new TGPBuilder(tdsObs, // observations data

"x1:x2:x3:x4", // list of input variables
"y", // output variable
"matern3/2", // name of the correlation function
"linear"); // trend defined by a keyword

// Bayesian study
Double_t meanPrior[5] = {0.0, 0.0, -1.0, 0.0, -0.1};
Double_t covPrior[25] = {1e-4, 0.0 , 0.0 , 0.0 , 0.0 ,

0.0 , 1e-4, 0.0 , 0.0 , 0.0 ,
0.0 , 0.0 , 1e-4, 0.0 , 0.0 ,
0.0 , 0.0 , 0.0 , 1e-4, 0.0 ,
0.0 , 0.0 , 0.0 , 0.0 , 1e-4};

gpb->setPriorData(meanPrior, covPrior);

// Search for the optimal hyper-parameters
gpb->findOptimalParameters("ReML", // optimisation criterion

100, // screening design size
"neldermead", // optimisation algorithm
500); // max. number of optimisation iterations

// Construct the kriging model
TKriging *krig = gpb->buildGP();

// Display model information
krig->printLog();

}

page 207

Construction of a kriging model CHAPTER V. THE MODELER MODULE

Warning
Please note that we change the optimisation criterion from "ML" (Maximum likelihood) to "ReML" (Restricted
Maximum likelihood) as the former cannot handle bayesian studies.

The information displayed by the TKriging::printLog function shows the values of the 5 trend parameters
calculated by the bayesian study. The a priori variance of the parameters being very small, we can see that the trend
parameters are very close to their a priori means.

** TKriging::printLog[]

Input Variables: x1:x2:x3:x4
Output Variable: y
Deterministic trend: linear
Trend parameters (5): [3.06586494e-05; 1.64887174e-05; -9.99986787e-01; 1.51959859e-05; ←↩

-9.99877606e-02]
Correlation function: URANIE::Modeler::TMatern32CorrFunction
Correlation length: normalised (not normalised)

2.1450e+00 (2.1438e+00)
1.9092e+00 (1.9090e+00)
2.0062e+00 (2.0040e+00)
8.4315e+00 (8.4390e+00)

Variance of the gaussian process: 155.533
RMSE (by Leave One Out): 0.495448
Q2: 0.852037

Tip
If you want to deactivate the bayesian mode after setting the prior data, call
gpb->setUsePrior(kFALSE) before searching for the optimal parameters. You can reactivate
the bayesian mode later by calling gpb->setUsePrior(kTRUE).

V.6.2.5 Measurement error

If we want to take a measurement error into account when looking for the optimal hyper-parameters, we can do so by
calling the function:

gpb->setHasMeasurementError(kTRUE);

The measurement error is supposed to follow a normal law of mean 0. If the variance vMes is unknown, a new
parameter alpha = vMes/vGP (where vGP is the variance of the gaussian process) will be added to the list of hyper-
parameters to optimise.

If we know the variance of the measurement error to be a constant, it must be set using the function

Double_t vMes = 0.0025;
gpb->setMeasurementErrorVariance(vMes);

We may even know the covariance matrix of a complex measurement error. In such case, it must be set using the
function

page 208

CHAPTER V. THE MODELER MODULE Construction of a kriging model

Double_t covMes[25] = {25*1e-4, 0.0 , 0.0 , 0.0 , 0.0 ,
0.0 , 25*1e-4, 0.0 , 0.0 , 0.0 ,
0.0 , 0.0 , 25*1e-4, 0.0 , 0.0 ,
0.0 , 0.0 , 0.0 , 25*1e-4, 0.0 ,
0.0 , 0.0 , 0.0 , 0.0 , 25*1e-4};
gpb->setMeasurementErrorCovMatrix(covMes);

In both cases, the variance of the gaussian process, which is otherwise determined analytically from the other hyper-
parameters, becomes one of the hyper-parameters to optimise.

V.6.2.6 Optimisation options

The optimisation phase of the search for optimal parameters depends on the choice of a criterion and an optimisation
algorithm. In the tables below, we present a quick description of the available options. For more details about the

Criteria keyword no trend trend bayesian description

Maximum
likelihood

ML yes yes no

Look for the hyper-parameters which maximise
the density of the gaussian vector of the
observation outputs. It cannot be used for
bayesian studies.

Restricted
Maximum
likelihood

ReML no yes yes
Same as ML, but adapted to allow bayesian
studies. It cannot be used without a trend.

Leave One
Out

Loo yes yes yes
Thanks to the linear nature of the kriging model,
the Leave One Out error has an analytic
formulation. It can be used as a quality criterion.

Table V.4: Optimisation criteria

algorithms, please consult the NLopt website (http://ab-initio.mit.edu/wiki/index.php/NLopt_Algorithms).

V.6.2.7 Choice of the initial point of the optimisation

In the examples presented so far, the initial point of the optimisation procedure was either a default location or deter-
mined via a random sampling of the input space. If a specific location is needed, it can be set as shown below (which
can be found in Section XIV.6.10):

{
// Load observations
TDataServer *tdsObs = new TDataServer("tdsObs", "observations");
tdsObs->fileDataRead("utf_4D_train.dat");

// Construct the GPBuilder
TGPBuilder *gpb = new TGPBuilder(tdsObs, "x1:x2:x3:x4", "y", "matern3/2");

// Set the correlation function parameters
Double_t params[4] = {1.0, 0.25, 0.01, 0.3};
gpb->getCorrFunction()->setParameters(params);

// Find the optimal parameters
gpb->findOptimalParameters("ML", // optimisation criterion

3the additional "e" is to respect the original author’s wish that only his implementation of the algorithm be named "Subplex".

page 209

http://ab-initio.mit.edu/wiki/index.php/NLopt_Algorithms

Construction of a kriging model CHAPTER V. THE MODELER MODULE

Algorithm keyword Use gradient description

Nelder-Mead
Simplex

NelderMead no
This is an implementation of the "simplex" algorithm,
simple and quite efficient in most cases. However, it
does not always converge to a local minimum

Subplex Subplexe3 no
Another version of the simplex supposed to be more
robust and efficient than Nelder-Mead

Constrained
Optimisation By
Linear
Approximations

Cobyla no
Construct successive linear approximations of the cost
function (using a simplex) and optimise them.

Bound Optimisation
BY Quadratic
Approximation

Bobyqa no
Construct quadratic approximations of the cost function
and optimise them. May perform poorly on cost
function that are not twice-differentiable !

Principal Axis Praxis no
Use the "principal axis" method to converge to a
solution without estimating a gradient. May be slow to
converge.

Low-storage BFGS BFGS yes
An improved implementation of the BFGS algorithm
which reduces memory consumption and convergence
time.

Preconditioned
truncated Newton

Newton yes
An implementation of the Newton algorithm which
reduces memory consumption and convergence time.

Method of Moving
Asymptotic

MMA yes

Construct local approximation of the cost function
based on the gradient, the constraints and a quadratic
"penalty" term. The approximation obtained is "easy" to
optimise. This algorithm is guaranteed to converge to a
local minimum whatever the starting point.

Sequential
Least-Squares
Quadratic
Programming

SLSQP yes

The algorithm optimises successive second-order
approximations of the cost function (via BFGS
updates), with first-order (linear) approximations of the
constraints. As it uses "true" BFGS, this algorithm
becomes slow for large numbers of parameters

Shifted
limited-memory
variable-metric

VariableMetric yes
This algorithm is adapted to large scale optimisation
problems.

Table V.5: Optimisation algorithm

page 210

CHAPTER V. THE MODELER MODULE Construction of a kriging model

0, // screening size MUST be equal to 0
"neldermead", // optimisation algorithm
500, // max. number of optimisation iterations
kFALSE); // we don’t reset the parameters of the GP builder

// Create the kriging model
TKriging *krig = gpb->buildGP();

// Display model information
krig->printLog();

}

In this case, only the initial correlation lengths need to be set, so we simply retrieve the pointer to the correlation function
object and use the setParameters function. Then, we call findoptimalParameters with two particularities:

• the screening size must be set to 0, otherwise the initial point will be defined as the best location of a random
sampling;

• the last parameter of the function, called "reset", must be set to kFALSE. This insures that the current values of the
hyper-parameters are not reset to their default values.

Warning
When setting the correlation lengths manually, remember that the values you provide are considered nor-
malised.

The resulting model is printed as follow:

** TKriging::printLog[]

Input Variables: x1:x2:x3:x4
Output Variable: y
Deterministic trend:
Correlation function: URANIE::Modeler::TMatern32CorrFunction
Correlation length: normalised (not normalised)

1.6182e+00 (1.6173e+00)
1.4373e+00 (1.4371e+00)
1.5027e+00 (1.5011e+00)
6.7895e+00 (6.7955e+00)

Variance of the gaussian process: 70.8914
RMSE (by Leave One Out): 0.49911
Q2: 0.849842

V.6.2.8 Observations update

One situation where it might be interesting to continue an optimisation procedure from the last optimal solution found
is when the observation dataset is updated "on the fly". A typical use-case is the iterative construction of a design-of-
experiments.

If the contents of the dataserver of the observations are modified, we must update the internal matrices of the
TGPBuilder, but without modifying the hyper-parameters we have found so far. The function TGPBuilder::updateObservations
does exactly that:

page 211

Construction of a kriging model CHAPTER V. THE MODELER MODULE

{
// Load observations
TDataServer *tdsObs = new TDataServer("tdsObs","");
tdsObs->fileDataRead("utf_4D_train.dat");

// Construct the GPBuilder
TGPBuilder *gpb = new TGPBuilder(tdsObs, "x1:x2:x3:x4", "y", "matern3/2");

// Search for the optimal hyper-parameters
gpb->findOptimalParameters("ML", 100, "neldermead", 500);

// Create a new observation
Double_t newObs[5] = {7.547605e-01, 8.763968e-01, 1.255390e-01, 6.370434e-01, 1.189220e ←↩

+00};

// Add the new observation to tdsObs
Double_t newLine[6];
newLine[0] = tdsObs->getNPatterns()+1; // Index of the new observation
newLine[1] = newObs[0];
newLine[2] = newObs[1];
newLine[3] = newObs[2];
newLine[4] = newObs[3];
newLine[5] = newObs[4];

tdsObs->getTuple()->Fill(newLine);

// Update the GP Builder
gpb->updateObservations();

// Search for the new optimal hyper-parameters, starting from their current values
gpb->findOptimalParameters("ML", 0, "bobyqa", 500, kFALSE);

// Create the model
TKriging *krig = gpb->buildGP();

// Display model information
krig->printLog();

}

The resulting model is printed as follow:

** TKriging::printLog[]

Input Variables: x1:x2:x3:x4
Output Variable: y
Deterministic trend:
Correlation function: URANIE::Modeler::TMatern32CorrFunction
Correlation length: normalised (not normalised)

1.6272e+00 (1.6263e+00)
1.4443e+00 (1.4441e+00)
1.5095e+00 (1.5078e+00)
6.8387e+00 (6.8447e+00)

Variance of the gaussian process: 71.8595
RMSE (by Leave One Out): 0.498229
Q2: 0.85008

page 212

CHAPTER V. THE MODELER MODULE Usage of a Kriging model

V.6.3 Usage of a Kriging model

V.6.3.1 Prediction of a new data set, one-by-one approach

In the following example, we use a newly constructed kriging model to estimate the output of a new dataset (the code
can be found in Section XIV.6.12):

{
// Load observations
TDataServer *tdsObs = new TDataServer("tdsObs", "observations");
tdsObs->fileDataRead("utf_4D_train.dat");

// Construct the GPBuilder
TGPBuilder *gpb = new TGPBuilder(tdsObs, // observations data

"x1:x2:x3:x4", // list of input variables
"y", // output variable
"matern3/2"); // name of the correlation function

// Search for the optimal hyper-parameters
gpb->findOptimalParameters("ML", // optimisation criterion

100, // screening design size
"neldermead", // optimisation algorithm
500); // max. number of optimisation iterations

// Construct the kriging model
TKriging *krig = gpb->buildGP();

// Display model information
krig->printLog();

// Load the data to estimate
TDataServer *tdsEstim = new TDataServer("tdsEstim", "estimations");
tdsEstim->fileDataRead("utf_4D_test.dat");

// Construction of the launcher
TLauncher2 *lanceur = new TLauncher2(tdsEstim, // data to estimate

krig, // model used for the estimation
"x1:x2:x3:x4", // list of the input variables
"yEstim:vEstim"); // name given to the model’s outputs

// Launch the estimations
lanceur->solverLoop();

// Display some results
tdsEstim->draw("yEstim:y");

}

The part where the kriging model is constructed is identical to Section V.6.2.2.

After printing the model information, the new data are loaded into a dataserver. The TKriging class is a children of
TSimpleEval and can thus be used by a TMaster (cf. Chapter VIII). Here, we create a TLauncher2 object. It
receives the data to estimate, the model to apply, the names of the input variables, and the names of the output variable.
The latter is added to the dataserver and receive the responses of the model when the function solverLoop is called.

page 213

Usage of a Kriging model CHAPTER V. THE MODELER MODULE

Warning Using the prototype shown above (and recall here) to construct TLauncher2 instance is perfectly
fine as long as one does not want to use constant or temporary attributes. If you don’t know what’s discussed
here, we strongly invite you to have a look here Section VIII.5.1.

TLauncher2(TDataServer *tds, TStandardEval *fun, const char *in, const char *out);

Even though one can define at once the input and output attributes (that should be in the input
TDataServer) but there is no way to state that one input attribute is constant to set its value later-on
just before the solverLoop call. In order to do that, one should stick to the "classical" Relauncher archi-
tecture:

• add input attributes to the evaluator using the addInput and / or setInputs methods;

• add output attributes to the evaluator using the addOutput and / or setOutputs methods;

• create the TLauncher2 instance with this prototype

TLauncher2(TDataServer *tds, TStandardEval *fun);

For each point of the data set, we now have an estimation of the output ("yEstim") and a variance of this estimation
("vEstim"). We can access these values via the dataserver’s visualisation or computation tools.

Figure V.5: Estimation using a simple Kriging model

V.6.3.2 Prediction of a new data set, global approach

In the following example, we use a newly constructed kriging model to estimate the output of a new dataset, but unlike
the previous case (see Section V.6.3.1) the prediction is done at once, taking into account the covariance of the new
locations input to produce the prediction covariance matrix. The code can also be bound in Section XIV.6.13.

{
// Load observations
TDataServer *tdsObs = new TDataServer("tdsObs", "observations");
tdsObs->fileDataRead("utf_4D_train.dat");

page 214

CHAPTER V. THE MODELER MODULE Usage of a Kriging model

// Construct the GPBuilder
TGPBuilder *gpb = new TGPBuilder(tdsObs, // observations data

"x1:x2:x3:x4", // list of input variables
"y", // output variable
"matern1/2"); // name of the correlation function

// Search for the optimal hyper-parameters
gpb->findOptimalParameters("ML", // optimisation criterion

100, // screening design size
"neldermead", // optimisation algorithm
500); // max. number of optimisation iterations

// Construct the kriging model
TKriging *krig = gpb->buildGP();

// Display model information
krig->printLog();

// Load the data to estimate
TDataServer *tdsEstim = new TDataServer("tdsEstim", "estimations");
tdsEstim->fileDataRead("utf_4D_test.dat");

// Reducing the database to 1000 first event (prediction cov matrix of a million value !)
int nST=1000;
tdsEstim->exportData("utf_4D_test_red.dat","",Form("tdsEstim__n__iter__<=%d",nST));
tdsEstim->fileDataRead("utf_4D_test_red.dat",false,true); // Reload reduce sample

krig->estimateWithCov(tdsEstim, // data to estimate
"x1:x2:x3:x4",// list of the input variables
"yEstim:vEstim", // name given to the model’s outputs
"y", //name of the true reference if validation database
""); //options

TCanvas *c2=NULL;
// Residuals plots if true information provided
if(tdsEstim->isAttribute("_Residuals_"))
{

c2 = new TCanvas("c2","c2",1200,800);
c2->Divide(2,1);
c2->cd(1);
// Usual residual considering uncorrated input points
tdsEstim->Draw("_Residuals_");
c2->cd(2);
// Corrected residuals, with prediction covariance matrix
tdsEstim->Draw("_uncorrResiduals_");

}

// Retrieve all the prediction covariance coefficient
tdsEstim->getTuple()->SetEstimate(nST * nST); //allocate the correct size
// Get a pointer to all values
tdsEstim->getTuple()->Draw("_CovarianceMatrix_","","goff");
double *cov=tdsEstim->getTuple()->GetV1();

//Put these in a matrix nicely created
TMatrixD Cov(nST,nST);
Cov.Use(0,nST-1,0,nST-1,cov);

//Print it if size is reasonnable
if(nST<10)

Cov.Print();

page 215

Usage of a Kriging model CHAPTER V. THE MODELER MODULE

}

The part where the kriging model is constructed is identical to Section V.6.2.2.

After printing the model information, the new data are loaded into a dataserver. Unlike the previous case (see Sec-
tion V.6.3.1), the validation database is reduced to a fifth of its original size, as the global approach will have to compute
the input covariance matrix but also, from it, the prediction covariance matrix, both of which have, just for the reduced
case, a million coefficients. The method to do this is called estimateWithCov and it can take 5 parameters:

• a pointer to the dataserver;

• the list of inputs to be used;

• the name of the outputs. Only two are allowed and compulsory: the predicion and its conditional variance;

• the name of the true value of the model (optional). Usable only with validation / test database;

• and the options.

For each point of the data set, we now have an estimation of the output ("yEstim") and a variance of this estimation
("vEstim"). This method also produce few more attributes:

• "_CovarianceMatrix_": this is a strange way to store the final prediction covariance matrix. It is a new vector attribute
whose size is constant throughout the dataserver and it is the size of the sample. For every entry it corresponds to
the row of the covariance matrix and the recommended way to extract it is the way shown above, i.e.

// Retrieve all the prediction covariance coefficient
tdsEstim->getTuple()->SetEstimate(nST * nST); //allocate the correct size
// Get a pointer to all values
tdsEstim->getTuple()->Draw("_CovarianceMatrix_","","goff");
double *cov=tdsEstim->getTuple()->GetV1(); // The data itself

//Put these in a matrix nicely created (high level object to deal with)
TMatrixD Cov(nST,nST);
Cov.Use(0,nST-1,0,nST-1,cov);

• "_Residuals_" and "_uncorrResiduals_": available only if the true value of the model is provided along (as fourth
parameter of the function prototype). It is basically the following ratio for all locations in the tested database P:

ŷi− yi

σi
, i = 1, . . . ,nP.

It is depicted in our case in Figure V.6.

page 216

CHAPTER V. THE MODELER MODULE Usage of a Kriging model

Figure V.6: Residual distribution using a validation database with and without prediction covariance correction.

V.6.3.3 Saving and loading a model

It is not currently possible to export a kriging model as a standalone C or fortran function. There are various reasons for
this. The main one is that saving a kriging model means saving several matrices which can be huge when the number
of observations and/or the number of input variables is large. It is thus impractical to save them in a text format as is
usually done for the other algorithms of URANIE::Modeler.

The alternative is to export the information needed to build the TKriging object with a TGPBuilder. This is done
by the function exportGPData:

gpb->findOptimalParameters("ML",100,"neldermead",500);

// export optimal parameters to a file
gpb->exportGPData("modelData.dat");

The file created ("modelData.dat") is a standard "Salome table" file, with a special #TITLE line in its header:

#NAME: tdsKriging
#TITLE: URANIE::Modeler::TMatern32CorrFunction: [1.61744349e+00 1.43718257e+00 1.50122179e ←↩

+00 6.79556828e+00]; variance: 7.09060005e+01;
#DATE: Wed Aug 6 10:24:36 2014
#COLUMN_NAMES: x1| x2| x3| x4| y| tdsKriging__n__iter__

2.186488000e-01 1.534173000e-01 6.196718000e-01 3.452344000e-01 1.235132000e+00 1
9.467816000e-02 3.830201000e-01 5.978722000e-03 7.689013000e-01 2.527613000e+00 2
4.716125000e-01 1.566920000e-01 8.623332000e-01 9.878017000e-01 -6.464496000e-01 3
1.346335000e-01 7.979628000e-02 5.091562000e-01 7.396531000e-01 2.461238000e+00 4
6.238671000e-01 2.995599000e-01 2.385627000e-01 9.548934000e-01 -3.266630000e-03 5
...

The #TITLE line contains the class name of the correlation function, its parameters, the variance of the gaussian
process, and any other parameter required to construct the kriging model. The rest of the file contains the observation
inputs and output.

page 217

Advanced usage CHAPTER V. THE MODELER MODULE

Warning
Do not modify the content of the file unless you know exactly what you are doing. It may produce a model
which has nothing to do with the original one, or the file may not be readable at all.

The script below presents how to reconstruct the model from the saved file:

{
// Load the model data file into a data server
TDataServer *tdsModelData = new TDataServer(); // VERY IMPORTANT: do not give any name or ←↩

title to this tds !
tdsModelData->fileDataRead("modelData.dat");

// Create a GP builder based on this data server
TGPBuilder *gpb = new TGPBuilder(tdsModelData);

// Create the kriging model
TKriging *krig = gpb->buildGP();

// Display model information
krig->printLog();

}

The constructor of the TGPBuilder object takes only the dataserver with the model data. It reads the #TITLE line
and extracts the information. It is thus not necessary to call findOptimalParameters. The function buildGP
can be used immediately to create the model. This macro is finished by printing the resulting model:

** TKriging::printLog[]

Input Variables: x1:x2:x3:x4
Output Variable: y
Deterministic trend:
Correlation function: URANIE::Modeler::TMatern32CorrFunction
Correlation length: normalised (not normalised)

9.7238e-01 (9.7183e-01)
8.5615e-01 (8.5606e-01)
9.4116e-01 (9.4013e-01)
4.3909e+00 (4.3948e+00)

Variance of the gaussian process: 18.1787
RMSE (by Leave One Out): 0.510406
Q2: 0.842968

V.6.4 Advanced usage

The function TGPBuilder::findOptimalParameters greatly simplifies the process of finding good parame-
ters for the correlation function. However, in some cases, it might be interesting to perform this procedure differently. In
the following sections, we go "inside the engine" to allow advanced users to go beyond findOptimalParameters
if they want to.

V.6.4.1 The correlation function

A TGPBuilder object contains a TCorrelationFunction object which will compute the correlation between
the observation points. A clone of this correlation function object is stored in the TKriging object, where it will

page 218

CHAPTER V. THE MODELER MODULE Advanced usage

estimate the correlation between the observations and a new point.

It is possible to set the correlation function object manually, either at construction, or later using TGPBuilder::setCorrFunction.
Whether the user creates a new object or simply passes a keyword to the TGPBuilder, a new correlation function
object will be created inside the TGPBuilder and destroyed with it.

The example below illustrates the construction of a TGPBuilder by passing a correlation function object:

...
// Definition of the initial correlation lengths
Double_t corrLengths[4] = {1.0, 0.25, 0.01, 0.3};

// Construction of the correlation function
TMatern32CorrFunction *corrFunc = new TMatern32CorrFunction(4, corrLengths);

// Construction of the GP builder
TGPBuilder *gpb = new TGPBuilder(tdsObs, "x1:x2:x3:x4", "y", corrFunc);

// The correlation function object is no longer needed. We can destroy it
delete corrFunc;
...

The table below presents the list of correlation functions currently available in Uranie:

Class Name keyword
number of

parameters4
order of the parameters in

the parameters array 5

TExponentialCorrFunction exponential 2*d [p1, p2, ..., pd, l1, l2,..., ld]
TGaussianCorrFunction gauss d [l1, l2,..., ld]
TIsotropicGaussianCorrFunction isogauss 1 [l]
TMaternICorrFunction maternI 2*d [v1, v2, ..., vd, l1, l2,..., ld]
TMaternIICorrFunction maternII d+1 [v, l1, l2,..., ld]
TMaternIIICorrFunction maternIII d+1 [v, l1, l2,..., ld]
TMatern12CorrFunction matern1/2 d [l1, l2,..., ld]
TMatern32CorrFunction matern3/2 d [l1, l2,..., ld]
TMatern52CorrFunction matern5/2 d [l1, l2,..., ld]
TMatern72CorrFunction matern7/2 d [l1, l2,..., ld]

Table V.6: Correlation functions

For a more complete description of the available correlation functions (at least a more mathematical one) please report
to [30].

V.6.4.2 The cost function

As mentioned before, Uranie provides three criteria (or cost functions) to select "good" hyper-parameters for the kriging
model. If needed, the user can create his own TGPCostFunction object and apply his own searching method to
find the optimal hyper-parameters.

The TGPCostFunction classes inherit from TSimpleEval and can thus be used by a TMaster (cf. Chap-
ter VIII). Complete examples of how to use a cost function object are given in the next sections.

4d is the number of dimensions of the input space
5p is the power of the exponential; v is the regularisation parameter of the Matèrn function; l is the correlation length.

page 219

Advanced usage CHAPTER V. THE MODELER MODULE

V.6.4.3 Example: parameters searched by LHS

The example below illustrate the "manual" search for optimal hyper-parameters through a screening of the parameters
space.

{
using namespace URANIE::DataServer; // TDataServer, TLogUniformDistribution
using namespace URANIE::Modeler; // TGPBuilder, TGPMLCostFunction, TKriging
using namespace URANIE::Sampler; // TBasicSampling
using namespace URANIE::Relauncher; // TLauncher2

// Load observations
TDataServer *tdsObs = new TDataServer("tdsObs","");
tdsObs->fileDataRead("utf_4D_train.dat");

// Construct the GPBuilder
TGPBuilder *gpb = new TGPBuilder(tdsObs, "x1:x2:x3:x4", "y", "matern3/2");

// construction of the cost function
TGPMLCostFunction *cost = new TGPMLCostFunction(gpb);

//----------------------------------//
// Construction of the LHS sampling //
//----------------------------------//
// construction of the attributes
TLogUniformDistribution *cl1 = new TLogUniformDistribution("cl1", 1e-6, 10.0);
TLogUniformDistribution *cl2 = new TLogUniformDistribution("cl2", 1e-6, 10.0);
TLogUniformDistribution *cl3 = new TLogUniformDistribution("cl3", 1e-6, 10.0);
TLogUniformDistribution *cl4 = new TLogUniformDistribution("cl4", 1e-6, 10.0);

// Construction of the data server containing the exploration
// of the correlation lengths’ space
TDataServer *tdsParam = new TDataServer("tdsParam", "");
tdsParam->addAttribute(cl1);
tdsParam->addAttribute(cl2);
tdsParam->addAttribute(cl3);
tdsParam->addAttribute(cl4);

// Construction of the sampler and generation of the data
Int_t screeningSize = 1000;
TBasicSampling *s = new TBasicSampling(tdsParam, "lhs", screeningSize);
s->generateSample();

// Evaluate the cost function on the sampling
TLauncher2 *l = new TLauncher2(tdsParam,cost,"cl1:cl2:cl3:cl4","cost:varGP");
l->solverLoop();

//---//
// Search for the minimum value of the cost and retrieve the //
// corresponding correlation lengths //
//---//
// Retrieve the cost values
Double_t *costValues = tdsParam->getTuple()->getBranchData("cost");

// find the index of the minimum cost
Int_t minIndex = TMath::LocMin(screeningSize, costValues);
Double_t optimalCost = costValues[minIndex];

// retrieve the values of the optimal correlation lengths
Double_t optimalParams[4];
optimalParams[0] = tdsParam->getValue("cl1", minIndex);
optimalParams[1] = tdsParam->getValue("cl2", minIndex);

page 220

CHAPTER V. THE MODELER MODULE Advanced usage

optimalParams[2] = tdsParam->getValue("cl3", minIndex);
optimalParams[3] = tdsParam->getValue("cl4", minIndex);

// retrieve the value of the GP variance
Double_t optimalVar = tdsParam->getValue("varGP", minIndex);

//---//
// Update the GP Builder with the newly found parameters and //
// create the model //
//---//
// set the parameters of the correlation function
gpb->getCorrFunction()->setParameters(optimalParams);

// set the GP variance
gpb->setVariance(optimalVar);

// Create the model
TKriging *krig = gpb->buildGP();

// Display model information
krig->printLog();

}

The first step of the procedure is similar to what we have seen so far: we are loading the observations into a data server
and create a TGPBuilder. The change occurs when we create a TGPMLCostFunction object. It will allow us to
evaluate the likelihood of the gaussian process for a given set of hyper-parameters. For this, it needs an access to the
observations, the correlation function, etc. This is done by giving it a pointer to the TGPBuilder object.

The next step is to create the dataset which will allow us to explore the parameter space. In this example, we only
care about the correlation lengths along each of the 4 input variables. We create a TLogUniformDistribution
object for each of them in order to have a good screening resolution on small correlation lengths. Then, we create
the dataserver that will hold the dataset, add the attributes to it, create a sampler object and generate the data (cf.
Chapter III for details).

When the dataset is ready, we need to evaluate the cost function on it. An easy way to do it is to create a TLauncher2
object, and give it the dataset, the cost function object, the input names, and the output names. When the function
solverLoop is called, the entries of the dataset are sent to the cost function, and the results of the latter are stored
in the dataserver.

The next operation is the retrieval of the optimal parameters. We need to identify the point with the minimal cost, and ex-
tract the values of the corresponding correlation lengths and GP variance. When done, we need to manually update the
TGPBuilder. First, we set the new parameters of the correlation function by retrieving the correlation function pointer
(using TGPBuilder::getCorrFunction), and by calling TCorrelationFunction::setParameters.
Then, we set the variance of the gaussian process by calling TGPBuilder::setVariance.

At this stage, the TGPBuilder object is ready to create a kriging model with the new hyper-parameters found. This
is what we do by calling buildGP.

This example is a simplified version of what is done inside findOptimalParameters. But here, we can decide to
distribute the computations, use another screening procedure, etc. We can even use another cost function !

The resulting model is printed as follow:

** TKriging::printLog[]

Input Variables: x1:x2:x3:x4
Output Variable: y

page 221

Advanced usage CHAPTER V. THE MODELER MODULE

Deterministic trend:
Correlation function: URANIE::Modeler::TMatern32CorrFunction
Correlation length: normalised (not normalised)

4.4685e-01 (4.4660e-01)
2.3956e-01 (2.3953e-01)
2.9826e-01 (2.9794e-01)
1.6450e+00 (1.6464e+00)

Variance of the gaussian process: 1.89625
RMSE (by Leave One Out): 0.578768
Q2: 0.798086

V.6.4.4 Example: parameters search by direct optimisation

The example below illustrate the "manual" search for optimal hyper-parameters through a direct optimisation.

{
using namespace URANIE::DataServer; // TDataServer, TLogUniformDistribution
using namespace URANIE::Modeler; // TGPBuilder, TGPMLCostFunction, TKriging
using namespace URANIE::Reoptimizer;// TNlopt, TNloptNelderMead

// Load observations
TDataServer *tdsObs = new TDataServer("tdsObs","");
tdsObs->fileDataRead("utf_4D_train.dat");

// Construction of the GPBuilder
TGPBuilder *gpb = new TGPBuilder(tdsObs, "x1:x2:x3:x4", "y", "matern3/2");

// Construction of the cost function
TGPMLCostFunction *costFunc = new TGPMLCostFunction(gpb);

//--//
// Construction of the parameters to optimise //
//--//
// construction of the input attributes
TAttribute *cl1 = new TAttribute("cl1", 1e-6, 10.0);
TAttribute *cl2 = new TAttribute("cl2", 1e-6, 10.0);
TAttribute *cl3 = new TAttribute("cl3", 1e-6, 10.0);
TAttribute *cl4 = new TAttribute("cl4", 1e-6, 10.0);
// construction of the output attributes
TAttribute *cost = new TAttribute("cost");
TAttribute *varGP = new TAttribute("varGP");

// Construction of the data server containing the parameters to optimise
TDataServer *tdsParam = new TDataServer("tdsParam", "");
tdsParam->addAttribute(cl1);
tdsParam->addAttribute(cl2);
tdsParam->addAttribute(cl3);
tdsParam->addAttribute(cl4);

// Add the parameters to optimise to the cost function
costFunc->setInputs(4, cl1, cl2, cl3, cl4);
costFunc->setOutputs(2, cost, varGP);

//-------------------------------//
// Construction of the optimiser //
//-------------------------------//
// Choice of an optimisation algorithm
TNloptNelderMead *solver = new TNloptNelderMead();

page 222

CHAPTER V. THE MODELER MODULE Advanced usage

// Construction of the optimizer, which receives the data server storing
// the optimal result, the criterion and the optimisation algorithm.
TNlopt *opt = new TNlopt(tdsParam, costFunc, solver);

// Optimisation options
opt->addObjective(cost); // criterion to minimise
vector<double> start{1e-2, 1e-2, 1e-2, 1e-2};
opt->setStartingPoint(start.size(),&start[0]); // starting point for the optimisation
opt->setMaximumEval(1000); // maximum number of evaluation calls
opt->setTolerance(1e-12); // convergence criterion

// Launch the optimisation procedure
opt->solverLoop();

//---//
// Update the GP Builder with the newly found parameters and //
// create the model //
//---//
// Retrieve the optimal parameters. In this case, the data server contains only
// one set of parameters, thus we don’t have to search for the minimal cost.
Double_t optimalParams[4];
optimalParams[0] = tdsParam->getValue("cl1",0);
optimalParams[1] = tdsParam->getValue("cl2",0);
optimalParams[2] = tdsParam->getValue("cl3",0);
optimalParams[3] = tdsParam->getValue("cl4",0);
// set the parameters of the correlation function
gpb->getCorrFunction()->setParameters(optimalParams);

// Retrieve the computed variance
Double_t optimalVar = tdsParam->getValue("varGP",0);
// Set the new variance of the GP
gpb->setVariance(optimalVar);

// Create the model
TKriging *krig = gpb->buildGP();

// Display model information
krig->printLog();

}

The beginning of the script is the same as in the previous example (see Section V.6.4.3). The first difference concerns
the construction of the attributes representing the parameters to optimise. Here, we do not need to define a distribution
for the variables: we just need boundaries. This is the reason why all the input attributes are TAttribute objects,
with a minimum and maximum value. The output attributes have no predefined boundaries.

After defining the input and output attributes, we need to create a dataserver to store the results of the optimisation.
We provide it only with the input attributes. The output attributes will be automatically added during the optimisation
procedure. We also need to tell the cost function which attributes represent the parameters to optimise, and which
attributes represents the outputs of the cost function.

The next step is the construction of the optimiser. As explained in Chapter IX, an optimiser needs three objects to
perform an optimisation procedure: a dataserver to store the results, a cost function to evaluate the criterion (or the
criteria, for multi-objectives optimisation), and an optimisation algorithm to propose a new set of input parameters. The
two former objects are already created. In our example, the latter is a TNloptNelderMead object.

Once constructed, the optimiser object must receive some additional information before starting the procedure. The
first one are the output attributes of the cost function corresponding which correspond to the criteria. In this example,
we have only one criterion: the attribute "cost" which refers to the negative log-likelihood of the gaussian process.

page 223

Advanced usage CHAPTER V. THE MODELER MODULE

The second mandatory information is the starting point of the optimisation. More than one starting point can be
provided. As many optimal set of parameters will be stored in the dataserver. Finally, non mandatory options can be
set, like the maximum number of evaluations of the cost function, or the tolerance criterion used to consider that the
optimisation has converged to a solution. When everything is set, we can launch the optimisation procedure by calling
the solverLoop function.

Retrieving the optimal parameters is easier in this case than in the LHS: only the optimal solutions for each starting
point are stored in the dataserver ! As we have only one starting point in this example, we have only one solution to
extract and provide to the TGPBuilder. Once done, we can create our kriging model as we did before.

The resulting model is printed as follow:

** TKriging::printLog[]

Input Variables: x1:x2:x3:x4
Output Variable: y
Deterministic trend:
Correlation function: URANIE::Modeler::TMatern32CorrFunction
Correlation length: normalised (not normalised)

1.6180e+00 (1.6171e+00)
1.4371e+00 (1.4369e+00)
1.5025e+00 (1.5009e+00)
6.7885e+00 (6.7944e+00)

Variance of the gaussian process: 70.8649
RMSE (by Leave One Out): 0.49911
Q2: 0.849841

page 224

Chapter VI

The Sensitivity module

VI.1 Brief reminder of theoretical aspects

In this section, we will briefly remind the different ways to measure the sensitivity of an output to the inputs of the model.
A theoretical introduction is given in [30] to help handle the concept discussed throughout the examples below.

The list of methods available in Uranie will also be briefly discussed, as most of these procedures, local and global ones,
are further discussed in the following sections (both implementation and cost in terms of number of assessments).

VI.1.1 Content of the TSensitivity class

As for the mathematical function discussed in Section V.3.1.1, the sensitivity classes are now able to cope with constant-
size vectors, considering every elements with respect to their counterpart in the other events (leading also to a removal
of the previous limitation on the possible number of output attribute to be studied). Most of these classes are based on
the TSensitivity one, which mainly contains:

• Pointers:

– to a TDataServer object

– to TCode object, and to a TMethodCall object (to deal respectively with external code and ROOT-interactive
function)

– to a TRandom object (ROOT-class for random drawing)

– to a TDSNtupleD object and to a TTree that contains all the results

– to two TList of input and output attributes.

• Methods:

– computeIndexes: This is the main method for the evaluation. It checks whether the TDSNtupleD is existing
(if not, it creates it) and filled with inputs and outputs (if not, it launches either the code or function). There are few
possible options common to all the classes that inherit from the TSensitivity one:

* "noIntermediateSaved": This is useful if the code to be launched is quick, to prevent from having every event
written to a physical file on disk (it waits the very end of the process to do so, as stated in Section IV.3).

* "output=": This option reduce the number of output to be considered for the sensitivity analysis. The requested
pattern following the equal sign is a usual string where ":" is used as delimiter between two fields. This option is
further discussed, considering the constant-size vector case, in the tip box below.

page 225

Content of the TSensitivity class CHAPTER VI. THE SENSITIVITY MODULE

With all this, it calls the evaluateIndexes method (providing the same options).

– evaluateIndexes: Method (empty in TSensitivity) in which indices estimation will be done specifically
by inheriting-classes. Should not be called by users or with good reasons (discussed with developpers).

– fillIndex: Never redefined, this method fills the results TTree with the method, algorithm, input attribute
and value of the sensitivity index (along with its upper and lower 95% confidence interval boundaries).

– drawIndexes: Draw the measured indices. This method takes three arguments, the first one being the title,
the second one a selection cut and the last one the options. The latter parameter is composed of different key
words separated by commas. These key words can be:

* nonewcanv: if not present, a new canvas is made, else it is up to the user to provide one. The difference mostly
lies in the memory management and in the way the display is done (if one wants to have multi-pad canvas for
instance).

* pie/hist: whether the resulting plot should be displayed as pie or chart.

* total/first: to decide which index should be shown (see [30] for more explanations on this aspect).

As this method is generic for all classes that inherit from the TSensitivity one, it will always provide a pie
chart with the first indices on the left and another one with the total indices on the right, when the "pie" options
is passed, disregarding whether the method under consideration can estimate both kind of index. If it is not the
case, the right panel will be a copy of the left one. In this method, the second argument might be in particular use
when dealing with more than one output: the drawIndexes method assumes that the requested output to be
drawn is the first output defined and estimated through your sensitivity analysis. In the case wher several outputs
were investigated, the selection field might be used as done below to specified that tutu is the output in which one
is interested in:

tsobol->drawIndexes("What a nice plot","Out==\"tutu\"","all,hist,nonewcanv");

Tip All sensitivity classes can deal with vectorial outputs, provided that they are constant-size one. All
methods are transparent and it is also possible to restrain the sensitivity analysis to some specific elements
of vector. Let’s consider y, the output of the code. One can investigate the first, tenth and fifteenth elements
by either:

• using the "output=" option (here "output=y[0]:y[10];y[15]"), either passed at the construction or when calling
the computeIndexes method.

• specifying in a constructor that requested the const char* out field, the following list
"y[0]:y[10];y[15]", instead of "y".

If both methods are chosen with different elements, the results will be the estimation for all the elements
requested.

page 226

CHAPTER VI. THE SENSITIVITY MODULE List of available methods

Tip All sensitivity have been modified for Uranie version greater than 4.1 in order to be able to cope with the
Relauncher architecture. A new constructor has been created requesting a pointer to a TRun object which
has to be chosen amongst the three following types:

• TSequentialRun

• TThreadedRun

• TMpiRun

This object will contain all the information about the way to handle evaluators, whether they are

• C++ function

• Python function

• External Code

• Any composition of instances of previously introduced evaluators

For a more general discussion on these aspects, see Section VIII.2.

With this set, one can look at the different methods listed below.

VI.1.2 List of available methods

Methods for Sensitivity Analysis (SA) are split into two types:

• local: variations around a nominal value,

• global: variations in all the domain.

Currently, one local method and six global methods are implemented for Sensitivity Analysis. All of them have been
recently adapted in order to be able to cope with constant-size vector case, considering, as for the statistic, that every
element can be considered independent from the other one. This leads to the fact that now, every methods can deal
with more than one output as well. The list below provides a concise description of each and every implemented
methods. For a more refined theoretical description, please, see [30].

1. Finite differences (local method):

It consists in estimating the partial derivatives around a nominal value for each input parameters (see Sec-
tion VI.2).

2. Values Regression method (linearity):

It performs a sensitivity analysis based on the coefficients of a normalised linear regression (see Section VI.3).

3. Ranks Regression method (monotony):

Here, the analysis is based on the coefficients of a normalised rank regression (see Section VI.3).

4. Morris’ screening method:

It consists in ordering the input variables according to their influence on the output variables. This method should
be used for input ranking. Despite the low computational cost encountered, the obtained information is insuffi-
cient to get a proper quantitave estimation of the impact of the input variable on the output under consideration
(see Section VI.4).

page 227

The finite differences method CHAPTER VI. THE SENSITIVITY MODULE

5. Sobol method:

This method produces numerical values for the Sobol indices. However, it requires a high numerical cost as
numerous code assessments are needed (see Section VI.5).

It is based on the so-called Saltelli & Tarontola method, to compute the first and total order indices, using different
algorithms.

6. FAST method:

It computes Sobol’s first order indices from Fourier coefficients, using a sample on a periodic curve with different
frequencies for each input variables (see Section VI.6).

7. RBD method:

It computes Sobol’s first order indices from Fourier coefficients, using a sample on a periodic curve with an
unique frequency (see Section VI.6).

8. Johnson’s relative weights method:

It computes the relative weights which are aimed to be a good approximation of the Shapley’s values, but whose
main advantage is to be a lot quicker to estimate. This method is limited to linear cases (see Section VI.7).

Warning
If the FAST or RBD methods are to be used, then the FFTW library must be installed firstly (and ROOT must
have linked installed once FFTW is installed).

All the methods will be applied on the flowrate function, introduced in Section IV.1.2.

VI.2 The finite differences method

VI.2.1 General presentation of finite difference sensitivity indices

The finite differences method is among the simplest one. The resulting sensitivity index of an input variable Xi with
respect to an output Y = f ({Xi}i∈[1,nX]) is an estimation of the derivative of f versus Xi, δ f/δXi, around a nominal
value Xnom

i . In this implementation of the method, the estimation is obtained by applying an OAT design-of-experiments
(One-At-a-Time, c.f. Section III.6) to the studied model. For each input’s nominal value, we define a range ∆Xi. The
resulting estimate of the partial derivative around the nominal value is then given by

∂ f
∂Xi

=
f (Xnom

i +∆Xi)− f (Xnom
i −∆Xi)

2×∆Xi
.

VI.2.2 Computation of local sensitivity indices with the finite differences method

In Uranie, computing local sensitivity indices around a nominal value with the finite differences method is dealt with the
eponymous class TFiniteDifferences which inherits from the TSensitivity class.

This class handles all the steps to compute local indices:

• generating the deterministic sample;

• running the code or the analytic function to get the target attribute;

• computing local indices for each input variable.

page 228

CHAPTER VI. THE SENSITIVITY MODULE Computation of local sensitivity indices with the finite differences method

VI.2.2.1 Example: simple computation of sensitivity indices with TFiniteDifferences

The example script below uses the TFiniteDifferences class to compute and display local sensitivity indices:

{
// loading the flowrateModel function
gROOT->LoadMacro("UserFunctions.C");

// Define the DataServer and add the attributes (stochastic variables here)
TDataServer *tds = new TDataServer("tdsflowreate", "DataBase flowreate");
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

// Set nominal values
tds->getAttribute("rw")->setDefaultValue(0.075);
tds->getAttribute("r")->setDefaultValue(25000.0);
tds->getAttribute("tu")->setDefaultValue(90000.0);
tds->getAttribute("tl")->setDefaultValue(90.0);
tds->getAttribute("hu")->setDefaultValue(1050.0);
tds->getAttribute("hl")->setDefaultValue(760.0);
tds->getAttribute("l")->setDefaultValue(1400.0);
tds->getAttribute("kw")->setDefaultValue(10500.0);

// Create a TFiniteDifferences object and compute indexes
TFiniteDifferences * tfindef = new TFiniteDifferences(tds,"flowrateModel", "rw:r:tu:tl:hu: ←↩

hl:l:kw", "y", "steps=0.5%");
tfindef->computeIndexes();

tfindef->getSensitivityMatrix().Print();

}

The result of this script is shown below:

1x8 matrix is as follows

| 0 | 1 | 2 | 3 | 4 |
--

0 | 1019 -3.586e-07 1.265e-09 0.001265 0.1321

| 5 | 6 | 7 |
--

0 | -0.1321 -0.02729 0.003639

VI.2.2.2 Specifying the input parameters

First, it is necessary to define the uncertain parameters and to add them to a TDataServer object:

// Define the DataServer
TDataServer *tds = new TDataServer("tdsflowreate", "DataBase flowreate");
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));

page 229

Computation of local sensitivity indices with the finite differences method CHAPTER VI. THE SENSITIVITY MODULE

tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

Then, the nominal values of each input parameters must be set (using the method TAttribute::setDefaultValue):

// Set the nominal values
tds->getAttribute("rw")->setDefaultValue(0.075);
tds->getAttribute("r")->setDefaultValue(25000.0);
tds->getAttribute("tu")->setDefaultValue(90000.0);
tds->getAttribute("tl")->setDefaultValue(90.0);
tds->getAttribute("hu")->setDefaultValue(1050.0);
tds->getAttribute("hl")->setDefaultValue(760.0);
tds->getAttribute("l")->setDefaultValue(1400.0);
tds->getAttribute("kw")->setDefaultValue(10500.0);

VI.2.2.3 TFiniteDifferences constructor

There are four different constructors to build a TFiniteDifferences object, each corresponding to a different
problem:

• the model is an analytic function run by Uranie,

• the model is a code run by Uranie,

• the outputs of the model are already computed and saved in a TDataServer object.

• the model is either a function or a code and the problem is specified through a Relauncher architecture.

VI.2.2.3.1 TFiniteDifferences constructor for an analytic function

The constructor prototype used with an analytic function is:

// Create a TFiniteDifferences object with an analytic function
TFiniteDifferences(TDataServer *tds, const char *fcn, TString sensitiveAtt, TString ←↩

outputAtt, TString samplingOption="steps=1%")
TFiniteDifferences(TDataServer *tds, void * fcn(double *,double *), TString sensitiveAtt, ←↩

TString outputAtt, TString samplingOption="steps=1%")

This constructor takes five arguments:

• a pointer to a TDataServer object,

• a pointer to an analytic function (a const char that represents the function’s name when it has been loaded in
ROOT’s memory) or a pointer to this function (see Section I.2.5),

• a TString to specify the names of the input factors separated by ’:’ (ex. "rw:r:tu:tl:hu:hl:l:kw"),

• a TString to specify the names output variables of the model,

• a TString to specify the sample options, its default value is the string "steps=1%".

page 230

CHAPTER VI. THE SENSITIVITY MODULE Computation of local sensitivity indices with the finite differences method

The options available are the options of the method Sampler::TOATSampling. They are written as strings of the
form:"steps=x", where "x" can either be a real value (e.g. "steps=3.1415") or a percentage of the nominal value (e.g.
"steps=0.123%"). This "steps" value is the same for each input parameter.

Here is an example of how to use the constructor with an analytic function:

TFiniteDifferences * tfindef = new TFiniteDifferences(tds,"flowrateModel", "rw:r:tu:tl:hu: ←↩
hl:l:kw", "y", "steps=0.5%");

VI.2.2.3.2 TFiniteDifferences constructor for a code

The constructor prototype used with a code is:

// Create a TFiniteDifferences object with a code
TFiniteDifferences(TDataServer *tds, TCode *fcode, TString sensitiveAtt="", TString ←↩

samplingOption="steps=1%")

This constructor takes four arguments:

• a pointer to a TDataServer object,

• a pointer to a TCode,

• a TString to specify the names of the input factors separated by ’:’ (ex. "rw:r:tu:tl:hu:hl:l:kw"), its default value is
the empty string ""

• a TString to specify the sample options, its default value is the string "steps=1%".

The options available are the options of the method Sampler::TOATSampling. It’s a string of the form:"steps=x", where
"x" can either be a real value (e.g. "steps=3.1415") or a percentage of the nominal value (e.g. "steps=0.123%"). This
"steps" value is the same for each input parameter.

Here is an example of the use of this constructor on the flowrate case:

// The reference input file
TString sJDDReference = TString("flowrate_input_with_keys.in");

// Set the reference input file and the key for each input attributes
tds->getAttribute("rw")->setFileKey(sJDDReference, "Rw");
tds->getAttribute("r")->setFileKey(sJDDReference, "R");
tds->getAttribute("tu")->setFileKey(sJDDReference, "Tu");
tds->getAttribute("tl")->setFileKey(sJDDReference, "Tl");
tds->getAttribute("hu")->setFileKey(sJDDReference, "Hu");
tds->getAttribute("hl")->setFileKey(sJDDReference, "Hl");
tds->getAttribute("l")->setFileKey(sJDDReference, "L");
tds->getAttribute("kw")->setFileKey(sJDDReference, "Kw");

// The output file of the code
TOutputFileRow *fout = new TOutputFileRow("_output_flowrate_withRow_.dat");
// The attribute in the output file
fout->addAttribute(new TAttribute("yhat"));

// Instanciation de mon code
TCode *mycode = new TCode(tds, "flowrate -s -k");
// Adding the outputfile to the tcode object
mycode->addOutputFile(fout);

TFiniteDifferences * tfindefC = new TFiniteDifferences(tds,mycode);

page 231

Computation of local sensitivity indices with the finite differences method CHAPTER VI. THE SENSITIVITY MODULE

VI.2.2.3.3 TFiniteDifferences constructor for a runner

The constructor prototype used with a code is:

// Create a TFiniteDifferences object with a runner
TFiniteDifferences(TDataServer *tds, TRun *run, TString sensitiveAtt="", TString ←↩

samplingOption="steps=1%")

This constructor takes four arguments:

• a pointer to a TDataServer object,

• a pointer to a TRun,

• a TString to specify the names of the input factors separated by ’:’ (ex. "rw:r:tu:tl:hu:hl:l:kw"), its default value is
the empty string ""

• a TString to specify the sample options, its default value is the string "steps=1%".

The options available are the options of the method Sampler::TOATSampling. It’s a string of the form:"steps=x", where
"x" can either be a real value (e.g. "steps=3.1415") or a percentage of the nominal value (e.g. "steps=0.123%"). This
"steps" value is the same for each input parameter.

Here is an example of the use of this constructor on the flowrate case, using the code:

// The input file
TKeyScript infile("flowrate_input_with_keys.in");
// provide the input and their key
infile.setInputs(8, tds->getAttribute("rw"), "Rw", tds->getAttribute("r"), "R",
tds->getAttribute("tu"), "Tu", tds->getAttribute("tl"), "Tl", tds->getAttribute("hu"), "Hu" ←↩

,
tds->getAttribute("hl"), "Hl", tds->getAttribute("l"), "L", tds->getAttribute("kw"), "Kw");

TAttribute yhat("yhat");
// The output file of the code
TKeyResult outfile("_output_flowrate_withKey_.dat");
// The attribute in the output file
outfile.addOutput(&yhat, "yhat");

// Instanciation de mon code
TCodeEval code("flowrate -s -k");
// Adding the intput/output file to the code
code.addInputFile(&infile);
code.addOutputFile(&outfile);

TSequentialRun run(&code);
run.startSlave();
if(run.onMaster())
{

TFiniteDifferences * tfindefR = new TFiniteDifferences(tds, &run);
//

}

VI.2.2.3.4 TFiniteDifferences constructor using a filled TDS

The two constructors before are used for cases where the computation of the model outputs are run from Uranie.
However it is possible to compute the outputs of the model outside of Uranie then load them in a TDataServer
object (via a file) and use that TDataServer object to compute the finite difference indices.

page 232

CHAPTER VI. THE SENSITIVITY MODULE Computation of local sensitivity indices with the finite differences method

Be aware that in that case, because of the use of internal variables, it is necessary to use a sample of input parameters
computed with Uranie, exported in a file and then completed with the outputs of the model.

The constructor prototype used with a TDataServer object already containing the simulations is:

// Create a TFiniteDifferences object with already filled TDS
TFiniteDifferences(TDataServer *tds, TString inputAtt, TString outputAtt, TString ←↩

sensitiveAtt=TString(""))

This constructor takes four arguments:

• a pointer to a TDataServer object filled with data,

• a TString to specify the names of all the input factors separated by ’:’ (ex. "rw:r:tu:tl:hu:hl:l:kw"),

• a TString to specify the names of the output variables of the model,

• a TString to specify the names of the inputs of the model which are studied, its default value is the empty string
"".

Below is an example of the constructor with a TDataServer object filled:

// Define the DataServer and add the attributes
TDataServer *tdsFilled = new TDataServer();
tdsFilled->fileDataRead("sampleFiniteDifferencesFlowrateModel.dat");
tdsFilled->getAttribute("flowrateModel")->setOutput(); // Mark the output

TFiniteDifferences * tfindef2 = new TFiniteDifferences(tdsFilled, TString("rw:r:tu:tl:hu:hl ←↩
:l:kw"), TString("flowrateModel"));

Warning
This constructor uses a TDataServer object already filled with specific internal variables (__nomi-
nal_set__ and __modified_att__) and a specific sample!
There are several conditions to use it:

• use the constructor without argument for the TDataServer;

• the input factors sample must have been generated with the method
TFiniteDifferences::generateSample;

• the output factors of the model must have been specified with the method TAttribute::setOutput;

VI.2.2.4 Computing the indices

To compute the indices, run the method computeIndexes:

tfindef->computeIndexes();

Note that this method is all inclusive: it constructs the sample (if it does not exist), launches the simulations (if they are
not already computed) and computes the indices.

page 233

Computation of local sensitivity indices with the finite differences method CHAPTER VI. THE SENSITIVITY MODULE

VI.2.2.5 Extracting the indices

To extract the indices use the method getSensitivityMatrix:

TMatrixD matRes = tfindef->getSensitivityMatrix();
matRes.Print();

page 234

CHAPTER VI. THE SENSITIVITY MODULE Computation of local sensitivity indices with the finite differences method

Summary: TFiniteDifferences

• TFiniteDifferences(TDataServer *tdsNominal, void/const char *fcn, TString sensitiveAtt, TString
outputAtt, TString samplingOption="steps=1%")

– tdsNominal: an empty dataserver containing the input variables. Each input variables must have a default value
set used as the nominal value.

– fcn: the function to analyse (either a void or a const char).

– sensitiveAtt: A list of attribute names separated by colons that will be taken into account for the SA.

– outputAtt: attribute names which represent the responses of the problem.

– samplingOption: The options for the OAT sampling (Default = "steps=1%").

• TFiniteDifferences(TDataServer *tdsNominal, TCode *fcode, TString sensitiveAtt="", TString
samplingOption="steps=1%")

– tdsNominal: an empty dataserver containing the input variables. Each input variables must have a default value
set, used as the nominal value.

– fcode: The code to analyse.

– sensitiveAtt: input attribute names separated by colons that will be taken into account for the SA. If the string is
equal to "" or "*", all the attributes are taken into account.

– samplingOption: The options for the OAT sampling (Default = "steps=1%").

• TFiniteDifferences(TDataServer *tdsNominal, TRun *run, TString sensitiveAtt="", TString sam-
plingOption="steps=1%")

– tdsNominal: an empty dataserver containing the input variables. Each input variables must have a default value
set used as the nominal value.

– run: The runner to be used that contains the code and the way to distribute.

– sensitiveAtt: input attribute names separated by colons taken into account for the SA. If the string is equal to ""
or "*", all the attributes are taken into account.

– samplingOption: The options for the OAT sampling (Default = "steps=1%").

• TFiniteDifferences(TDataServer *tdsNominal, TString inputAtt, TString outputAtt, TString sen-
sitiveAtt=TString(""))

– tdsNominal: this TDataServer object contains the input and output values necessary for the finite differences
calculation. It must also contain the attributes "__nominal_set__" and "__modified_att__" which are necessary to
know which attribute is modified.

– inputAtt: input attribute names separated by colons. They must refer to existing attributes in the "tdsNominal".

– outputAtt: attribute name which represent the unique response of the problem.

– sensitiveAtt: A list of attribute names separated by colons taken into account for the SA. If the string is equal to
"" or "*", all the input attributes are taken into account.

• void computeIndexes(Option_t *option=""): Compute sensitivity indices.

– option: no option has been implemented.

• TMatrixD getSensitivityMatrix(): Get the matrix containing the indices.

page 235

The regression method CHAPTER VI. THE SENSITIVITY MODULE

VI.3 The regression method

VI.3.1 General presentation of regression’s coefficients

The TRegression class is dealing with computing the SRC and SRRC coefficients but also the PCC and PRCC
ones (for a definition of these coefficients, see [30]). The choice of which values to be computed between these four is
set at the construction by precising respectively "src", "srrc", "pcc" or "prcc" and is no more inclusive. It is indeed now
possible to get, for example, the results of both SRC and PRCC estimation by passing the option "srcprcc", for one
or more outputs. This class computes the regression coefficients from the observations of the model contained in a
TDataServer. The construction of the data sample is the user burden and the quality of the regression coefficients
computed will depend upon it (unless analysing a dataset out of an experiment).

In the case where SRC or SRRC coefficients are requested, a second estimation is performed, based on correlation
coefficients (between the output and the input under consideration, see [30] for completness). This estimation is
costless and allows to get an idea of the 95% confidence-interval (CI) of the estimated coefficient. This CI has to be
considered as a very good guess of the 95% CI and could only be considered exact, if one respects the underlying
hypothesis for its estimation: all input variables should be gaussian-distributed variables. An illustration of the way to
look at this CI is shown in Section VI.3.2.5.1.

Using the TRegression class is simple, as there is only one possible creator, and the only other method to be called
is computeIndexes. The rest is common to any of the following SA classes.

VI.3.2 Computation of the coefficients with Uranie

Computing Standardised Regression Coefficients (SRC), Standardised Rank-Regression Coefficients (SRRC), partial
correlation coefficient (PCC) and partial rank correlation coefficient (PRCC) in Uranie is dealt with the TRegression
class which inherits from the TSensitivity class. The following sections will explain how to compute and handle
the requested coefficients.

VI.3.2.1 Example: simple computation of SRC and SRRC coefficients

The example script uses the TRegression class to compute and display the SRC and SRRC coefficients:

{
// Define the DataServer and fill it with datas in a file
TDataServer *tds = new TDataServer("tdsflowrate", "DataBase flowrate");
tds->fileDataRead("sampleLHSFlowrateModel4000points.dat");

// Create a TRegression object and compute indexes
TRegression * treg = new TRegression(tds, "rw:r:tu:tl:hu:hl:l:kw","flowrateModel", " ←↩

SRCSRRC");
treg->computeIndexes();

// Draw SRC Indexes
TCanvas *cc = new TCanvas("canpie-SRC", "Pie chart SRC",10,32,1200,800);
TPad *apad = new TPad("apad","apad",0, 0.03, 1, 1); apad->Draw(); apad->cd();
treg->drawIndexes("Flowrate", "", "nonewcanv,pie,SRC");

// Draw SRRC Indexes
TCanvas *ccc = new TCanvas("canpie-SRRC", "Pie chart SRRC",10,32,1200,800);
TPad *pad2 = new TPad("pad2","pad2",0, 0.03, 1, 1); pad2->Draw(); pad2->cd();
treg->drawIndexes("Flowrate", "", "nonewcanv,pie,SRRC");

}

page 236

CHAPTER VI. THE SENSITIVITY MODULE Computation of the coefficients with Uranie

In this script, the observations are data loaded from a file into a TDataServer object, a TRegression object is cre-
ated to compute the coefficients. Then both indices are computed by using the method TSensitivity::computeIndexes.
Finally, SRC and SRRC coefficients are graphically displayed in pie charts, respectively in Figure VI.1 and Figure VI.2,
with the TSensitivity::drawIndexes method.

Figure VI.1: SRC coefficients estimated for the flowrate function.

Figure VI.2: SRRC coefficients estimated for the flowrate function.

VI.3.2.2 TRegression constructor

To build a TRegression object, use the following constructor:

page 237

Computation of the coefficients with Uranie CHAPTER VI. THE SENSITIVITY MODULE

TRegression(TDataServer *tds, const char* varinput, const char* varoutput, Option_t * ←↩
option="src")

The TRegression constructor needs:

• a pointer to a TDataServer object where the input and output attributes are stored,

• a string containing the input parameter names separated by colons (ex. "rw:r:tu:tl:hu:hl:l:kw"),

• a string containing the name of the model’s outputs (ex. "flowrateModel"),

• a string containing the type of coefficient to compute ("SRC", "SRRC", "PCC", or "PRCC"), its default value is the
string "SRC".

The creation of a TRegression object for computing the SRC and the SRRC coefficients is therefore:

// Create a TRegression object and compute SRC indices
TRegression * treg = new TRegression(tds, "rw:r:tu:tl:hu:hl:l:kw","flowrateModel", "SRCSRRC ←↩

");

VI.3.2.3 Computing the SRC and SRRC indices

The computation of the coefficients (also call indices) is done with the method computeIndexes:

void TSensitivity::computeIndexes(Option_t * option)

In our example, its use is therefore:

// Compute the indices
treg->computeIndexes();

VI.3.2.4 Displaying the indices

To display graphically the coefficients, use the drawIndexes method:

void TSensitivity::drawIndexes(TString sTitre, const char *select, Option_t * option)

The method needs:

• a TString containing the title of the figure,

• a string containing a selection (empty if no selection),

• a string containing the options of the graphics separated by commas.

Some of the options available are:

• "nonewcanv": to not create a new canvas,

• "pie": to display a pie chart,

• "hist": to display a histogram,

page 238

CHAPTER VI. THE SENSITIVITY MODULE Computation of the coefficients with Uranie

• "SRC": to display the SRC indices,

• "SRRC": to display the SRRC indices,

• "PCC": to display the PCC indices,

• "PRCC": to display the PRCC indices,

In our example the use of this method is:

// Draw SRC Indices
TCanvas *cc = new TCanvas("canpie-SRC", "Pie chart SRC");
treg->drawIndexes("Flowrate", "", "nonewcanv,pie,SRC");

// Draw SRRC Indices
TCanvas *ccc = new TCanvas("canpie-SRRC", "Pie chart SRRC");
treg->drawIndexes("Flowrate", "", "nonewcanv,pie,SRRC");

Here is another example with a histogram figure:

TCanvas *cccc = new TCanvas("canhist-SRC", "Hist chart SRC");
treg->drawIndexes("Flowrate", "", "nonewcanv,hist,first");

Figure VI.3: Histogram of SRC coefficients

VI.3.2.5 Extracting the coefficients

The coefficients, once computed, are stored in a TTree. To get this TTree, use the method TSensitivity::getResultTuple():

TTree * results = treg->getResultTuple();

Several methods exist in ROOT to extract data from a TTree, it is advised to look for them into the ROOT documen-
tation. We propose two ways of extracting the value of each coefficient from the TTree.

page 239

Computation of the coefficients with Uranie CHAPTER VI. THE SENSITIVITY MODULE

VI.3.2.5.1 First method of extraction

The first method use the method getValue of the TRegression object specifying the order of the extract value,
the related input and possibly more selected options.

treg->getValue("First","hl");

VI.3.2.5.2 Second method of extraction

The second method uses 3 steps to extract an index:

• scan the TTree for the chosen input variable (with a selection) in order to obtain its row number. In our example, if
we chose the variable "hl", we’ll use the command:

results->Scan("*","((Inp==\"hl\")&&(Method==\"SRC^2\"))");

This results in the following table, in which the SRC coefficient of "hl" is in the row 40:

**
* Row * Out * Inp * Order * Method * Algo * Value * CILower * CIUpper *
**
* 40 * flowr * hl * First * SRC^2 * --first-- * 0.04102 * -1 * -1 *
* 41 * flowr * hl * Total * SRC^2 * --total-- * 0.04102 * -1 * -1 *
* 42 * flowr * hl * First * SRC^2 * --rho^2-- * 0.04124 * 0.03025 * 0.05353 *
* 43 * flowr * hl * Total * SRC^2 * --rho^2-- * 0.04124 * 0.03025 * 0.05353 *
**

The numbers stored in row 42 are the estimation using the correlation coefficient between the output and the in-
put under consideration, and they are shown to crosscheck the main estimation and to display the estimated 95%
confidence interval (CI), see Section VI.3.1 and [30] for more explanations.

• set the entry of the TTree on this row with the method GetEntry;

• get the value of the index with GetValue method on the "Value" leaf of the TTree.

Below is an example of extraction of the index for the variable "hl" in our flowrate case:

results->Scan("*","((Inp==\"hl\")&&(Method==\"SRC^2\"))");
results->GetEntry(20);
Double_t Rw_Indexe = results->GetLeaf("Value")->GetValue();

VI.3.2.5.3 Third method of extraction

The second method uses 2 steps to extract an index:

• use the Draw method with a selection to select the index, for example the selection for the SRC coefficient of "rw" is
"Inp==\"rw\" && Algo==\"--first--\"";

• get the pointer on the value of the index with the GetV1 method on the TTree.

Below is another example of extraction of the index for the variable "rw" in our flowrate case:

results->Draw("Value","Inp==\"rw\" && Algo==\"--first--\" && Method==\"SRC^2\" ","goff");
Rw_Indexe = results->GetV1()[0];

page 240

CHAPTER VI. THE SENSITIVITY MODULE Computation of the coefficients with Uranie

VI.3.2.6 Getting R2 and R2
adj

To evaluate the pertinence of the indices, it is recommended to check the value of both R2 and R2
adj. The use of the

methods TRegression::getR2 and TRegression::getR2A is now deprecated: as one can work both on
rank and values at the same time, the quality criteria can be computed for all the estimations and so they have to be
kept in the ntuple result as well. The numerical values can then be retrieved as previously explained, an example is
shown below to get the one from the regression on values (SRC).

Example:

// coefficient of determination R2
results->Draw("Value","Inp==\"__R2__\" && Algo==\"--first--\" && Method==\"SRC^2\" ","goff" ←↩

);
Rw_Indexe = results->GetV1()[0];

// adjusted coefficient of determination R2A
results->Draw("Value","Inp==\"__R2A__\" && Algo==\"--first--\" && Method==\"SRC^2\" ","goff ←↩

");
Rw_Indexe = results->GetV1()[0];

VI.3.2.7 Getting the sum of squared indices

As stated in [30], it can be interesting to consider the sum of the squared indices (in particular for SRC coefficients).
As for the quality criteria, discussed previously, this computation can be done for all the estimations and so it has to
be kept in the ntuple result. The numerical values can then be retrieved as previously explained, an example is shown
below to get the ones from the regression on values (SRC).

Example:

// coefficient of determination sum
results->Draw("Value","Inp==\"__sum__\" && Algo==\"--first--\" && Method==\"SRC^2\" ","goff ←↩

");
Rw_Indexe = results->GetV1()[0];

page 241

The Morris screening method CHAPTER VI. THE SENSITIVITY MODULE

Summary: TRegression

• TRegression(TDataServer *tds, const char* varinput, const char* varoutput, Option_t *option="src")

– tds: a dataserver containing the attributes of the input and output variables and their associated data.

– varinput: input attribute names separated by colons. They represent all the inputs of the problem. They must
refer to existing attributes in the "tds".

– varoutput: attribute names which represent the responses of the problem. it must refer to existing attributes in the
"tds".

– option: a string containing the type of regression coefficients to compute: "SRC", "SRRC"; "PCC" or "PRCC"
(Default = "src").

• void computeIndexes(Option_t *option=""): Compute regression coefficients.

– option: no option has been implemented.

• void drawIndexes(TString sTitre, const char* select="", Option_t *option=""): draw the coefficients.

– sTitre: a string containing the title of the figure.

– select: a string containing a solution.

– option: a string containing the options of the graphics separated by commas.

• TTree * getResultTuple(): Get the tree containing the indices.

VI.4 The Morris screening method

VI.4.1 Principle of the Morris’ method

The Morris method is an effective screening procedure that robustifies a bit the OAT protocol (One-factor-At-a-Time, see
Section III.6.1). Instead of varying every input parameters only once (leading then to a minimum of nX +1 assessments
of the code/function, with an OAT technique), the Morris method repeats this OAT principle r times. More precision on
this method can be found in [30]. The resulting cost (in terms of assessment number) is then r(nX +1).

The results are usually visualised in the (µ∗,σ) plane, allowing to sort its inputs in the following categories:

• factors that have negligible effects on the output: both µ∗ and σ are small.

• factors that have linear effects, without interaction with other inputs: µ∗ is large (all variations have an impact) but σ

is small (the impact is the same independently of the starting point).

• factors that have non-linear effects and/or interaction with other inputs: both µ∗ and σ are large.

In terms of implementation, there are only few methods that can be called once the TMorris object is constructed
(constructed either with a code, a function or an already-filled TDataServer):

• generateSample: it produces the different patterns of OAT

• computeIndexes: it computes the indices and stores them in the result TTree.

• drawIndexes: the results are presented in the (µ ,σ) plane, unless the option "mustar" is used to get µ∗ as X
axis instead.

page 242

CHAPTER VI. THE SENSITIVITY MODULE The Morris’ method in Uranie

Warning
If the TMorris object is constructed to run a function, the output used for the estimation will be the first
output provided by the function, unless the sixth argument of the constructor is filled.

VI.4.2 The Morris’ method in Uranie

Computing Morris coefficients µ , µ∗ and σ in Uranie is dealt with the TMorris class which inherits from the
TSensitivity class.

Warning
The Morris method has been designed initially to deal with uniform probability law and uniform only. The
implementation has been extended in Uranie by allowing all probability laws, but this has to be done with
caution: if one is considering to use infinite-based law it is crucial to set bounds to these. The probability
space is divided in a [0,1]nX hyper-grid with p level on each dimension, and by definition, 0 and 1 are
possible values that are very likely to arise. When going back from probability space to physical one, their
corresponding response should be respectively −∞ and +∞, this is why all infinite-based law should be
bounded. As the chosen bounds will be very likely to be used, their values should be chosen with care.
From version 4.4.0, the TMorris will quit automatically if an at least one infinite-based law is unbounded
static that:

<URANIE::ERROR>
<URANIE::ERROR> *** URANIE ERROR ***
<URANIE::ERROR> *** File[/[...]/souRCE/meTIER/sensitivity/souRCE/TMorris.cxx] Line ←↩

[244]
<URANIE::ERROR> Morris method is not meant to be run with unbounded infinite ←↩

stochastic laws [kNus].
<URANIE::ERROR> The sampling can indeed, AND WILL CERTAINLY, randomly draw a ←↩

probability of 0 or 1 in the [0,1]^{nX} hypercube (see methodology).
<URANIE::ERROR> The theoretical answer, given an unbounded infinite stochastic laws ←↩

, is repectively - infinite or + infinite.
<URANIE::ERROR> Please, if you want to use infinite stochastic laws, use the ←↩

setBounds(lower,upper) method to truncate the law.
<URANIE::ERROR> This would allow you to define the proper physical space in which ←↩

your problem is defined.
<URANIE::ERROR> !!!! WARNING !!!:
<URANIE::ERROR> Bear in mind that the bound values will very likely be used, so ←↩

choose them wisely (for a gaussian, few sigma away from the mean but not much).
<URANIE::ERROR> !!!! WARNING !!!.
<URANIE::ERROR> *** END of URANIE ERROR ***
<URANIE::ERROR>

This class handles all the steps to compute the Morris coefficients:

• generating the sample of Morris trajectories;

• running the code or the analytic function to get the response on the sample;

• computing the values of µ , µ∗ and σ for each input variable.

page 243

The Morris’ method in Uranie CHAPTER VI. THE SENSITIVITY MODULE

VI.4.2.1 Example: simple computation of computing the sensitivity screening indices

The example script below uses the TMorris class to compute and display Morris sensitivity screening measures:

{
gROOT->LoadMacro("UserFunctions.C");

// Define the DataServer
TDataServer *tds = new TDataServer("tdsflowrate", "DataBase flowrate");
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

// Set the Morris method parameters
Int_t nreplica = 3;
Int_t nlevel = 10;

// Create a TMorris object
TMorris * scmo = new TMorris(tds, "flowrateModel", nreplica, nlevel);

// generate a Morris sample
scmo->generateSample();

//Save the sample
tds->exportData("_morris_sampling_.dat");

// compute the Morris screening measures
scmo->computeIndexes();

// Display graphically the Morris screanig measures
TCanvas *cc = new TCanvas("can", "histogramme");
TPad *apad = new TPad("apad","apad",0, 0.03, 1, 1); apad->Draw(); apad->cd();
scmo->drawIndexes("mustar,nonewcanv");

}

Below is the figure generated by this script:

page 244

CHAPTER VI. THE SENSITIVITY MODULE The Morris’ method in Uranie

Figure VI.4: Morris screening indices

VI.4.2.2 Specifying the input parameters

First, one defines the uncertain parameters and adds them to a TDataServer object:

// Define the DataServer
TDataServer *tds = new TDataServer("tdsflowrate", "DataBase flowrate");
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

VI.4.2.3 TMorris constructors

There are four different constructors to build a TMorris object, each corresponding to a different problem:

• the model is an analytic function run by Uranie,

• the model is a code run by Uranie,

• the outputs of the model are already computed and saved in a TDataServer object.

• the model is either a function or a code and the problem is specified through a Relauncher architecture.

VI.4.2.3.1 TMorris constructor for an analytic function

The constructor prototype used with an analytic function is:

page 245

The Morris’ method in Uranie CHAPTER VI. THE SENSITIVITY MODULE

// Create a TMorris object with an analytic function
TMorris(TDataServer *tds,const char *fcn,Int_t nreplica, Int_t level, Double_t delta=0, ←↩

TString sout="")
TMorris(TDataServer *tds,void *fcn,TString sinp,TString sout,Int_t nreplica, Int_t level, ←↩

Double_t delta=0)

This constructor takes six arguments:

• a pointer to a TDataServer object,

• a pointer to an analytic function (either a void or a const char that represents the function’s name when it has
been loaded in ROOT’s memory),

• an integer to specify the number of trajectories the object will generate,

• an integer to specify the level of the grid which will be used

• an integer to specify the delta parameter, with ∆ ∈ [1, level−1],

• a TString to specify the names of the input variables of the model.

• a TString to specify the names of the output variables of the model.

Here is an example of how to use the constructor with an analytic function:

Int_t nreplica = 3;
Int_t nlevel = 10;
TMorris * scmo = new TMorris(tds, "flowrateModel", nreplica, nlevel);

VI.4.2.3.2 TMorris constructor for a code

The constructor prototype used with a code is:

// Create a TMorris object with a code
TMorris(TDataServer *tds,TCode *fcode, Int_t nreplica, Int_t level, Double_t delta=0)

This constructor takes five arguments:

• a pointer to a TDataServer object,

• a pointer to a TCode,

• an integer to specify the number of trajectories the object will generate,

• an integer to specify the level of the grid which will be used

• an integer to specify the delta parameter, with ∆ ∈ [1, level−1],

Here is an example using this constructor for the flowrate case:

page 246

CHAPTER VI. THE SENSITIVITY MODULE The Morris’ method in Uranie

VI.4.2.3.3 TMorris constructor for a runner

The constructor prototype used with a runner object is:

// Create a TMorris object with a runner
TMorris(TDataServer *tds,TRun *run, Int_t nreplica, Int_t level, Double_t delta=0)

This constructor takes five arguments:

• a pointer to a TDataServer object,

• a pointer to a TRun,

• an integer to specify the number of trajectories the object will generate,

• an integer to specify the level of the grid which will be used

• an integer to specify the delta parameter, with ∆ ∈ [1, level−1],

Here is an example using this constructor for the flowrate code in sequential mode:

// The input file
TKeyScript infile("flowrate_input_with_keys.in");
// provide the input and their key
infile.setInputs(8, tds->getAttribute("rw"), "Rw", tds->getAttribute("r"), "R",
tds->getAttribute("tu"), "Tu", tds->getAttribute("tl"), "Tl", tds->getAttribute("hu"), "Hu" ←↩

,
tds->getAttribute("hl"), "Hl", tds->getAttribute("l"), "L", tds->getAttribute("kw"), "Kw");

TAttribute yhat("yhat");
// The output file of the code
TKeyResult outfile("_output_flowrate_withKey_.dat");
// The attribute in the output file
outfile.addOutput(&yhat, "yhat");

// Instanciation de mon code
TCodeEval code("flowrate -s -k");
// Adding the intput/output file to the code
code.addInputFile(&infile);
code.addOutputFile(&outfile);

TSequentialRun run(&code);
run.startSlave();
if(run.onMaster())
{

Int_t nreplicas = 3;
Int_t nlevels = 10;
TMorris * scmoR = new TMorris(tds, &run, nreplicas, nlevels);
// ...

}

VI.4.2.3.4 TMorris constructor using a filled TDataServer object

The two constructors before are used in the cases where the computation of the model outputs are run from Uranie.
However it is possible to compute the outputs of the model outside of Uranie then load them in a TDataServer
object (via a file) and use that TDataServer object to compute the finite differences indices.

page 247

The Morris’ method in Uranie CHAPTER VI. THE SENSITIVITY MODULE

Warning
This constructor uses a TDataServer object already filled with specific internal variables (__npoints__,
__directions__ and __morris__difference__) and a specific sample!
There are several conditions to use it:

• use the constructor without argument for the TDataServer;

• the input factors sample must have been generated with the method TMorris::generateSample.

The constructor prototype used with a TDataServer object already containing the simulations is:

// Create a TMorris object with already filled TDS
TMorris(TDataServer *tds, const char *inp, const char *out, Option_t *option="")

This constructor takes three arguments:

• a pointer to a TDataServer object filled,

• a string to specify the names of the input factors separated by ’:’ (ex. "rw:r:tu:tl:hu:hl:l:kw"),

• a string to specify the names of the output variables of the model.

Below is an example of the constructor with a TDataServer object filled:

// Define the DataServer
TDataServer *tds = new TDataServer();
tds->fileDataRead("_morris_launching_.dat");

TMorris * scmo = new TMorris(tds, "rw:r:tu:tl:hu:hl:l:kw", "flowrateModel");

VI.4.2.4 Generating the sample

To generate the Morris sample, use the generateSample method:

scmo->generateSample();

Then, the sample generated can be exported in a file and used outside of Uranie to compute the simulations associated.

VI.4.2.5 Computing the indices

To compute the sensitivity screening measures, use the method computeIndexes:

scmo->computeIndexes();

Note that this method is all inclusive: it constructs the sample (if it does not exist), launches the simulations (if they are
not already computed) and computes the indices.

VI.4.2.6 Displaying the indices

To display graphically the coefficients, use the method drawIndexes.

This method shows by default the value of the measurements of σ versus the measurements of µ for all input factors
of the model. To display σ versus µ∗ the argument "mustar" should be given, as follow:

TCanvas *cc = new TCanvas("can", "histgramme");
scmo->drawIndexes("mustar");

page 248

CHAPTER VI. THE SENSITIVITY MODULE The Morris’ method in Uranie

VI.4.2.7 Extracting the measures

The coefficients, once computed, are stored in a TTree. To get this TTree use either the TSensitivity::getResultTuple()
or the TMorris::getResultTuple() that will provide the dedicated Morris ntuple.

TTree * ntresu = scmo->getMorrisResults();

Several methods exist in ROOT to extract data from a TTree, it is advised to look for them into the ROOT documen-
tation. We propose two ways of extracting the value of each coefficient from the TTree.

VI.4.2.7.1 First method of extraction

The first method use the method getValue of the TMorris object specifying the order of the extract value ("mustar",
"mu" ou "sigma"), the related input and possibly more selected options.

double hl_mustar_index = scmo->getValue("mustar","hl");
double hl_mu_index = scmo->getValue("mu","hl");
double hl_sigma_index = scmo->getValue("sigma","hl");

VI.4.2.7.2 Second method of extraction

The second method uses 3 steps to extract an index:

• scan the TTree for the chosen input variable (with a selection) in order to obtain its row number. In our example, if
we chose the variable "hl", we’ll use the command:

ntresu->Scan("*","Input==\"hl\"");

and in the resulting figure below we see that the measure µ of "hl" is in the row 5:

**
* Row * Input * Output * mu.mu * mustar.mu * sigma.sig *
**
* 5 * hl * flowrateM * -48.15217 * 48.152173 * 14.855638 *
**

• set the entry of the TTree on this row with the method GetEntry;

• get the value of the index with GetValue method on the "mu" leaf of the TTree.

Below is an example of extraction of the index µ for hl in our flowrate case:

ntresu->Scan("*","Input==\"hl\"");
ntresu->GetEntry(5);
Double_t Hl_mu_Indexe = ntresu->GetLeaf("mu")->GetValue();

VI.4.2.7.3 Third method of extraction

The third method uses 2 steps to extract an index:

• use the Draw method with a selection to select the index, for example the selection for the measure µ∗ of "rw" is
"Input==\"rw\"";

page 249

The Morris’ method in Uranie CHAPTER VI. THE SENSITIVITY MODULE

• get the pointer on the value of the index with GetV1 method on the TTree.

Below is another example of extraction of the index µ∗ for "rw" in our flowrate case:

ntresu->Draw("mustar","Input==\"rw\"","goff");
Double_t Rw_mustar_Indexe = ntresu->GetV1()[0];

page 250

CHAPTER VI. THE SENSITIVITY MODULE The Morris’ method in Uranie

Summary: TMorris constructor

• TMorris(TDataServer *tds, const char *fcn, Int_t nreplica, Int_t level, Double_t delta=0, TString sout="")

– tds: an empty dataserver containing the input variables.

– fcn: the function to analyse (the function’s name).

– nreplica: an integer specifying the number of trajectories which will be generated.

– level: an integer specifying the number of intervals in each dimension for the grid.

– delta: an integer value to specify the delta parameter, with ∆ ∈ [1, level−1.

– sout: attribute names which represent the responses of the model.

• TMorris(TDataServer *tds, void *f(double *,double *), TString sin, TString sout, Int_t nreplica, Int_t
level, Double_t delta=0, TString sout="")

– tds: an empty dataserver containing the input variables.

– f: the function to analyse (a pointer).

– sin: attribute names which represent the inputs of the model.

– sout: attribute names which represent the responses of the model.

– nreplica: an integer specifying the number of trajectories which will be generated.

– level: an integer specifying the number of intervals in each dimension for the grid.

– delta: an integer value to specify the delta parameter, with ∆ ∈ [1, level−1.

• TMorris(TDataServer *tds, const char *inp, const char *out, Option_t *option="")

– tds: a dataserver containing the input and output attributes and their associated data.

– inp: input attribute names separated by colons. They represent all the inputs of the problem. They must refer to
existing attributes in the "tds".

– out: attribute names which represent the response of the problem. it must refer to existing attributes in the "tds".

– option: no option has been implemented.

• TMorris(TDataServer *tds, TCode *fcode, Int_t nreplica, Int_t level, Double_t delta=0)

– tds: an empty dataserver containing the input variables.

– fcode: the code to analyse .

– nreplica: an integer specifying the number of trajectories which will be generated.

– level: an integer specifying the number of intervals in each dimension for the grid.

– delta: an integer value to specify the delta parameter, with ∆ ∈ [1, level−1.

• TMorris(TDataServer *tds, TRun *run Int_t nreplica, Int_t level, Double_t delta=0)

– tds: an empty dataserver containing the input variables.

– run: The runner to be used that contains the code and the way to distribute.

– nreplica: an integer specifying the number of trajectories which will be generated.

– level: an integer specifying the number of intervals in each dimension for the grid.

– delta: an integer value to specify the delta parameter, with ∆ ∈ [1, level−1.

page 251

The Sobol method CHAPTER VI. THE SENSITIVITY MODULE

Summary: TMorris other methods

• generateSample(Option_t *option=""): generate the sample used for computing sensitivity screening measures.

– option: no option has been implemented.

• computeIndexes(Option_t *option=""): compute the sensitivity screening measures.

– option: no option has been implemented.

• void drawIndexes(Option_t *option=""): draw the Morris measurement. Specific method on top of the generic
one from TSensitivity.

– option: a string containing the options of the graphics separated by commas.

VI.5 The Sobol method

VI.5.1 Introduction to Sobol’s sensitivity indices

The method described in the [30] is, in Uranie, said to be "ï¿½ la Saltelli" in contrast with the other implementation
(previously used as default) which is said to be "ï¿½ la Sobol". The difference between the two being the number of
assessment used to get a certain precision: for the same results, the implementation "ï¿½ la Sobol" was requesting
nS(2nX + 2) and was offering more numerical results as five algorithms were used. The new implementation "ï¿½ la
Saltelli" requests only nS(nX +2) estimation but only three algorithms are run. This is summarised as follow where the
bold name is the default stored in --first-- and --total--:

a la Saltelli (default method, option="saltelli") First order: Saltelli02 [15], Sumo10 [16], Martinez11 [19]

Total order: Homma96 [14], Sumo10 [16], Martinez11 [19]

a la Sobol (option="sobol") First order: Sobol93 [20], Saltelli02 [15], Jansen99 [25], Sumo10 [16], Martinez11 [19]

Total order: Homma96 [14], Saltelli02 [15], Jansen99 [25], Sumo10 [16], Martinez11 [19]

Tip
The Martinez11 algorithm is the recommended one, as it provides an estimation of the 95% confidence
interval for every coefficient determined.

VI.5.2 Computation of Sobol’s sensitivity indices

The TSobol class computes the total and first order sobol indices using the so-called Saltelli & Tarantola method. It’s
a Monte-Carlo method which needs only nS(nX +2) model evaluations to compute the 2nX indices. In terms of imple-
mentation the TSobol class differs slightly from the other classes, even though it can be constructed with the three
usual cases: a function, an external code or an already filled TDataServer. At this stage, computeIndexes’s
options can be specified to define:

• the way to generate the sample, if needed. Possible choices are: "SRS", "LHS", "QMC=sobol" and "QMC=halton"

page 252

CHAPTER VI. THE SENSITIVITY MODULE Computation of Sobol’s sensitivity indices

• the chosen implementation, to generate the M and Ni matrices (as discussed above and in [30]), possible choices
being "sobol" and "saltelli".

If the object is created with an empty TDataServer and a code or function, the procedure is the following:

1. generateSample: produce the design-of-experiments

2. Run a TLauncher object. This has nothing to do with the TSobol and is a needed extra step to compute the
output corresponding to every design-of-experiments data points.

3. computeIndexes: get the indices value.

The following subsections will show an example, detailing every steps one-by-one.

Tip Given the cost of this method (particularly once run with a real code), from version 4.6.0, the way to use
and re-use data have be clarified and new methods have been implemented:

• One can re-run an already done estimation. When running TSobol with default configuration meaning
letting the class generates the design-of-experiments and launching the estimations, there are two files
created: _sobol_sampling_.dat and _sobol_launching_.dat. Both contains input value,
internal variable to figure out from what matrices every configuration is taken out of (see [30] for more
explanation), but only the latter contains the output values (after estimations). To re-use one of these
_sobol_launching_.dat, one should simply use the constructor whose only mandatory arguments
are the dataserver pointer, the list of input variables (second argument) and the list of output variables (third
argument) in the usual form, once the file has been loaded into the dataserver thanks to fileDataRead).
An example can be found in Section XIV.5.13.

• One can use the "WithData" option which allows to shorten a bit the sobol indices estimation by providing
already done estimations. This means that if one has already a design-of-experiments (LHS, SRS or QMC
for instance) these computations are done already and will be used as the 2× nS first estimation corre-
sponding to both the M and N matrices (see [30] for more details). The class will still have to create all the
cross configurations (the Ni matrices) and launch their corresponding estimations. This new (from v4.6.0)
option should not be used with a constructor that would not provided a way to perform the estimation. An
example can be found in Section XIV.5.14.

• If the statistical accuracy is not sufficient, up to v4.6.0, one has to re-run the macro requesting more
computations but losing the ones done previously. A new method has been created in order to be able to
use all estimations done in a previous attempt by passing the file _sobol_launching_.dat, already
introduced above. This method is called loadOtherSobolFile and it takes as only argument the
name of the input file that will contains just as much attributes as needed for this analysis (inputs and
outputs, but also the internal variable to details from which matrices the configurations are coming from).
The important matter here is to be sure that the seed used to generate the design-of-experiments in the
imported file and the one used to re-generate a second step are not the same. An example can be found
in Section XIV.5.15.

VI.5.2.1 Macro computing the Sobol sensitivity indices

The example script below uses the TSobol class to compute and display Sobol sensitivity indices:

page 253

Computation of Sobol’s sensitivity indices CHAPTER VI. THE SENSITIVITY MODULE

{
gROOT->LoadMacro("UserFunctions.C");

// Define the DataServer
TDataServer *tds = new TDataServer("tdsflowrate", "DataBase flowrate");
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

Int_t nComp = 3000;
TSobol * tsobol = new TSobol(tds, "flowrateModel", nComp, "rw:r:tu:tl:hu:hl:l:kw", " ←↩

flowrateModel", "pouet");

tsobol->computeIndexes();

TCanvas *cc = new TCanvas("c1", "histgramme",5,64,1270,667);
tsobol->drawIndexes("Flowrate", "", "nonewcanv,hist,all");

TCanvas *ccc = new TCanvas("c2", "pie",5,64,1270,667);
TPad *apad = new TPad("apad","apad",0, 0.03, 1, 1); apad->Draw(); apad->cd();
tsobol->drawIndexes("Flowrate", "", "nonewcanv,pie");

}

The figures resulting from this script are shown below:

Figure VI.5: Histogram of Sobol’s indices

page 254

CHAPTER VI. THE SENSITIVITY MODULE Computation of Sobol’s sensitivity indices

Figure VI.6: Pie chart of Sobol’s indices

VI.5.2.2 Specifying the input parameters

First, define the uncertain parameters and add them to a TDataServer object:

// Define the DataServer
TDataServer *tds = new TDataServer("tdsflowrate", "DataBase flowrate");
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

VI.5.2.3 TSobol constructor

There are four different constructors to build a TSobol object, each corresponding to a different problem:

• the model is an analytic function run by Uranie,

• the model is a code run by Uranie,

• the outputs of the model are already computed and saved in a TDataServer object.

• the model is either a function or a code and the problem is specified through a Relauncher architecture.

Warning
The two first request a parameter called nComp: it represents the number of estimation to be done by the code
or the function in total. This value is used to estimate the size of the matrices M and Ni introduced in [30],
using the formula

nS =
nComp

nX +2

page 255

Computation of Sobol’s sensitivity indices CHAPTER VI. THE SENSITIVITY MODULE

VI.5.2.3.1 TSobol constructor for an analytic function

The constructor prototype used with an analytic function is:

// Create a TSobol object with an analytic function
TSobol(TDataServer *tds, void *fcn, const char *inp, const char *out, Int_t nComp, ←↩

Option_t *option="")
TSobol(TDataServer *tds, const char *fcn, Int_t nComp, const char *inp, const char *out ←↩

, Option_t *option="")

This constructor takes five arguments:

• a pointer to a TDataServer object,

• a pointer to an analytic function (either a void or a const char that represents the function’s name when it has
been loaded in ROOT’s memory),

• an integer to specify the number of computation to be performed,

• a string to specify the names of the input factors separated by ’:’ (ex. "rw:r:tu:tl:hu:hl:l:kw"), its default value is the
empty string "",

• a string to specify the names of the output variables of the model, its default value is the empty string "".

Here is an example of how to use the constructor with an analytic function:

Int_t ncomp = 100;
TSobol * tsobol = new TSobol(tds, "flowrateModel", ncomp, "rw:r:tu:tl:hu:hl:l:kw", " ←↩

flowrateModel");

VI.5.2.3.2 TSobol constructor for a code

The constructor prototype used with a code is:

// Create a TSobol object with a code
TSobol(TDataServer *tds, TCode *fcode, Int_t nComp, Option_t *option="")

This constructor takes three arguments:

• a pointer to a TDataServer object,

• a pointer to a TCode,

• an integer to specify the number of computations to be performed.

Here is an example of the use of this constructor on the flowrate case:

// The reference input file
TString sJDDReference = TString("flowrate_input_with_keys.in");

// Set the reference input file and the key for each input attributes
tds->getAttribute("rw")->setFileKey(sJDDReference, "Rw");
tds->getAttribute("r")->setFileKey(sJDDReference, "R");
tds->getAttribute("tu")->setFileKey(sJDDReference, "Tu");
tds->getAttribute("tl")->setFileKey(sJDDReference, "Tl");
tds->getAttribute("hu")->setFileKey(sJDDReference, "Hu");
tds->getAttribute("hl")->setFileKey(sJDDReference, "Hl");

page 256

CHAPTER VI. THE SENSITIVITY MODULE Computation of Sobol’s sensitivity indices

tds->getAttribute("l")->setFileKey(sJDDReference, "L");
tds->getAttribute("kw")->setFileKey(sJDDReference, "Kw");

// The output file of the code
TOutputFileRow *fout = new TOutputFileRow("_output_flowrate_withRow_.dat");
// The attribute in the output file
fout->addAttribute(new TAttribute("yhat"));

// Instanciation de mon code
TCode *mycode = new TCode(tds, "flowrate -s -k");
// Adding the outputfile to the tcode object
mycode->addOutputFile(fout);

Int_t nComp = 100;
TSobol * tsobolC = new TSobol(tds, mycode, nComp);

VI.5.2.3.3 TSobol constructor for a runner

The constructor prototype used with a runner is:

// Create a TSobol object with a runner
TSobol(TDataServer *tds, TRun *run, Int_t nComp, Option_t *option="")

This constructor takes three arguments:

• a pointer to a TDataServer object,

• a pointer to a TRun,

• an integer to specify the number of computations to be performed.

Here is an example of the use of this constructor on the flowrate code in a sequential mode:

// The input file
TKeyScript infile("flowrate_input_with_keys.in");
// provide the input and their key
infile.setInputs(8, tds->getAttribute("rw"), "Rw", tds->getAttribute("r"), "R",
tds->getAttribute("tu"), "Tu", tds->getAttribute("tl"), "Tl", tds->getAttribute("hu"), "Hu" ←↩

,
tds->getAttribute("hl"), "Hl", tds->getAttribute("l"), "L", tds->getAttribute("kw"), "Kw");

TAttribute yhat("yhat");
// The output file of the code
TKeyResult outfile("_output_flowrate_withKey_.dat");
// The attribute in the output file
outfile.addOutput(&yhat, "yhat");

// Instanciation de mon code
TCodeEval code("flowrate -s -k");
// Adding the intput/output file to the code
code.addInputFile(&infile);
code.addOutputFile(&outfile);

TSequentialRun run(&code);
run.startSlave();
if(run.onMaster())
{

Int_t nComp = 100;
TSobol * tsobolR = new TSobol(tds, &run, nComp);

page 257

Computation of Sobol’s sensitivity indices CHAPTER VI. THE SENSITIVITY MODULE

//
}

VI.5.2.3.4 TSobol constructor using a filled TDataServer object

The constructor prototype used with a TDataServer object already containing the simulations is:

// Create a TSobol object with already filled TDS
TSobol(TDataServer *tds, const char *inp, const char *out, Option_t *option="")

This constructor takes three arguments:

• a pointer to a TDataServer object filled,

• a string to specify the names of the input factors separated by ’:’ (ex. "rw:r:tu:tl:hu:hl:l:kw"),

• a string to specify the names of the output variables of the model.

Below is an example of the constructor with a TDataServer object filled:

TDataServer *tds = new TDataServer();
tds->fileDataRead("_sobol_launching.dat");
TSobol * tsobol = new TSobol(tds, "rw:r:tu:tl:hu:hl:l:kw", "flowrateModel");

Warning
This constructor uses a TDataServer object already filled with a specific internal variable
(sobol__n__iter__tdsflowreate) and a specific sample!
There are several conditions to use it:

• use the constructor without argument for the TDataServer;

• the input factors sample must have been generated with the method TSobol::generateSample.

VI.5.2.4 Generating the sample

To generate the Sobol sample, use the generateSample method:

tsobol->generateSample();

Then, the sample generated can be exported in a file and used outside of Uranie to compute the simulations associated.

VI.5.2.5 Computing the indices

To compute the indices, run the method computeIndexes:

tsobol->computeIndexes();

Note that this method is all inclusive: it constructs the sample, launches the simulations and computes the indices.

page 258

CHAPTER VI. THE SENSITIVITY MODULE Computation of Sobol’s sensitivity indices

VI.5.2.6 Displaying the indices

To display graphically the coefficients, use the method drawIndexes:

void TSensitivity::drawIndexes(TString sTitre, const char *select, Option_t * option)

The method needs:

• a TString containing the title of the figure,

• a string containing a selection (empty if no selection),

• a string containing the options of the graphics separated by commas.

Some of the options available are:

• "nonewcanv": to not create a new canvas,

• "pie": to display a pie chart,

• "hist": to display a histogram,

• "first": to display the indices of the first order (with "hist" only),

• "total": to display the total indices (with "hist" only),

• "all": to display the total and first order indices (with "hist" only),

In our example the use of this method is:

TCanvas *cc = new TCanvas("c1", "histgramme",5,64,1270,667);
cc->Divide(2,1);
cc->cd(1);
tsobol->drawIndexes("Flowrate", "", "nonewcanv,hist,all");
cc->Print("appliUranieFlowrateSobol100Histogram.png");

cc->cd(2);
tsobol->drawIndexes("Flowrate", "", "nonewcanv,pie");
cc->Print("appliUranieFlowrateSobol100Pie.png");

VI.5.2.7 Extracting the coefficients

The coefficients, once computed, are stored in a TTree. To get this TTree, use the method TSensitivity::getResultTuple():

TTree * results = tsobol->getResultTuple();

Several methods exist in ROOT to extract data from a TTree, it is advised to look for them into the ROOT documen-
tation. We propose two ways of extracting the value of each coefficient from the TTree.

VI.5.2.7.1 First method of extraction

The first method use the method getValue of the TSobol object specifying the order of the extract value ("First" ou
"Total"), the related input and possibly more selected options (for example "Algo==\"homa96\"").

double hl_first_index = tsobol->getValue("First","hl");
double hl_total_index = tsobol->getValue("Total","hl");

page 259

Computation of Sobol’s sensitivity indices CHAPTER VI. THE SENSITIVITY MODULE

VI.5.2.7.2 Second method of extraction

The seond method uses 3 steps to extract an index:

• scan the TTree for the chosen input variable (with a selection) in order to obtain its row number. In our example, if
we chose the variable "hl", we’ll use the command:

results->Scan("*","Inp==\"hl\"");

and in the resulting figure below, we see that the first order index of "hl" is in the row 40:

* Row * Out.Out * Inp. * Order. * Method * Algo.Algo * Value * CILow * CIUpp *

* 40 * flowrateM * hl * First * Sobol * --first-- * 0.023 * 0 * 0.136 *
* 41 * flowrateM * hl * First * Sobol * 02saltell * 0.045 * -1 * -1 *
* 42 * flowrateM * hl * First * Sobol * sumo10 * 0.020 * -1 * -1 *
* 43 * flowrateM * hl * First * Sobol * martinez1 * 0.023 * 0 * 0.136 *
* 44 * flowrateM * hl * Total * Sobol * --total-- * 0.058 * 0.046 * 0.072 *
* 45 * flowrateM * hl * Total * Sobol * homma96 * 0.078 * -1 * -1 *
* 46 * flowrateM * hl * Total * Sobol * sumo10 * 0.071 * -1 * -1 *
* 47 * flowrateM * hl * Total * Sobol * martinez1 * 0.058 * 0.046 * 0.072 *

• set the entry of the TTree on this row with the method GetEntry;

• get the value of the index with GetValue method on the "Value" leaf of the TTree.

Below is an example of extraction of the index for "hl" in our flowrate case:

results->Scan("*","Inp==\"hl\"");
results->GetEntry(40);
Double_t S_Rw_Indexe = results->GetLeaf("Value")->GetValue();

VI.5.2.7.3 Third method of extraction

The third method uses 2 steps to extract an index:

• use the Draw method with a selection to select the index, for example the selection for the first order index of "rw" is
"Inp==\"rw\" && Algo==\"--first--\"";

• get the pointer on the value of the index with GetV1 method on the TTree.

Below is another example of extraction of the first order index for "rw" in our flowrate case:

results->Draw("Value","Inp==\"rw\" && Algo==\"--first--\"","goff");
Double_t S_Rw_IndexeS = results->GetV1()[0];

page 260

CHAPTER VI. THE SENSITIVITY MODULE Computation of Sobol’s sensitivity indices

Summary: TSobol constructors

• TSobol(TDataServer *tds, const char *fcn, Int_t nComp, const char *inp, const char *out, Option_t *op-
tion="")

– tds: an empty dataserver containing the input variables.

– fcn: the function to analyse (a name).

– nComp: an integer to specify the number of simulations.

– inp: input attribute names separated by colons. They represent all the inputs of the problem. They must refer to
existing attributes in the "tds".

– out: attribute names which represent the response of the problem. it must refer to existing attributes in the "tds".

– option: string specifying the sampler method.

• TSobol(TDataServer *tds, void *fcn(double *,double *), const char *inp, const char *out, Int_t nComp, Op-
tion_t *option="")

– tds: an empty dataserver containing the input variables.

– fcn: the function to analyse (a pointer).

– inp: input attribute names separated by colons. They represent all the inputs of the problem. They must refer to
existing attributes in the "tds".

– out: attribute names which represent the response of the problem. it must refer to existing attributes in the "tds".

– nComp: an integer to specify the number of simulations.

– option: string specifying the sampler method.

• TSobol(TDataServer *tds, const char *inp, const char *out, Option_t *option="")

– tds: a dataserver containing the input and output attributes and their associated data.

– inp: input attribute names separated by colons. They represent all the inputs of the problem. They must refer to
existing attributes in the "tds".

– out: attribute names which represent the response of the problem. it must refer to existing attributes in the "tds".

– option: string specifying the sampler method.

• TSobol(TDataServer *tds, TCode *fcode, Int_t ns, Option_t *option="")

– tds: an empty dataserver containing the input variables.

– fcode: the code to analyse.

– nComp: an integer to specify the number of simulations.

– option: string specifying the sampler method.

page 261

Fourier-based methods CHAPTER VI. THE SENSITIVITY MODULE

Summary: TSobol other methods

• generateSample(Option_t *option=""): generate the sample used for computing the sensitivity indices.

– option: no option has been implemented (Default = "").

• computeIndexes(Option_t *option=""): compute the Sobol sensitivity indices.

– option: no option has been implemented.

• void drawIndexes(TString sTitre, const char* select="", Option_t *option=""): draw the coefficients.

– sTitre: a string containing the title of the figure.

– select: a string containing a solution.

– option: a string containing the options of the graphics separated by commas.

VI.6 Fourier-based methods

Warning
These methods require the FFTW prerequisite (as discussed in Section I.1.2.2).

VI.6.1 Introducing the method

This section is a short excerpt of [30]

VI.6.1.1 The FAST method

The Fourier Amplitude Sensitivity Test (FAST) [26, 27] is a procedure that provides a way to estimate the expected
value and variance of the output variable of a model, along with the contribution of the input factors to this variance. An
advantage of it, is that the evaluation of sensitivity can be carried out independently for each factor using just a set of
runs because all the terms in a Fourier expansion are mutually orthogonal. The main idea behind this procedure is to
transform the nX -dimensional integration into a single-dimension one, by using the transformation

Xi = Gi(sin(ωi× s)),

where ideally, {ωi} is a set of angular frequencies said to be incommensurate (meaning that no frequency can be
obtained by linear combination of the other ones when using integer coefficients) and Gi is a transformation function
chosen in order to ensure that the variable is sampled accordingly with the probability density function of Xi (meaning
that they are all uniformly distributed in their respective volume definition).

The first order coefficient is then obtained by estimating the variance for a fundamental ωi and its harmonics. The
important point to notice, for a real computation, is the limitation of the sum that, in the previous equation, runs up to
infinity. A truncation is done by imposing a cut-off with a factor M called the interference factor (whose default value
in Uranie is set to 6).

page 262

CHAPTER VI. THE SENSITIVITY MODULE Implementation of methods

VI.6.1.2 The RBD method

The Random Balance Design (RBD) [28] method selects nS design points over a curve in the input space. The input
space is explored here using the same frequency ω . However the curve is not space-filling, therefore, we take random
permutations of the coordinates of such points, to generate a set of scrambled points that cover the input space. The
model is then evaluated at each design point. Subsequently, the model outputs are re-ordered such that the design
points are in increasing order with respect to factor Xi.

Thanks to the use of permutations, the total cost is of the order of nS assessments instead of the order of nS×nX for
the FAST one.

VI.6.2 Implementation of methods

Both TFAST and TRBD can be constructed either from an external code or from a function. In the implementation
done within Uranie there are several modifiable parameters that can be considered before starting an analysis using
the FAST method:

• The transformation function Gi chosen among the following list:

– Cukier: Xi = X̄i exp(ν̄i sin(ωis))

– SaltelliA: Xi = 0.5+ 1
π

arcsin(sin(ωis))

– SaltelliB: Xi = 0.5+ 1
π

arcsin(sin(ωis+φi))

In this list, X̄i is the nominal value of the factor Xi, ν̄i denotes the endpoints that define the estimated range of
uncertainty of Xi, φi is a random phase shift taken value in [0,2π] and s evolves in [−π/2,π/2].

• The interference factor: M can be changed as well.

• The frequencies: by providing a vector, it is possible to set a default at the frequencies’ value used instead of having
them determined by a specific algorithm to avoid, as best as possible, the interference.

The only common parameter changeable for both methods (and directly in the construction) is the number of samples.
Once the object is constructed, running the computeIndexes will compute the sensitivity indices and the usual
drawing methods will allow to retrieve and represent the results, as already explained for other methods.

Warning
If the Fourier-based object is constructed to run a function, the output used for the estimation will be the first
output provided by the function, unless the sixth argument of the constructor is filled.

VI.6.3 Computation of Sobol indices with the FAST method

In Uranie, computing sensitivity with the FAST method is dealt with the eponymous class TFast which inherits from
the TSensitivity class.

This class handles all the steps to compute the Sobol indices:

• generating the deterministic sample;

• running the code or the analytic function to get the response on the sample;

• computing the first order index for each input variable.

page 263

Computation of Sobol indices with the FAST method CHAPTER VI. THE SENSITIVITY MODULE

VI.6.3.1 Example: simple computation of sensitivity indices with FAST

The example script below uses the TFast class to compute and display Sobol sensitivity indices:

{
gROOT->LoadMacro("UserFunctions.C");

// Define the DataServer
TDataServer *tds = new TDataServer("tdsflowreate", "DataBase flowreate");
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

// \param Size of a sampling.
Int_t nS = 500;
// Graph
TFast * tfast = new TFast(tds, "flowrateModel", nS);
tfast->computeIndexes("graph");

TCanvas *cc = new TCanvas("canhist", "histgramme",1);
tfast->drawIndexes("Flowrate", "", "nonewcanv,hist,first");

TCanvas *ccc = new TCanvas("canpie", "TPie",1);
TPad *apad = new TPad("apad","apad",0, 0.03, 1, 1); apad->Draw(); apad->cd();
tfast->drawIndexes("Flowrate", "", "nonewcanv,pie,first");

}

The figures resulting from this script are shown below, the first shows the frequencies:

Figure VI.7: Frequency spectrum from the FAST estimation

The two figures below display the sensitivity indices in a histogram and in a pie chart:

page 264

CHAPTER VI. THE SENSITIVITY MODULE Computation of Sobol indices with the FAST method

Figure VI.8: Histogram of FAST’s indices

Figure VI.9: Pie chart of FAST’s indices

VI.6.3.2 Specifying the input parameters

First, define the uncertain parameters and add them to a TDataServer object:

// Define the DataServer
TDataServer *tds = new TDataServer("tdsflowreate", "DataBase flowreate");
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));

page 265

Computation of Sobol indices with the FAST method CHAPTER VI. THE SENSITIVITY MODULE

tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

VI.6.3.3 TFast constructor

There are three different constructors to build a TFast object, each corresponding to a different problem:

• the model is an analytic function run by Uranie,

• the model is a code run by Uranie.

• the model is either a function or a code and the problem is specified through a Relauncher architecture.

VI.6.3.3.1 TFast constructor for an analytic function

The constructor prototype used with an analytic function is:

// Create a TFast object with an analytic function
TFast(TDataServer *tds, void *fcn(double*,double*), const char *inp, const char *out, ←↩

Int_t ns)
TFast(TDataServer *tds, const char *fcn, Int_t ns, const char *inp="", const char *out= ←↩

"", Option_t *option="")

This constructor takes five arguments:

• a pointer to a TDataServer object,

• a pointer to an analytic function (either a void or a const char that represents the function’s name when it has
been loaded in ROOT’s memory),

• an integer to specify the number of simulations, its default value is 100,

• a string to specify the names of the input factors separated by ’:’ (ex. "rw:r:tu:tl:hu:hl:l:kw"), its default value might be
the empty string "",

• a string to specify the names of the output variables of the model, its default value might be the empty string "".

Here is an example of how to use the constructor with an analytic function:

Int_t ns = 50;
TFast * tfast = new TFast(tds, "flowrateModel", ns, "rw:r:tu:tl:hu:hl:l:kw", "flowrateModel ←↩

");

VI.6.3.3.2 TFast constructor for a code

The constructor prototype used with a code is:

// Create a TFast object with a code
TFast(TDataServer *tds, TCode *fcode, Int_t ns, Option_t *option="")

This constructor takes three arguments:

page 266

CHAPTER VI. THE SENSITIVITY MODULE Computation of Sobol indices with the FAST method

• a pointer to a TDataServer object,

• a pointer to a TCode,

• an integer to specify the number of simulations.

Here is an example of the use of this constructor on the flowrate case:

// The reference input file
TString sJDDReference = TString("flowrate_input_with_keys.in");

// Set the reference input file and the key for each input attributes
tds->getAttribute("rw")->setFileKey(sJDDReference, "Rw");
tds->getAttribute("r")->setFileKey(sJDDReference, "R");
tds->getAttribute("tu")->setFileKey(sJDDReference, "Tu");
tds->getAttribute("tl")->setFileKey(sJDDReference, "Tl");
tds->getAttribute("hu")->setFileKey(sJDDReference, "Hu");
tds->getAttribute("hl")->setFileKey(sJDDReference, "Hl");
tds->getAttribute("l")->setFileKey(sJDDReference, "L");
tds->getAttribute("kw")->setFileKey(sJDDReference, "Kw");

// The output file of the code
TOutputFileRow *fout = new TOutputFileRow("_output_flowrate_withRow_.dat");
// The attribute in the output file
fout->addAttribute(new TAttribute("yhat"));

// Instanciation de mon code
TCode *mycode = new TCode(tds, "flowrate -s -k");
// Adding the outputfile to the tcode object
mycode->addOutputFile(fout);

// Size of a sampling.
Int_t nS = 50;
TFast * tfastC = new TFast(tds, mycode, nS);

VI.6.3.3.3 TFast constructor for a runner

The constructor prototype used with a runner is:

// Create a TFast object with a runner
TFast(TDataServer *tds, TRun *run, Int_t ns, Option_t *option="")

This constructor takes three arguments:

• a pointer to a TDataServer object,

• a pointer to a TRun,

• an integer to specify the number of simulations.

Here is an example of the use of this constructor on the flowrate code in a sequential mode:

// The input file
TKeyScript infile("flowrate_input_with_keys.in");
// provide the input and their key
infile.setInputs(8, tds->getAttribute("rw"), "Rw", tds->getAttribute("r"), "R",
tds->getAttribute("tu"), "Tu", tds->getAttribute("tl"), "Tl", tds->getAttribute("hu"), "Hu" ←↩

,
tds->getAttribute("hl"), "Hl", tds->getAttribute("l"), "L", tds->getAttribute("kw"), "Kw");

page 267

Computation of Sobol indices with the FAST method CHAPTER VI. THE SENSITIVITY MODULE

TAttribute yhat("yhat");
// The output file of the code
TKeyResult outfile("_output_flowrate_withKey_.dat");
// The attribute in the output file
outfile.addOutput(&yhat, "yhat");

// Instanciation de mon code
TCodeEval code("flowrate -s -k");
// Adding the intput/output file to the code
code.addInputFile(&infile);
code.addOutputFile(&outfile);

TSequentialRun run(&code);
run.startSlave();
if(run.onMaster())
{

Int_t nS = 50;
TFast * tfastR = new TFast(tds, &run, nS);
//...

}

VI.6.3.4 Generating the sample

To generate the FAST sample, use the generateSample method:

tfast->generateSample();

Then, the sample generated can be exported in a file and used outside of Uranie to compute the simulations associated.

VI.6.3.5 Computing the indices

To compute the indices, run the method computeIndexes:

tfast->computeIndexes();

Note that this method is all inclusive: it constructs the sample, launches the simulations and computes the indices. If
the "graph" option is provided, a graph of frequency will be drawn, as the one shown in Figure VI.7

VI.6.3.6 Displaying the indices

To display graphically the coefficients, use the method drawIndexes:

void TSensitivity::drawIndexes(TString sTitre, const char *select, Option_t * option)

The method needs:

• a TString containing the title of the figure,

• a string containing a selection (empty if no selection),

• a string containing the options of the graphics separated by commas.

Some of the options available are:

page 268

CHAPTER VI. THE SENSITIVITY MODULE Computation of Sobol indices with the FAST method

• "nonewcanv": to not create a new canvas,

• "pie": to display a pie chart,

• "hist": to display a histogram,

• "first": to display the indices of the first order (with "hist" only),

In our example the use of this method is:

TCanvas *cc = new TCanvas("canhist", "histgramme");
tfast->drawIndexes("Flowrate", "", "nonewcanv,hist,first");
cc->Print("appliUranieFlowrateFAST100Histogram.png");

TCanvas *ccc = new TCanvas("canpie", "TPie");
tfast->drawIndexes("Flowrate", "", "nonewcanv,pie");
ccc->Print("appliUranieFlowrateFAST100Pie.png");

VI.6.3.7 Extracting the coefficients

The coefficients, once computed, are stored in a TTree. To get this TTree, use the method TSensitivity::getResultTuple():

TTree * results = tfast->getResultTuple();

Several methods exist in ROOT to extract data from a TTree, it is advised to look for them into the ROOT documen-
tation. We propose two ways of extracting the value of each coefficient from the TTree.

VI.6.3.7.1 First method of extraction

The first method uses 3 steps to extract an index:

• scan the TTree for the chosen input variable (with a selection) in order to obtain its row number. In our example, if
we chose the variable "hl", we’ll use the command:

results->Scan("*","Inp==\"hl\"");

and in the resulting figure below we see that the first order index of "hl" is in the row 10:

* Row * Out * Inp * Order * Method * Algo * Value *

* 10 * flowrateM * hl * First * FAST * --first-- * 0.0413399 *
* 11 * flowrateM * hl * Total * FAST * --total-- * 0.0413399 *

• set the entry of the TTree on this row with the method GetEntry;

• get the value of the index with GetValue method on the "Value" leaf of the TTree.

Below is an example of extraction of the index for "hl" in our flowrate case:

results->Scan("*","Inp==\"hl\"");
results->GetEntry(10);
Double_t S_Rw_Indexe = results->GetLeaf("Value")->GetValue();

page 269

Computation of Sobol indices with the FAST method CHAPTER VI. THE SENSITIVITY MODULE

VI.6.3.7.2 Second method of extraction

The second method uses 2 steps to extract an index:

• use the Draw method with a selection to select the index, for example the selection for the first order index of "rw" is
"Inp==\"rw\" && Algo==\"--first--\"";

• get the pointer on the value of the index with GetV1 method on the TTree.

Below is another example of extraction of the first order index for "rw" in our flowrate case:

results->Draw("Value","Inp==\"rw\" && Algo==\"--first--\"","goff");
Double_t S_Rw_IndexeS = results->GetV1()[0];

page 270

CHAPTER VI. THE SENSITIVITY MODULE Computation of Sobol indices with the FAST method

Summary: TFast object

• TFast(TDataServer *tds, const char *fcn, Int_t ns=100, const char *inp="", const char *out="")

– tds: an empty dataserver containing the input variables.

– fcn: the function to analyse (the function’s name).

– ns: an integer to specify the number of simulations.

– out: attribute names which represent the responses of the problem. it must refer to existing attributes in the "tds".

– inp: input attribute names separated by colons. They represent all the inputs of the problem. They must refer to
existing attributes in the "tds".

• TFast(TDataServer *tds, void *fcn(double *,double *), const char *inp, const char *out, Int_t ns=100)

– tds: an empty dataserver containing the input variables.

– fcn: the function to analyse (a pointer).

– ns: an integer to specify the number of simulations.

– out: attribute names which represent the responses of the problem. it must refer to existing attributes in the "tds".

– inp: input attribute names separated by colons. They represent all the inputs of the problem. They must refer to
existing attributes in the "tds".

• TFast(TDataServer *tds, TCode *fcode, Int_t ns)

– tds: an empty dataserver containing the input variables.

– fcode: the code to analyse .

– ns: an integer to specify the number of simulations.

• TFast(TDataServer *tds, TRun *run, Int_t ns)

– tds: an empty dataserver containing the input variables.

– run: the runner to use the code/function to analyse.

– ns: an integer to specify the number of simulations.

• generateSample(Option_t *option=""): generate the sample used for computing the sensitivity indices.

– option: no option has been implemented.

• computeIndexes(Option_t *option=""): compute the Sobol sensitivity indices.

– option: string specifying the drawIndexes option used.

• void drawIndexes(TString sTitre, const char* select="", Option_t *option=""): draw the coefficients.

– sTitre: a string containing the title of the figure.

– select: a string containing a solution.

– option: a string containing the options of the graphics separated by commas.

page 271

Computation of Sobol indices with the method RBD CHAPTER VI. THE SENSITIVITY MODULE

VI.6.4 Computation of Sobol indices with the method RBD

In Uranie, computing sensitivity with the method RBD is dealt with the eponymous class TRBD which inherits from the
TSensitivity class and the TFast.

This class handles all the steps to compute the Sobol indices:

• generating the deterministic sample;

• running the code or the analytic function to get the response on the sample;

• computing the first order index for each input variable.

VI.6.4.1 Example: simple computation of sensitivity indices with RBD

The example script below uses the TRBD class to compute and display Sobol sensitivity indices:

{
gROOT->LoadMacro("UserFunctions.C");

// Define the DataServer
TDataServer *tds = new TDataServer("tdsflowreate", "DataBase flowreate");
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

// Size of a sampling.
Int_t nS = 500;
// Graph
TRBD * trbd = new TRBD(tds, "flowrateModel", nS);
trbd->computeIndexes("graph");

TCanvas *cc = new TCanvas("canhist", "histogramme",1);
trbd->drawIndexes("Flowrate", "", "nonewcanv,hist,first");

TCanvas *ccc = new TCanvas("canpie", "TPie",1);
TPad *apad = new TPad("apad","apad",0, 0.03, 1, 1); apad->Draw(); apad->cd();
trbd->drawIndexes("Flowrate", "", "nonewcanv,pie");

}

The figures resulting from this script are shown below, the first shows the frequencies:

page 272

CHAPTER VI. THE SENSITIVITY MODULE Computation of Sobol indices with the method RBD

Figure VI.10: Frequency spectrum from the RBD estimation

The two figures below display the sensitivity indices in a histogram and in a pie chart:

Figure VI.11: Histogram of RBD’s indices

page 273

Computation of Sobol indices with the method RBD CHAPTER VI. THE SENSITIVITY MODULE

Figure VI.12: Pie chart of RBD’s indices

VI.6.4.2 Specifying the input parameters

First, define the uncertain parameters and add them to a TDataServer object:

// Define the DataServer
TDataServer *tds = new TDataServer("tdsflowreate", "DataBase flowreate");
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

VI.6.4.3 TRBD constructor

There are three different constructors to build a TRBD object, each corresponding to a different problem:

• the model is an analytic function run by Uranie,

• the model is a code run by Uranie.

• the model is either a function or a code and the problem is specified through a Relauncher architecture.

VI.6.4.3.1 TRBD constructor for an analytic function

The constructor prototype used with an analytic function is:

page 274

CHAPTER VI. THE SENSITIVITY MODULE Computation of Sobol indices with the method RBD

// Create a TRBD object with an analytic function
TRBD(TDataServer *tds, void *fcn, const char *inp, const char *out, Int_t ns)
TRBD(TDataServer *tds, const char *fcn, Int_t ns, const char *inp="", const char *out=" ←↩

")

This constructor takes five arguments:

• a pointer to a TDataServer object,

• a pointer to an analytic function (either a void or a const char that represents the function’s name when it has
been loaded in ROOT’s memory),

• an integer to specify the number of simulations, its default value is 100,

• a string to specify the names of the input factors separated by ’:’ (ex. "rw:r:tu:tl:hu:hl:l:kw"), its default value might be
the empty string "",

• a string to specify the names of the output variables of the model, its default value might be the empty string "".

Here is an example of how to use the constructor with an analytic function:

Int_t nS = 50;
TRBD * trbd = new TRBD(tds, "flowrateModel", nS, "rw:r:tu:tl:hu:hl:l:kw", "flowrateModel");

VI.6.4.3.2 TRBD constructor for a code

The constructor prototype used with a code is:

// Create a TRBD object with a code
TRBD(TDataServer *tds, TCode *fcode, Int_t ns, Option_t *option="")

This constructor takes three arguments:

• a pointer to a TDataServer object,

• a pointer to a TCode,

• an integer to specify the number of simulations.

Here is an example of the use of this constructor on the flowrate case:

// The reference input file
TString sJDDReference = TString("flowrate_input_with_keys.in");

// Set the reference input file and the key for each input attributes
tds->getAttribute("rw")->setFileKey(sJDDReference, "Rw");
tds->getAttribute("r")->setFileKey(sJDDReference, "R");
tds->getAttribute("tu")->setFileKey(sJDDReference, "Tu");
tds->getAttribute("tl")->setFileKey(sJDDReference, "Tl");
tds->getAttribute("hu")->setFileKey(sJDDReference, "Hu");
tds->getAttribute("hl")->setFileKey(sJDDReference, "Hl");
tds->getAttribute("l")->setFileKey(sJDDReference, "L");
tds->getAttribute("kw")->setFileKey(sJDDReference, "Kw");

// The output file of the code
TOutputFileRow *fout = new TOutputFileRow("_output_flowrate_withRow_.dat");

page 275

Computation of Sobol indices with the method RBD CHAPTER VI. THE SENSITIVITY MODULE

// The attribute in the output file
fout->addAttribute(new TAttribute("yhat"));

// Instanciation de mon code
TCode *mycode = new TCode(tds, "flowrate -s -k");
// Adding the outputfile to the tcode object
mycode->addOutputFile(fout);

// Size of a sampling.
Int_t nS2 = 500;
TRBD * trbd2 = new TRBD(tds, mycode, nS2);

VI.6.4.3.3 TRBD constructor for a runner

The constructor prototype used with a runner is:

// Create a TRBD object with a runner
TRBD(TDataServer *tds, TRun *frun, Int_t ns, Option_t *option="")

This constructor takes three arguments:

• a pointer to a TDataServer object,

• a pointer to a TRun,

• an integer to specify the number of simulations.

Here is an example of the use of this constructor on the flowrate code in sequential mode:

// The input file
TKeyScript infile("flowrate_input_with_keys.in");
// provide the input and their key
infile.setInputs(8, tds->getAttribute("rw"), "Rw", tds->getAttribute("r"), "R",
tds->getAttribute("tu"), "Tu", tds->getAttribute("tl"), "Tl", tds->getAttribute("hu"), "Hu" ←↩

,
tds->getAttribute("hl"), "Hl", tds->getAttribute("l"), "L", tds->getAttribute("kw"), "Kw");

TAttribute yhat("yhat");
// The output file of the code
TKeyResult outfile("_output_flowrate_withKey_.dat");
// The attribute in the output file
outfile.addOutput(&yhat, "yhat");

// Instanciation de mon code
TCodeEval code("flowrate -s -k");
// Adding the intput/output file to the code
code.addInputFile(&infile);
code.addOutputFile(&outfile);

TSequentialRun run(&code);
run.startSlave();
if(run.onMaster())
{

// Size of a sampling.
Int_t nS2 = 500;
TRBD * trbdR = new TRBD(tds, &run, nS2);
//...

}

page 276

CHAPTER VI. THE SENSITIVITY MODULE Computation of Sobol indices with the method RBD

VI.6.4.4 Generating the sample

To generate the RBD sample, use the generateSample method:

trbd->generateSample();

Then, the sample generated can be exported in a file and used outside of Uranie to compute the simulations associated.

VI.6.4.5 Computing the indices

To compute the indices, run the method computeIndexes:

trbd->computeIndexes();

Note that this method is all inclusive: it constructs the sample, launches the simulations and computes the indices. If
the "graph" option is provided, a graph of frequency will be drawn, as the one shown in Figure VI.10

VI.6.4.6 Displaying the indices

To display graphically the coefficients, use the method drawIndexes:

void TSensitivity::drawIndexes(TString sTitre, const char *select, Option_t * option)

The method needs:

• a TString containing the title of the figure,

• a string containing a selection (empty if no selection),

• a string containing the options of the graphics separated by commas.

Some of the options available are:

• "nonewcanv": to not create a new canvas,

• "pie": to display a pie chart,

• "hist": to display a histogram,

• "first": to display the indices of the first order (with "hist" only),

• ...

In our example the use of this method is:

TCanvas *cc = new TCanvas("canhist", "histogramme");
trbd->drawIndexes("Flowrate", "", "nonewcanv,hist,first");
cc->Print("appliUranieFlowrate_RBD_50Histogram.png");

TCanvas *ccc = new TCanvas("canpie", "TPie",5,64,1270,560);
trbd->drawIndexes("Flowrate", "", "nonewcanv,pie");
ccc->Print("appliUranieFlowrate_RBD_50Pie.png");

page 277

Computation of Sobol indices with the method RBD CHAPTER VI. THE SENSITIVITY MODULE

VI.6.4.7 Extracting the coefficients

The coefficients, once computed, are stored in a TTree. To get this TTree, use the method TSensitivity::getResultTuple():

TTree * results = trbd->getResultTuple();

Several methods exist in ROOT to extract data from a TTree, it is advised to look for them into the ROOT documen-
tation. We propose two ways of extracting the value of each coefficient from the TTree.

VI.6.4.7.1 First method of extraction

The first method uses 3 steps to extract an index:

• scan the TTree for the chosen input variable (with a selection) in order to obtain its row number. In our example, if
we chose the variable "hl", we’ll use the command:

results->Scan("*","Inp==\"hl\"");

and in the resulting figure below we see that the first order index of "hl" is in the row 10:

* Row * Out * Inp * Order * Method * Algo * Value *

* 10 * flowrateM * hl * First * RBD * --first-- * 0.0392761 *
* 11 * flowrateM * hl * Total * RBD * --total-- * 0.0392761 *

• set the entry of the TTree on this row with the method GetEntry;

• get the value of the index with GetValue method on the "Value" leaf of the TTree.

Below is an example of extraction of the index for "hl" in our flowrate case:

results->Scan("*","Inp==\"hl\"");
results->GetEntry(100);
Double_t S_Rw_Indexe = results->GetLeaf("Value")->GetValue();

VI.6.4.7.2 Second method of extraction

The second method uses 2 steps to extract an index:

• use the Draw method with a selection to select the index, for example the selection for the first order index of "rw" is
"Inp==\"rw\" && Algo==\"--first--\"";

• get the pointer on the value of the index with GetV1 method on the TTree.

Below is another example of extraction of the first order index for "rw" in our flowrate case:

results->Draw("Value","Inp==\"rw\" && Algo==\"--first--\"","goff");
Double_t S_Rw_IndexeS = results->GetV1()[0];

page 278

CHAPTER VI. THE SENSITIVITY MODULE Computation of Sobol indices with the method RBD

Summary: TRBD object

• TRBD(TDataServer *tds, void *fcn(double *,double *), const char *inp, const char *out, Int_t ns=100)

– tds: an empty dataserver containing the input variables.

– fcn: the function to analyse (a pointer).

– ns: an integer to specify the number of simulations.

– out: attribute names which represent the responses of the problem. it must refer to existing attributes in the "tds".

– inp: input attribute names separated by colons. They represent all the inputs of the problem. They must refer to
existing attributes in the "tds".

• TRBD(TDataServer *tds, const char *fcn, Int_t ns=100, const char *inp="", const char *out="")

– tds: an empty dataserver containing the input variables.

– fcn: the function to analyse (the function’s name).

– ns: an integer to specify the number of simulations.

– out: attribute names which represent the responses of the problem. it must refer to existing attributes in the "tds".

– inp: input attribute names separated by colons. They represent all the inputs of the problem. They must refer to
existing attributes in the "tds".

• TRBD(TDataServer *tds, TCode *fcode, Int_t ns)

– tds: an empty dataserver containing the input variables.

– fcode: the code to analyse .

– ns: an integer to specify the number of simulations.

• TRBD(TDataServer *tds, TRun *frun, Int_t ns)

– tds: an empty dataserver containing the input variables.

– frun: the runner to use code/function to analyse .

– ns: an integer to specify the number of simulations.

• generateSample(Option_t *option=""): generate the sample used for computing the sensitivity indices.

– option: no option has been implemented

• computeIndexes(Option_t *option=""): compute the Sobol sensitivity indices.

– option: string specifying the drawIndexes option used .

• void drawIndexes(TString sTitre, const char* select="", Option_t *option=""): draw the coefficients.

– sTitre: a string containing the title of the figure.

– select: a string containing a solution.

– option: a string containing the options of the graphics separated by commas.

page 279

The Johnson relative weight CHAPTER VI. THE SENSITIVITY MODULE

VI.7 The Johnson relative weight

This section introduces indices whose purpose is mainly to obtain good estimators of the Shapley’s values defined
in [30]. The underlying assumption is to state that the model can be considered linear so that the results can be
considered as proper estimation of the Shapley indices (with or without correlation between the input variables).

VI.7.1 General overview

In Uranie, computing sensitivity indices with Johnson’s relative weights method is dealt with the eponymous class
TJohnsonRW which inherits from the TSensitivity class.

This class handles all the steps to compute the indices depending on provided informations:

• one can only provide a correlation matrix without data. The indices would be estimated as such.

• one can provide a sample containing input and outputs variables. From there the class will compute the correlation
matrix and estimate the indeces from them.

• If one provides either a code, a function, or a runner (see Section VIII.4) then, the class can

– generate the deterministic sample if no data are found;

– run the code, the analytic function or the evaluator if the output is not provided as well;

– computing the indices.

VI.7.1.1 Example: simple computation of Johnson’s relative wieght using a function

The example script below uses the TJohnsonRW class to compute and display the relative weights:

{
gROOT->LoadMacro("UserFunctions.C");

// Define the DataServer
TDataServer *tds = new TDataServer("tdsflowrate", "DataBase flowrate");
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

// \param Size of a sampling.
Int_t nS = 1000;
TString FuncName="flowrateModel";

TJohnsonRW *tjrw = new TJohnsonRW(tds, FuncName, nS, "rw:r:tu:tl:hu:hl:l:kw", FuncName);
tjrw->computeIndexes();

// Get the results on screen
tjrw->getResultTuple()->Scan("Out:Inp:Method:Value","Order==\"First\"");

// Get the results as plots
TCanvas *cc = new TCanvas("canhist", "histgramme");
tjrw->drawIndexes("Flowrate", "", "nonewcanv,hist,first");
cc->Print("appliUranieFlowrateJohnsonRW1000Histogram.png");

page 280

CHAPTER VI. THE SENSITIVITY MODULE General overview

TCanvas *ccc = new TCanvas("canpie", "TPie");
tjrw->drawIndexes("Flowrate", "", "nonewcanv,pie");
ccc->Print("appliUranieFlowrateJohnsonRW1000Pie.png");

}

The figures resulting from this script are shown below and display the sensitivity indices in a histogram and in a pie
chart. The structure of both plots and tables, as they are common with the rest of the sensitivity class, provides the
results in the ntuple that can be reached with getResultTuple(). This explains why the results are stored in the
Sobol column.

Figure VI.13: Histogram of JohnsonRW’s indices

page 281

General overview CHAPTER VI. THE SENSITIVITY MODULE

Figure VI.14: Pie chart of JohnsonRW’s indices

VI.7.1.2 Specifying the input parameters

First, define the uncertain parameters and add them to a TDataServer object:

// Define the DataServer
TDataServer *tds = new TDataServer("tdsflowreate", "DataBase flowreate");
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

VI.7.1.3 TJohnsonRW constructor

There are four different kinds of constructors to build a TJohnsonRW object, each corresponding to a different prob-
lem:

• the model is either provided data or just a correlation matrix;

• the model is an analytic function run by Uranie,

• the model is a code run by Uranie.

• the model is either a function or a code and the problem is specified through a Relauncher architecture.

page 282

CHAPTER VI. THE SENSITIVITY MODULE General overview

VI.7.1.3.1 TJohnsonRW constructor with provided data

The constructor prototype used when data are provide (or one will not used data but just a correlation matrix):

// Create a TJohnsonRW object data
TJohnsonRW(TDataServer *tds, const char *inp, const char *out , const char *Option="")

This constructor takes up to four arguments:

• a pointer to a TDataServer object,

• a string to specify the names of the input factors separated by ’:’ (ex. "rw:r:tu:tl:hu:hl:l:kw"), no default is accepted,

• a string to specify the names of the output variables of the model, no default is accepted.

• a string to specify the options, by default empty "";

Here is an example of how to use the constructor with provided data:

TJohnsonRW * tjrw = new TJohnsonRW(tds, "rw:r:tu:tl:hu:hl:l:kw", "flowrateModel");

The way to inject the correlation matrix is discussed below.

VI.7.1.3.2 TJohnsonRW constructor for an analytic function

The constructor prototype used with an analytic function is:

// Create a TJohnsonRW object with an analytic function
TJohnsonRW(TDataServer *tds, void *fcn, const char *inp, const char *out, Int_t ns)
TJohnsonRW(TDataServer *tds, const char *fcn, Int_t ns, const char *inp="", const char ←↩

*out="")

This constructor takes five arguments:

• a pointer to a TDataServer object,

• a pointer to an analytic function (either a void or a const char that represents the function’s name when it has
been loaded in ROOT’s memory),

• an integer to specify the number of simulations, its default value is 100,

• a string to specify the names of the input factors separated by ’:’ (ex. "rw:r:tu:tl:hu:hl:l:kw"), its default value might be
the empty string "",

• a string to specify the names of the output variables of the model, its default value might be the empty string "".

Here is an example of how to use the constructor with an analytic function:

Int_t nS = 50;
TJohnsonRW * tjrw_func = new TJohnsonRW(tds, "flowrateModel", nS, "rw:r:tu:tl:hu:hl:l:kw", ←↩

"flowrateModel");

page 283

General overview CHAPTER VI. THE SENSITIVITY MODULE

VI.7.1.3.3 TJohnsonRW constructor for a code

The constructor prototype used with a code is:

// Create a TJohnsonRW object with a code
TJohnsonRW(TDataServer *tds, TCode *fcode, Int_t ns, Option_t *option="")

This constructor takes three arguments:

• a pointer to a TDataServer object,

• a pointer to a TCode,

• an integer to specify the number of simulations.

Here is an example of the use of this constructor on the flowrate case:

// The reference input file
TString sJDDReference = TString("flowrate_input_with_keys.in");

// Set the reference input file and the key for each input attributes
tds->getAttribute("rw")->setFileKey(sJDDReference, "Rw");
tds->getAttribute("r")->setFileKey(sJDDReference, "R");
tds->getAttribute("tu")->setFileKey(sJDDReference, "Tu");
tds->getAttribute("tl")->setFileKey(sJDDReference, "Tl");
tds->getAttribute("hu")->setFileKey(sJDDReference, "Hu");
tds->getAttribute("hl")->setFileKey(sJDDReference, "Hl");
tds->getAttribute("l")->setFileKey(sJDDReference, "L");
tds->getAttribute("kw")->setFileKey(sJDDReference, "Kw");

// The output file of the code
TOutputFileRow *fout = new TOutputFileRow("_output_flowrate_withRow_.dat");
// The attribute in the output file
fout->addAttribute(new TAttribute("yhat"));

// Instanciation de mon code
TCode *mycode = new TCode(tds, "flowrate -s -k");
// Adding the outputfile to the tcode object
mycode->addOutputFile(fout);

// Size of a sampling.
Int_t nS2 = 50;
TJohnsonRW * tjrw2 = new TJohnsonRW(tds, mycode, nS2);

VI.7.1.3.4 TJohnsonRW constructor for a runner

The constructor prototype used with a runner is:

// Create a TJohnsonRW object with a runner
TJohnsonRW(TDataServer *tds, TRun *frun, Int_t ns, Option_t *option="")

This constructor takes three arguments:

• a pointer to a TDataServer object,

• a pointer to a TRun,

• an integer to specify the number of simulations.

page 284

CHAPTER VI. THE SENSITIVITY MODULE General overview

Here is an example of the use of this constructor on the flowrate code in sequential mode:

// The input file
TKeyScript infile("flowrate_input_with_keys.in");
// provide the input and their key
infile.setInputs(8, tds->getAttribute("rw"), "Rw", tds->getAttribute("r"), "R",
tds->getAttribute("tu"), "Tu", tds->getAttribute("tl"), "Tl", tds->getAttribute("hu"), "Hu" ←↩

,
tds->getAttribute("hl"), "Hl", tds->getAttribute("l"), "L", tds->getAttribute("kw"), "Kw");

TAttribute yhat("yhat");
// The output file of the code
TKeyResult outfile("_output_flowrate_withKey_.dat");
// The attribute in the output file
outfile.addOutput(&yhat, "yhat");

// Instanciation de mon code
TCodeEval code("flowrate -s -k");
// Adding the intput/output file to the code
code.addInputFile(&infile);
code.addOutputFile(&outfile);

TSequentialRun run(&code);
run.startSlave();
if(run.onMaster())
{

// Size of a sampling.
Int_t nS2 = 50;
TJohnsonRW * tjrwR = new TJohnsonRW(tds, &run, nS2);
//...

}

VI.7.1.4 Not using a sample but only a correlation matrix

With the Johnson relative weight method, it is possible to use either data loaded from an existing file or no data at all but
only corration matrix to estimate the weights and the R2. This former is done, as usual, by calling the fileDataRead
of the TDataserver object. This is not discussed in details as these as this aspect if fairly classical. The later on the
other hand, is new and specific to the TJohnsonRW class. This possibility is very specific and can be used through
the method setCorrelationMatrix(TMatrixD Corr);

Warning
It is important to pay attention not to mix up setInputCorrelationMatrix,
setCorrelationMatrix. The former is useful to generate a correlated sample before submit-
ting the computation with function or code (see Section VI.7.1.5 for instance) while the latter is a correlation
matrix that does not only contains the input variables but also the output ones.

Here is an exemple of code that shows how to use this possibility. It starts with the input attribute definition (using
StochasticAttributes is not compulsory anymore has no design-of-experiments will be drawn), along with the
output ones. Once done, the full correlation matrix (inputs and outputs) can be provided through the setCorrelationMatrix()
(for more details on the GenCorr method, see Section XIV.5.18.2). The rest is pretty much straightforward.

// Load the GenCorr function
gROOT->LoadMacro("UserFunctions.C");

// Define the DataServer

page 285

General overview CHAPTER VI. THE SENSITIVITY MODULE

TDataServer *tds = new TDataServer("tdsflowrate", "Ex. Flowrate");
tds->addAttribute("rw");
tds->addAttribute("r");
tds->addAttribute("tu");
tds->addAttribute("tl");
tds->addAttribute("hu");
tds->addAttribute("hl");
tds->addAttribute("l");
tds->addAttribute("kw");
// outputs
tds->addAttribute("flowrateModel");
tds->getAttribute("flowrateModel")->setOutput();

// Get the full correlation matrix
TMatrixD inCorr(8,8); //Input size definition
GenCorr(&inCorr, true, true);
// inCorr is now 9 by 9 as linearOutput has been added in GenCorr

TJohnsonRW * tjrw = new TJohnsonRW(tds, "rw:r:tu:tl:hu:hl:l:kw", "flowrateModel");
tjrw->setCorrelationMatrix(inCorr);
tjrw->computeIndexes();

VI.7.1.5 Generating the sample

To generate the sample that can be used to get the relative weights, one can use the generateSample method de-
fined in TSensitivity but the purpose of the relative weight method is focusing on correlated inputs issue. In order
to do this, one should specify the correlation structure of the inputs through the method setInputCorrelationMatrix(TMatrixD
Corr) where the only argument is a correlation matrix that has to be a symmetrical positive definite matrix whose
coefficients have to be in [−1,1] while the diagonal ones must be set to 1. With the usual variable definition, this could
look like this:

TMatrixD inCorr(8,8);
double corrValue[64]={1,0.184641,-0.613412,-0.214481,0.373538,-0.0926293,0.656586,0.194991,

0.184641,1,0.134385,0.0704593,-0.284958,0.105629,-0.536972,0.663751,
-0.613412,0.134385,1,0.200747,-0.174041,0.0817216,-0.547402,0.0202687,
-0.214481,0.0704593,0.200747,1,-0.128116,-0.248905,-0.263717,-0.0613039,
0.373538,-0.284958,-0.174041,-0.128116,1,-0.0832623,0.397725,-0.675141,
-0.0926293,0.105629,0.0817216,-0.248905,-0.0832623,1,0.111711,0.100442,
0.656586,-0.536972,-0.547402,-0.263717,0.397725,0.111711,1,-0.302142,
0.194991,0.663751,0.0202687,-0.0613039,-0.675141,0.100442,-0.302142,1};

inCorr.Use(8,8,corrValue);

//Create the jrw object
TJohnsonRW * tjrw = new TJohnsonRW(tds, "flowrateModel", nS, "rw:r:tu:tl:hu:hl:l:kw", " ←↩

flowrateModel");
tjrw->setInputCorrelationMatrix(inCorr);
tjrw->generateSample();

Then, the sample generated can be exported in a file and used outside of Uranie to compute the simulations associated.

VI.7.1.6 Computing the indices

To compute the indices, run the method computeIndexes:

tjrw->computeIndexes();

Note that this method is all inclusive: it constructs the sample, launches the simulations and computes the indices.

page 286

CHAPTER VI. THE SENSITIVITY MODULE General overview

VI.7.1.7 Displaying the indices

To display graphically the coefficients, use the method drawIndexes:

void TSensitivity::drawIndexes(TString sTitre, const char *select, Option_t * option)

The method needs:

• a TString containing the title of the figure,

• a string containing a selection (empty if no selection),

• a string containing the options of the graphics separated by commas.

Some of the options available are:

• "nonewcanv": to not create a new canvas,

• "pie": to display a pie chart,

• "hist": to display a histogram,

• "first": to display the indices of the first order (with "hist" only),

In our example the use of this method is:

TCanvas *cc = new TCanvas("canhist", "histogramme");
tjrw->drawIndexes("Flowrate", "", "nonewcanv,hist,first");
cc->Print("appliUranieFlowrateJohnsonRW500Histogram.png");

TCanvas *ccc = new TCanvas("canpie", "TPie",5,64,1270,560);
tjrw->drawIndexes("Flowrate", "", "nonewcanv,pie");
ccc->Print("appliUranieFlowrateJohnsonRW500Pie.png");

VI.7.1.8 Extracting the coefficients

The coefficients, once computed, are stored in a TTree. To get this TTree, use the method TSensitivity::getResultTuple():

TTree * results = tjrw->getResultTuple();

Several methods exist in ROOT to extract data from a TTree, it is advised to look for them into the ROOT documen-
tation. We propose two ways of extracting the value of each coefficient from the TTree.

VI.7.1.8.1 Method of extraction

The method use the method getValue of the TJohnsonRW object specifying the order of the extract value ("First"),
the related input and possibly more selected options.

double hl_first_index = tjrw->getValue("First","hl");

page 287

General overview CHAPTER VI. THE SENSITIVITY MODULE

VI.7.1.8.2 Second method of extraction

The second method uses 3 steps to extract an index:

• scan the TTree for the chosen input variable (with a selection) in order to obtain its row number. In our example, if
we chose the variable "hl", we’ll use the command:

results->Scan("*","Inp==\"hl\"");

and in the resulting figure below we see that the first order index of "hl" is in the row 10:

* Row * Out * Inp * Order * Method * Algo * Value *

* 10 * flowrateM * hl * First * Johnso * --first-- * 0.0435594 *
* 11 * flowrateM * hl * Total * Johnso * --total-- * 0.0435594 *

• set the entry of the TTree on this row with the method GetEntry;

• get the value of the index with GetValue method on the "Value" leaf of the TTree.

Below is an example of extraction of the index for "hl" in our flowrate case:

results->Scan("*","Inp==\"hl\"");
results->GetEntry(100);
Double_t S_Rw_Indexe = results->GetLeaf("Value")->GetValue();

VI.7.1.8.3 Third method of extraction

The third method uses 2 steps to extract an index:

• use the Draw method with a selection to select the index, for example the selection for the first order index of "rw" is
"Inp==\"rw\" && Algo==\"--first--\"";

• get the pointer on the value of the index with GetV1 method on the TTree.

Below is another example of extraction of the first order index for "rw" in our flowrate case:

results->Draw("Value","Inp==\"rw\" && Algo==\"--first--\"","goff");
Double_t S_Rw_IndexeS = results->GetV1()[0];

page 288

CHAPTER VI. THE SENSITIVITY MODULE General overview

Summary: TJohnsonRW constructors

• TJohnsonRW(TDataServer *tds, const char *inp, const char *out, Option_t *option="")

– tds: an empty dataserver containing the input variables or a dataserver filled with an already existing design-of-
experiments (input and output data available).

– out: attribute names which represent the responses of the problem. it must refer to existing attributes in the "tds".

– inp: input attribute names separated by colons. They represent all the inputs of the problem. They must refer to
existing attributes in the "tds".

– option: usual option field.

• TJohnsonRW(TDataServer *tds, void *fcn(double *,double *), const char *inp, const char *out, Int_t ns=100)

– tds: an empty dataserver containing the input variables.

– fcn: the function to analyse (a pointer).

– ns: an integer to specify the number of simulations.

– out: attribute names which represent the responses of the problem. it must refer to existing attributes in the "tds".

– inp: input attribute names separated by colons. They represent all the inputs of the problem. They must refer to
existing attributes in the "tds".

• TJohnsonRW(TDataServer *tds, const char *fcn, Int_t ns=100, const char *inp="", const char *out="")

– tds: an empty dataserver containing the input variables.

– fcn: the function to analyse (the function’s name).

– ns: an integer to specify the number of simulations.

– out: attribute names which represent the responses of the problem. it must refer to existing attributes in the "tds".

– inp: input attribute names separated by colons. They represent all the inputs of the problem. They must refer to
existing attributes in the "tds".

• TJohnsonRW(TDataServer *tds, TCode *fcode, Int_t ns)

– tds: an empty dataserver containing the input variables.

– fcode: the code to analyse .

– ns: an integer to specify the number of simulations.

• TJohnsonRW(TDataServer *tds, TRun *frun, Int_t ns)

– tds: an empty dataserver containing the input variables.

– frun: the runner to use code/function to analyse .

– ns: an integer to specify the number of simulations.

page 289

Sensitivity Indices based on HSIC CHAPTER VI. THE SENSITIVITY MODULE

Summary: TJohnsonRW methods

• setInputCorrelationMatrix(TMatrixD inCorr): define the correlation matrix that is used to intricate the
input variables one to another.

– inCorr: a nX ×nX symmetrical positive definite matrix whose coefficients should all be in [−1,1] but the diagonal
ones which should be set to 1.

• setCorrelationMatrix(TMatrixD Corr): define the global correlation matrix that is used to intricate the input
and output variables one to another.

– Corr: a (nX +nY)× (nX +nY) symmetrical positive definite matrix whose coefficients should all be in [−1,1] but
the diagonal ones which should be set to 1.

• generateSample(Option_t *option=""): generate the sample used for computing the sensitivity indices.

– option: no option has been implemented

• computeIndexes(Option_t *option=""): compute the Sobol sensitivity indices.

– option: string specifying the drawIndexes option used .

• void drawIndexes(TString sTitre, const char* select="", Option_t *option=""): draw the coefficients.

– sTitre: a string containing the title of the figure.

– select: a string containing a solution.

– option: a string containing the options of the graphics separated by commas.

VI.8 Sensitivity Indices based on HSIC

VI.8.1 Introduction to sensitivity measures using HSIC

This section introduces sensivity measures based on Hilbert-Schmidt independence criterion (HSIC)

VI.8.1.1 Example: simple computation of HSIC measures using a function

The example script below uses the THSIC class to compute and display the indices. Note that HSIC indexes do not
require a specific design of experiments, they can be computed on a given sample.

void sensitivityHSICFunctionFlowrate(){

gROOT->LoadMacro("UserFunctions.C");

// Define the DataServer
TDataServer *tds = new TDataServer("tdsflowreate", "DataBase flowreate");
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));

page 290

CHAPTER VI. THE SENSITIVITY MODULE Introduction to sensitivity measures using HSIC

tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

// Generation of the sample (it can be a given sample).
Int_t nS = 500;
TSampling *sampling = new TSampling(tds, "lhs", nS);
sampling->generateSample();

TLauncherFunction * tlf = new TLauncherFunction(tds, "flowrateModel");
tlf->setDrawProgressBar(kFALSE);
tlf->run();

// Create a THSIC object, compute indexes and print results
THSIC * thsic = new THSIC(tds, "rw:r:tu:tl:hu:hl:l:kw","flowrateModel");
thsic->computeIndexes("quiet");
thsic->getResultTuple()->SetScanField(60);
thsic->getResultTuple()->Scan("Out:Inp:Method:Order:Value:CILower:CIUpper");

// Print HSIC indexes
TCanvas *can = new TCanvas("c1", "Graph for the Macro sensitivityHSICFunctionFlowrate" ←↩

,5,64,1270,667);
thsic->drawIndexes("Flowrate", "", "hist,first,nonewcanv");

}

VI.8.1.2 THSIC constructor

There is one kind of constructor to build a THSIC object based on provided data. The HSIC compute indices on given
data, the TDataServer must be filled. The constructor does not require a model to run (this has to be done).

// Create a THSIC object data
THSIC(TDataServer *tds, const char *inp, const char *out , const char *Option="")

This constructor takes up to four arguments:

• a pointer to a TDataServer object,

• a string to specify the names of the input factors separated by ’:’ (ex. "rw:r:tu:tl:hu:hl:l:kw"), no default is accepted,

• a string to specify the names of the output variables of the model, no default is accepted.

• a string to specify the options, by default empty "". Possibility are "empiri" or "median" to specify the method to
estimate the variance (see Section VI.8.1.4).

Here is an example of how to use the constructor with provided data:

THSIC * thsic = new THSIC(tds, "rw:r:tu:tl:hu:hl:l:kw", "flowrateModel");

VI.8.1.3 Computing the indices

To compute the indices, run the method computeIndexes:

thsic->computeIndexes();

Note this method computes the ’V-stat’ indices. If the "unbiased" option is provided, it computes the ’U-stat’ indices. It
computes three values for each variable:

page 291

Introduction to sensitivity measures using HSIC CHAPTER VI. THE SENSITIVITY MODULE

• the HSIC measures,

• the R2HSIC indices, which are considered as the sensitivity indices

• the p-value of the independence test

VI.8.1.4 Set the parameters of the gaussian kernel

setEstimatedVariance : Set the method used to estimate the variance of the gaussian kernel (kUnknown
| kStdEmpirical | kMedianeDelta)

• kStdEmpirical : the parameters is estimated by the emperical standatd deviation of the attributes

• kMedianeDelta : use the median distance between points

thsic->setEstimatedVariance(URANIE::Sensitivity::THSIC::kStdEmpirical);

VI.8.1.5 Computing the p-value

Two technics are available to compute the p-values to test the independence between inputs and outputs:

• By default, the gamma approximation is used.

• The following command allows using the bootstrap

thsic->computeIndexes("nperm=100"); // specify the number of permutation

• computeIndexes("nperm=200") : Specify the number of bootstrap permutation using the option "nperm="
in computeIndexes

VI.8.1.6 Extracting the measure

The measures, once computed, are stored in a TTree. To get this TTree, use the method TSensitivity::getResultTuple():

TTree * resultsHSIC = thsic->getResultTuple();

Several methods exist in ROOT to extract data from a TTree, it is advised to look for them into the ROOT documen-
tation. We propose two ways of extracting the value of each coefficient from the TTree.

VI.8.1.6.1 Method of extraction

The method use the method getValue of the THSIC object specifying the order of the extract value ("R2HSic",
"HSic" or "pValues"), the related input and possibly more selected options.

double hl_r2hsic_index = thsic->getValue("R2HSic","hl");
double hl_hsic_index = thsic->getValue("HSic","hl");
double hl_pvalues_index = thsic->getValue("pValues","hl");

page 292

CHAPTER VI. THE SENSITIVITY MODULE Introduction to sensitivity measures using HSIC

Summary: THSIC constructors

• THSIC(TDataServer *tds, const char *inp, const char *out, Option_t *option="")

– tds: a dataserver filled with an already existing design-of-experiments (input and output data available).

– out: attribute names which represent the responses of the problem. it must refer to existing attributes in the "tds".

– inp: input attribute names separated by colons. They represent all the inputs of the problem. They must refer to
existing attributes in the "tds".

– option: usual option field.

Summary: THSIC methods

• computeIndexes(Option_t *option=""): compute the HSIC sensitivity indices.

– option: string specifying the drawIndexes option used .

• void drawIndexes(TString sTitre, const char* select="", Option_t *option=""): draw the coefficients.

– sTitre: a string containing the title of the figure.

– select: a string containing a solution.

– option: a string containing the options of the graphics separated by commas.

page 293

Introduction to sensitivity measures using HSIC CHAPTER VI. THE SENSITIVITY MODULE

page 294

Chapter VII

The Optimizer module

VII.1 Introduction

In the Optimisation module of Uranie, the word optimisation has two meanings:

1. The search for the optimum set of values of a function that takes its values in IR. This optimisation research
regroups two realities:

• the search for the set of inputs that produce the optimum of a function (analytic function or a computational
code);

• the search for the optimal set of parameters of a model which minimises the difference between reference
values and estimations from the model got from computational code. This difference may be the root mean
squared error or a weighted root mean squared error.

2. The search for a set of inputs that minimise a cost function that takes its values in IRp (p > 1), i.e. multi-objective
optimisation, what represents the search of the Pareto frontier in the costs space.

Tip
In order to avoid confusion, please note that the word function will be used to name either a C++ function
or an external code.

In this section, when dealing about an optimisation, we will always refer to minimisation, keeping in mind that the
maximisation of a function is equivalent to the minimisation of its opposite. A discussion on the general concept of
optimisation (with the difference between global and local and an simple introduction to the Pareto frontier, can be
found in [30]). The multi-criteria discussion has been moved to the Reoptimizer part (in Chapter IX). The use several
multi-criteria algorithms, gathered in the Vizir package, is now only supported with the implementation done in the
Reoptimizer package.

VII.2 Function optimisation

The first optimisation type is the search for the optimum set of values of a function that takes its values in IR.

page 295

Rosenbrock function CHAPTER VII. THE OPTIMIZER MODULE

VII.2.1 Rosenbrock function

To illustrate the usage of the Optimizer module with (both analytic and computational) functions, we are going to use
the Rosenbrock function from the literature [42].

VII.2.1.1 Presentation of the problem

The Rosenbrock function is widely used in optimisation libraries. It is a function of IR2 in IR. It is defined, for two
parameters {a, b} in IR, by:

f (x1,x2) = a× (x2− x2
1)

2 +b× (1.0− x1)
2

EQUATION VII.1: Rosenbrock function

In the illustration below, the two parameters are set to: a = 10.0 and b = 1.0.

Figure VII.1: 3D representation of the Rosenbrock function

By analytic computation, it can be proved that the Rosenbrock function is minimum in (1, 1) for all the values of a and
b, if parameters a and b are both positive.

VII.2.1.2 Case of an analytic function

The Rosenbrock function is defined in the file UserFunctions.C (in the macros folder ${URANIESYS}/share/uranie/macros)
with the prototype:

void rosenbrock(Double_t *x, Double_t *y)

Its content is as follow:

page 296

CHAPTER VII. THE OPTIMIZER MODULE Rosenbrock function

Uranie source code of the analytic function "rosenbrock"

void rosenbrock(Double_t *x, Double_t *y)
{
Double_t dx1 = x[0], dx2 = x[1];
Double_t da=10.0, db=1.0;

y[0] = da * (dx2-dx1*dx1)**2+db*(1.0-dx1)**2;
}

VII.2.1.3 Case of an external code

Also provided with Uranie comes an executable version of the Rosenbrock function. In this case, the Rosenbrock
function is not an analytic function as described above anymore, but a computational code compiled with Uranie, that
deals with input and output files.

VII.2.1.3.1 Usage of the code

Below are presented the available parameters of the rosenbrock executable (available in the ${URANIESYS}/bin
folder):

Usage: rosenbrock [-d] [-v] [-k|-r] [file]
-v: verbose mode
-d: debug mode (prints most of its steps in order to debug the code in case of problem)
-k: input file with keys [default is input_rosenbrock_with_keys.dat]
-r: input file with only values in rows [default is input_rosenbrock_with_values_rows.dat ←↩

]
file: name of the input file, if different from the default name

• -v option allows to print some messages to know the state of the code

• -d option allows to give some intermediate values to users while executing rosenbrock, such as values read in input
files, or to show steps or information in execution.

• -k options allow to simulate the launch of rosenbrock with data files of "key=value" format. If user does not specify
an input file, rosenbrock will look for the input file input_rosenbrock_with_keys.dat whom "key=value" format is
described below.

• -r option allows to simulate the launch of rosenbrock code with files with values in rows. The default input file is
input_rosenbrock_with_values_rows.dat whom "values in rows" format is described below.

Note that the input file must contain at least two values, for the parameters x and y. Values for a and b can be omitted,
in which case default values 10 and 1 will be respectively taken.

VII.2.1.3.2 Input files

In this section are described the file formats the rosenbrock executable can read.

• When used with the "-k" option, the rosenbrock executable takes its parameters from input files with format "key=value",
where the keys are the variable names, i.e. x, y, a and b. By default, the file input_rosenbrock_with_keys.dat is taken
as an input file, but if the user creates a new file, it must keep the same format. Below is the content of the default
file, input_rosenbrock_with_keys.dat :

page 297

TOptimizer constructors CHAPTER VII. THE OPTIMIZER MODULE

#
#
inputfile for the \b rosenbrock code
\date mar jui 3 14:38:43 2007
the two parameters
#

x = -1.20 ;
y = 1.0 ;
a = 10.0 ;
b = 1.0 ;

As presented below, if the user does not want to specify the values for parameters a and b, the following file will
produce the same result:

x = -1.20 ;
y = 1.0 ;

• When used with the "-r" option, the rosenbrock executable gets the parameters from input files where values are
stored in a single row, in the following order: x, y, a and b. The default file is input_rosenbrock_with_values_rows.dat,
which is taken if no file is specified. Below is the content of the default file, input_rosenbrock_with_values_rows.dat :

-1.20 1.0

VII.2.1.3.3 Output files

The rosenbrock code generates two output files, in which are stored both input attributes and output values:

• _output_rosenbrock_with_values_rows_.dat : file with "row" format and with a header containing the names of the
variables, and then their values:

#COLUMN_NAMES: x | y | fval | pA | pB

-1.200000e+00 1.000000e+00 6.776000e+00 1.000000e+01 1.000000e+00

• _output_rosenbrock_with_keys_.dat : file with "key=value" format without any header:

X = -1.200000e+00 ;
Y = 1.000000e+00 ;
fval = 6.776000e+00 ;
fA = 1.000000e+01 ;
fB = 1.000000e+00 ;

VII.2.2 TOptimizer constructors

Function optimisation is dealt in Uranie with the TOptimizer class. In order to manage both types of evaluation
functions (C++ functions or external codes), two constructors are available.

VII.2.2.1 Constructor for C++ function optimisation

To build a TOptimizer object from a C++ function, use the following constructor:

page 298

CHAPTER VII. THE OPTIMIZER MODULE Optimisation as minimum of function seeking

TOptimizer(TDataServer *tds, void (*fcn)(double*,double*), TString sinput, TString soutput)
TOptimizer(TDataServer *tds, const char *fcn, TString sinput="", TString soutput="")

This is used to create a TOptimizer object from the TDataServer object, and an analytic function either given
by a void pointer (first line) or by its name (second line) when it has been loaded in ROOT’s memory. The rest of
the arguments are the list of the input attributes found in the TDataServer, sinput, and the output attribute to be
created in the TDataServer, soutput. These two arguments are now compulsory when using a constructor with
a pointer of function (for more details on this, see Section I.2.5).

Note that the parameter sinput can be left empty, and the value "" is then interpreted as "all the input attributes".

VII.2.2.2 Constructor for external code optimisation

To build a TOptimizer object from an external code, use the following constructor:

TOptimizer(TDataServer *tds, TCode *code)

This is used to create a TOptimizer object from the TDataServer, and the TCode external code.

Tip
To find information about the creation of a TCode, please refer to the Section IV.3.

VII.2.3 Optimisation as minimum of function seeking

The first goal of the optimisation module of Uranie is to find the minimum of a function (C++ function or external code),
defined from IRn in IR.

VII.2.3.1 Selecting the algorithm

Two algorithms can be used to seek the minimum of a function: the Migrad or Simplex algorithms, included in the Minuit
package of ROOT. Below are excerpts from the Which Minimizer to Use page of Minuit2, ROOT’s optimiser library that
can be used in Uranie:

Migrad algorithm

This is the best minimizer for nearly all functions. It is a variable-metric method with inexact line search, a stable metric
updating scheme, and checks for positive-definiteness. [...] Its main weakness is that it depends heavily on knowledge
of the first derivatives, and fails miserably if they are very inaccurate.

Simplex algorithm

This genuine multidimensional minimisation routine is usually much slower than MIGRAD, but it does not use first
derivatives, so it should not be so sensitive to the precision of the function calculations, and is even rather robust with
respect to gross fluctuations in the function value. However, it gives no reliable information about parameter errors, no
information whatsoever about parameter correlations, and worst of all cannot be expected to converge accurately to
the minimum in a finite time.

page 299

http://wwwasdoc.web.cern.ch/wwwasdoc/minuit/node20.html

Optimisation as minimum of function seeking CHAPTER VII. THE OPTIMIZER MODULE

In order to select the algorithm to be used, apply the method setMethod to the TOptimizer object, with argument
one of the keywords kMigrad or kSimplex respectively for Migrad or Simplex algorithm:

TOptimizer * topt = new TOptimizer(tds, myCode);
topt->setMethod(TOptimizer::kSimplex);
// or opt->setMethod(TOptimizer::kMigrad);

If not specified, the default algorithm used by the Optimizer module is the Migrad algorithm.

VII.2.3.2 Selecting the cost attribute

As was previously mentioned, the TOptimizer class is dedicated to the research of the minimum of functions that
take values in IR. But it is also possible to find the minimum of a function that returns multiple values that we want
to minimise along one of these values, by selecting the output value to consider as the one to minimise. To select
the return value the function will be optimised for, use the selectCost method, with the name of the output among
which the optimisation will be performed as argument:

// definition of the output file
TOutputFileDataServer *fOutputFile = new TOutputFileDataServer(" ←↩

_output_rosenbrock_with_values_rows_.dat");
fOutputFile->addAttribute(new TAttribute("fa"));
fOutputFile->addAttribute(new TAttribute("fb"));
fOutputFile->addAttribute(new TAttribute("fval"));

// definition of the code
TCode *mycode = new TCode(tds,"rosenbrock -r");
mycode->addOutputFile(fOutputFile);

// TOptimizer
TOptimizer * toptC = new TOptimizer(tds, mycode);
toptC->selectCost("fval"); // "fval" is the chosen cost for the optimisation

VII.2.3.3 Setting parameters to the algorithm

In order to improve the quality of the optimisation, or to control the time the computation will last, the user can modify
a few parameters:

• setTolerance(Double_t dtol) sets the tolerance of the optimisation process to dtol. Default value is
0.01.

• setMaxIterations(Int_t nmax) sets the maximum number of iterations of the optimisation process to
nmax. Note that the TDataServer is saved after each iteration. Default value is 50.

• setMaxFunctionCalls(Int_t nmax) sets the maximum number of calls to the function to minimise to
nmax. Default value is 10.000.

Tip
Note that at each iteration, several function calls may be performed.

page 300

CHAPTER VII. THE OPTIMIZER MODULE Optimisation as code adjustment

VII.2.3.4 Adding variables on the fly

When dealing with an external code, which is not easily accessible, new possibilities have been introduced to allow
to add both input and output variables defined with simple mathematical formulaes. The examples discussed below
are taken from the two use-cases, provided in Section XIV.7.2 and Section XIV.7.4 respectively for a function and an
external code.

New input variables can be created with the addAttribute method that takes a name and a formula as arguments.

tds->addAttribute("xshift","x-0.1");
tds->addAttribute("yshift","y+0.2");

Once done, the TOptimizer should be warned to used these variables by:

• specifying the list of inputs for a function constructor:

gROOT->LoadMacro("UserFunctions.C");
TOptimizer *toptfunc = new TOptimizer(tds, "rosenbrock", "xshift:yshift","out");

• setting the way to write these inputs in the input file (instead of the original ones)

tds->getAttribute("xshift")->setFileKey("input_rosenbrock_with_keys.dat","x");
tds->getAttribute("yshift")->setFileKey("input_rosenbrock_with_keys.dat","y");

New output variables are introduced by calling a new method called addOutputVariable whose only argument is
the list of formulaes to be applied separated by semi-colons. In both cases (function and code) it looks like this:

topt->addOutputVariable("fval+1:fval*fval:fval*3");

Once done, the optimisation can be done on any of these newly defined variable, simply using the selectCost as

topt->selectCost("fval+1");

Warning
These functionnalities are tested both for code and function optimisation, but we do not recommend to use it
in the latter case. These computations are indeed requesting TTree operations which are slow with respect
to the execution’s time of an analytic function. In this case we strongly recommend to modified the function
at hand to get the expected variables.

VII.2.4 Optimisation as code adjustment

The second goal of the optimisation module of Uranie is to find the optimal set of parameters of a model which
minimises the distance between reference values and estimation from the model.

VII.2.4.1 Creation of objectives

Two distances are implemented:

• The root mean square deviation:

obj =
α

nS

nS

∑
i=1

(y⋆i − ŷi)
2

where:

page 301

Optimisation as code adjustment CHAPTER VII. THE OPTIMIZER MODULE

– y⋆ is the reference values vector;

– ŷ is the estimated values vector;

– α is a weight coefficient for the objective.

This distance is used with the following TOptimizer method:

addObjective(TString name,
TDataServer *tds,
TString ystar,
TOutputFile *outfile,
TString yhat,
Double_t weight)

The parameters are:

– name: the name of the objective to add;

– tds: the TDataServer that contains the reference values;

– ystar: the name of the output attribute in the TDataServer tds;

– outfile: the TOutputFile where the output values of the code are stored;

– yhat: the name of the output attribute in the output file;

– weight (optional): a coefficient to multiply the result by. The default value, if not specified, is 1.

• the weighted root mean square deviation:

obj = α

nS

∑
i=1

(y⋆i − ŷi)
2

σ2
i

where:

– y⋆ is the reference values vector;

– ŷ is the estimated values vector;

– σ is a weight coefficients vector for the different values;

– α is a weight coefficient for the objective.

This distance is used with the following TOptimizer method:

addObjective(TString name,
TDataServer *tds,
TString ystar,
TString sigma,
TOutputFile *outfile,
TString yhat,
Double_t weight)

The parameters are:

– name: the name of the objective to add;

– tds: the TDataServer that contains the reference values;

– ystar: the name of the output attribute in the TDataServer tds;

– sigma: the name of the weight attribute in the TDataServer tds (used only in the second method);

– outfile: the TOutputFile where the output values of the code are stored;

– yhat: the name of the output attribute in the output file;

– weight (optional): a coefficient to multiply the result by; the default value if not specified is 1.

page 302

CHAPTER VII. THE OPTIMIZER MODULE Performing the optimisation

VII.2.4.2 Manipulation of the objectives

The objectives previously defined can be set active or inactive thanks to the methods activeObjective(TString
name) and unactiveObjective(TString name), which both take the name of the objective as a parameter.

In order to easily invert the state of all the objectives defined, use the invertObjective() method. By default, all
the objectives added are actives.

VII.2.4.3 Manipulation of the parameters

In order to consider attributes as fixed parameters, they can be set fixed or unfixed thanks to the methods fixParameter(TString
name) and unfixParameter(TString name), which both take the name of the objective as a parameter.

In order to easily invert the state of all the parameters defined, use the invertParameters() method. By default
all the parameters are unfixed.

VII.2.5 Performing the optimisation

Once the optimisation object is constructed and associated with costs/objectives, the optimisation is simply performed
by calling the optimize() method. The call to this method fills the dataserver specified in the constructor with the
best solution found by the optimisation algorithm.

page 303

Performing the optimisation CHAPTER VII. THE OPTIMIZER MODULE

Summary: TOptimizer

• Constructors:

– TOptimizer(TDataServer *tds, void/const char *fcn, TString sinput="", TString soutput="")

Creates a TOptimizer object from the TDataServer, and an analytic function (given either by a void or
a const char representing the function’s name when loaded in ROOT’s memory). The other arguments are
optional and are the input and output attributes.

– TOptimizer(TDataServer *tds, TCode *code)

Creates a TOptimizer object from the TDataServer, and the TCode external code.

• For minimum of function seeking:

– setMethod(EOptimMethod method=kMigrad): Sets the minimum seeking method to method (kMigrad or
kSimplex).

– selectCost(TString scost): Sets the cost attribute to scost.

– addOutputVariable(TString soutputs): Adds new output by defining formulaes based on existing variables.
These newly defined variables can be used as cost function by calling the selectCost method.

– setTolerance(Double_t dtol): Sets the tolerance of the optimisation process. Default value is 0.01.

– setMaxIterations(Int_t nmax): Sets the maximum number of optimisation iterations. Default value is 50.

– setMaxFunctionCalls(Int_t nmax): Sets the maximum number of calls to the function to minimise. Default
value is 10000.

• For code adjustment:

– addObjective(TString name, TDataServer *tds, TString ystar, TOutputFile *outfile, TString yhat, Double_t
weight): Adds the objective:

obj =
α

nS

nS

∑
i=1

(y⋆i − ŷi)
2

– addObjective(TString name, TDataServer *tds, TString ystar, TString sigma, TOutputFile *outfile, TString
yhat, Double_t weight): Adds the objective:

obj = α

nS

∑
i=1

(y⋆i − ŷi)
2

σ2
i

– activeObjective/unactiveObjective(TString name): Active/unactive the objective name.

– invertObjective(): Invert the activation of all the objectives.

– fixParameter/unfixParameter(TString name): Fix/unfix the parameter name.

– invertParameters(): Invert the fix status of all the parameters.

• For launching the optimisation process:

– Optimize(TString="same"): Performs the optimisation and fills the tds specified in the constructor

page 304

CHAPTER VII. THE OPTIMIZER MODULE Multicriteria optimisation

VII.3 Multicriteria optimisation

The implementation of the Vizir algorithms within the Optimizer module being considered deprecated, this part is now
discussed in Chapter IX.

page 305

Multicriteria optimisation CHAPTER VII. THE OPTIMIZER MODULE

page 306

Chapter VIII

The Relauncher module

VIII.1 Introduction

The aim of the Relauncher module is to provide a general architecture for all parametric study and is, because of
this generality aspect, heavily used throughout the Uranie platform. However, it is generally used for more advanced
techniques than the usual recommended first steps and it allows more flexible distribution approaches.

Studies allowed thanks to this module (no concrete study will indeed be described in this chapter, as the module is
more a support for many other classes in other modules) aim at evaluate a model for different input parameter’s values
and check the evolution of its outputs. These studies can be split into two kinds:

• the opened-loop ones: all input parameters are known at the start (Monte-Carlo simulation for instance).

• the closed-loop ones: results of the evaluation will impact the next input parameter’s value (optimisation for instance).

One can find examples of how to run analysis with the relauncher implementation in Section XIV.8.

Item evaluations can be time consuming, and many kinds of such studies are able to distribute them on computer
resources. This architecture provides different ways to use these resources. However, if evaluation is fast, evaluation
distribution is counterproductive.

Because of the very specific organisation of this module, the class hierarchy is not shown here but split into pieces
which will be introduced in the next section. Every component is discussed in more details in the following sections
and a schematic description of the needed steps to define a relauncher procedure is shown in Figure VIII.1.

VIII.2 Relauncher abstraction levels

In order to obtain a modular system, three abstraction levels are distinguished:

• The top level (TMaster) deals with the problem, and defines items to be evaluated. It plays a role of supervisor and
this level is usually called master.

• The intermediate level (TRun) defines where evaluations are computed using available computer resources. This
level is usually called runner.

• The bottom level (TEval) uses functions provided by the user to evaluate item characteristics and this level is usually
called assessor.

page 307

Relauncher abstraction levels CHAPTER VIII. THE RELAUNCHER MODULE

Ideally, the combination of any classes of this three levels are possible. In real world, some combinations are useless
(do not distribute a sequential algorithm) or impossible (many algorithm cannot converge if an non-calculable evaluation
occurs).

As you can see from the defined layers, the architecture is designed to realise many evaluations in parallel. It deals
both with a parallel evaluation and with a parallel studies (island optimisation for example). A feasibility test have been
done with a parallel evaluation, but it needs extra works from the user.

Now let’s start with a first hello world program. It treats the classical Rosenbrock optimisation problem (already intro-
duced in Section VII.2.1). The script below starts with namespace directive, continues with the user supplied evaluation
function, and ends with the study procedure. This procedure follows a bottom-up definition: used variables, evalua-
tion function declaration, used resources, and study. Variables are used to define the evaluation prototype and the
study (item definition variables, etc), and link these definitions together. In this example, some declarations may seem
redundant, but they show their relevance in a more complicated example.

using namespace URANIE::DataServer;
using namespace URANIE::Relauncher;
using namespace URANIE::Reoptimizer;

void rosenbrock(double *in, double *out)
{

double x, y, d1, d2;
x = in[0]; y = in[1];
d1 = (1-x);
d2 = (y-x*x);
out[0] = d1*d1 + d2*d2;

}

void Rosenbrock()
{

// problem variables
TAttribute x("x", -3.0, 3.0),

y("y", -4., 6.),
ros("rose");

// user evaluation function
TCIntEval eval(rosenbrock);
eval.addInput(&x);
eval.addInput(&y);
eval.addOutput(&ros);

// resources
TSequentialRun run(&eval);
run.startSlave();
if (run.onMaster()) {

// data server
TDataServer tds("rosopt", "Rosenbrock Optimisation");
tds.addAttribute(&x);
tds.addAttribute(&y);

// optimisation
TVizirGenetic algo;
TVizir2 study(&tds, &run, &algo);
study.addObjective(&ros);
study.solverLoop();

// save results
tds.exportData("rosenbrock.dat");

run.stopSlave();
}

page 308

CHAPTER VIII. THE RELAUNCHER MODULE Relauncher abstraction levels

}

This example will not be detailed, it is showed for its structure that you may find again on other studies. however, it
must be self explanatory.

An important aspect needs to be pointed out. It concerns the resource handling. This script deals with both the study
side and the evaluation side which may be treated by different resources. Both sides need to know variables and
evaluation function, while study objects are only useful on study side. Here is the frame of the code that deals with it.

void Study()
{
// both side definitions
...

run.startSlave(); // slave is evaluation side
if (run.onMaster()) { // master is study side
// study definitions
...

run.stopSlave();
}
}

A translation of this code may be: once one starts the study, evaluation-needed objects are defined and evaluation-
resources could start their loop waiting for items. The study-resource are allocated from the onMaster method and
many things are done from there: distributing the evaluations and collecting the results. Once the study is finished (or
at least, no more evaluation is needed), evaluation-resources can be stopped: they stop their loop, exit and jump the
study instruction bloc which is no concern to them.

Finally the use of Relauncher module can be sketched in a four-steps process starting as usual, by defining the prob-
lem/model to be tested, defining the rule to be applied on the various inputs (meaning configuring the assessors also
knowing the way one wants to run these calculations), choosing the corresponding runner and launch the computa-
tion through the TLauncher2 instantiation (or any other TMaster inheriting class, such as the ones defined in the
Reoptimizer module for optimisation problem, see Chapter IX). The colored arrows in Figure VIII.1 show the allowed
associations of assessors and runners (to respect, for instance, the thread-safe properties of the assessors).

page 309

TEval CHAPTER VIII. THE RELAUNCHER MODULE

Figure VIII.1: Schematic description of the needed steps to define a relauncher procedure

The next three sections will successively pass through the different level of abstraction, starting from the bottom level
to the top one.

VIII.3 TEval

The TEval abstract class defines the interface of user evaluation model. It provides an user class basis to define a
model, and allows composition class to combine models together.

A standard evaluation is a function from n input parameters to m output parameters. n and m are known and fixed
during the run, but they can now be string, vectors, or double. These evaluations may not return a value. Generally, it
is due to an inconsistent input set. TMaster may support (or not) this lack.

A glimpse of all the assessor classes available can be found in Figure VIII.2 that displays the hierarchy of class starting
from the inheritance of TEval.

Figure VIII.2: Hierarchy of classes and structures for the evaluation part of the Relauncher module.

page 310

CHAPTER VIII. THE RELAUNCHER MODULE TCIntEval and TCJitEval

All the assessors will need to have attributes attached to them, both inputs and outputs. Input attributes might have a
peculiar status, by being constant disregarding the provided stochastic law. On the other hand, output attributes might
be considered temporary if, for instance, their value is of no interest for the final analysis but might be used by another
assessor in composition. All this is discussed later on, in Section VIII.5 as these specification will be done directly on
the master object.

VIII.3.1 TCIntEval and TCJitEval

VIII.3.1.1 function prototype

These classes reify the TLauncherFunction analytic function.

The ROOT on-the-fly compiler is now compatible with the C++ syntax but there are two ways to access an already
written functions:

1. with a pointer to the function directly (this function being properly compiled);

2. through the ROOT-register of function, passed as a string only;

For the former, whose interface is the TCJitEval class, only usable in C++, there are no problem of thread-safety
which is not the case for the latter, whose interface is the TCIntEval class which is not considered thread-safe.
Given these consideration the latter shall not be used with a TThreadedRun, while the CJit version deals with the
ROOT Just in time compiler, and is considered thread-safe. This is further discussed in Section VIII.4.2.

User supplied function needs to comply with a C prototype. Both version class constructors can use the TLauncherFunction
prototype. Three extended prototypes are added for a more advanced usage.

// TLauncherFunction prototype
void standart_prototype(double *in, double *out);
// extension prototypes
int extended_prototype(double *in, double *out);
int extended_prototype(double *in, double *out, void *foo);
int uentry_prototype(std::vector<URANIE::DataServer::UEntry*> *in, std::vector<URANIE:: ←↩

DataServer::UEntry*> *out);

The first extension is used to deal with non-calculable evaluations. It uses the return value, which should be 1 in usual
case and 0 if the output values cannot be computed. The second one can be used to pass extra information to the
function by casting it as a pointer of void. The last extension prototype is used when evaluation deals with string or
std::vector<double> input or output. Its use is tricky so we recommend to contact us if this is the only solution you have.

The class constructor first argument is the function pointer.

• TCJitEval can use standart and extended prototype and recognises it at compile time. This is the only runner
able to deal with the complicated extended prototype.

• TCIntEval can use standart and extended prototype, but cannot recognise it (first argument is the function name
as a string). It uses a second boolean argument to distinguish them. Default implicit value is kFALSE for standart
prototype (kTRUE for first extended prototype, void * value for second extended prototype.

VIII.3.1.2 parameter declaration

The class definition gives information neither about the input or output number nor about parameter order. These
information have to be added to link with TDataServer and TMaster definitions. We use the addInput and
addOutput method with TAttribute objects as argument to do so. Inputs and outputs have to be added in
correct order. Here is an example of how to precise inputs and outputs, from the script in Section VIII.2:

page 311

TPythonEval CHAPTER VIII. THE RELAUNCHER MODULE

// problem variables
TAttribute x("x", -3.0, 3.0),

y("y", -4., 6.),
ros("rose");

// user evaluation function
TCIntEval eval("rosenbrock");
eval.addInput(&x); // Adding attribute in the correct order
eval.addInput(&y);
eval.addOutput(&ros);

For a more user friendly definition, you can use the setInputs and setOutputs methods. Instead of only re-
questing a pointer to the attribute under consideration, a first compulsory argument is an integer that equals the number
of attributes to come, followed by as many pointers to attribute. Taking the example provided above, one can create a
second assessor, using theses methods instead of the addInput and addOutput ones.

// user evaluation function
TCIntEval eval2("rosenbrock");
eval2.setInputs(2,&x,&y); // Adding attributes in the correct order, all at once
eval2.setOutputs(1,&ros);

VIII.3.2 TPythonEval

This class is used when you use Uranie with the python interpreter. So they are not detailed here. More detail can be
find in the python version of this documentation, but its use is very similar to a TCJitEval class.

Its use with the C++ interpreter is not trivial (it needs to loads the python interpreter) and are not covered here. Using
a TCodeEval instead is a simpler solution.

VIII.3.3 TCodeEval

This class takes up the TCode class features and make it thread safe.

Evaluation is done by an external executable, which reads one (or more) configuration file, where it finds its inputs, and
writes the single result file, where to find the output variables. TCodeEval must create or adapt configuration files to
introduce item values, run the executable, and analyse the result file to get its outputs. It needs to know file formats,
and where to find values.

VIII.3.3.1 Local environment

In order to be used in parallel (MPI or thread), we have to take care of file access conflicts: many processes which
modify the same file. To avoid such a thing, Uranie creates for each resource a personal directory named URA with
then a set of numbers and letters that is more robust than the older version with just increasing numbers. Everything
is done in it: input files are created there, executable is run from it and the output file are supposed to be found here
as well. By default, these directories are created in the current folder. You can specify another root directory, using the
setWorkingDir method. There are two other methods that can be called to change this:

• setOldTmpDir(): This will create folder named URANIE0, then URANIE1 and so on, up to the number of
process chosen (for sequential job, only URANIE0 will be created).

• keepAllFolders(): This method is meant for debugging. It creates a specific working directory for EVERY
computations (warning it might overflow your home directory).

page 312

CHAPTER VIII. THE RELAUNCHER MODULE TCodeEval

Input files are often created from template files. These files, if they are not defined with a full path, are search in the
current directory. You can specify another one using the setReference method.

The class constructor takes a string (const char*) as argument which is the command line used to launch the
executable. %D jocker can be used, and will be replaced by the local directory.

VIII.3.3.2 Various file format

With the introduction of the vectors and strings from version 3.10.0, more complex interaction with files were introduced:
how to differ two iterations of a single vector and how to differentiate a double from a string. This depends highly on the
nature of the input/output file under consideration, whether it is just a text file used as database (in this case it depends
mostly on the way you’ve written the code that generate/parse it) or whether it corresponds to a more strict kind of file,
for instance a piece of code (c++/python/zsh). In the latter case, strings and vectors are not written in the same way.
To take this into account, a rule has been defined (commonly to both input and output files, both in the Launcher and
Relauncher module). There is a method for any kind of file to define properties of vector and string objects:

• setVectorProperties(string beg, string delim, string end): the first element is the string
beginning of the vector (usually "[" for python, "(" for zsh/sh, nothing...), the second one is the delimiter between
iterators (usually "," for c++/python, blank for zsh/sh...) and the last one is the end of the string (usually the opposite
character of the beginning one).

• setStringProperties(string beg, string end): the first and second elements are respectively the
beginning and ending character used for string (oftenly """).

Depending on the kind of chosen file, there is a default configuration chosen. This default is precised in the following
two sections.

Warning
The chosen output format has to be consistent with the output parameters investigated, particularly when
some are vectors which can be empty for some specific configurations. In this peculiar but still possible case,
the abscence of results is indeed a result of its own and should not be taken as a failure (from an incomplete
output file for instance, this specific aspect being further discussed later-on in Section VIII.5.2.1).
Most of the time this would be independent of Uranie as it would be specific to the code under investigation,
and as such, it might be tricky to handle. Two use-case macro have been written to show this, so please take a
look at empty vectors considered as results in Section XIV.8.11 or considered as an error in Section XIV.8.12
only because of the way the output Key-format output file is written. In a nutshell, in the former case caution
has been taken to properly delimit and condensate the results so that even when the vector is empty there
are sign of this, while on the other hand a simple dump is done for every instance of the vector meaning that
with no content, no dumping is done leading to Uranie stating that there might be missing information in this
output file (once again this is discussed in Section VIII.5.2.1).

VIII.3.3.3 Input file

Input file formats supported by TCodeEval objects, include:

• TFlatScript, Input file is created from scratch. Values are given in order separated by a blank separator. The
default behaviour with respect to strings and vectors for this file, is to look like the DataServer format (from the
Launcher module): strings have no specific beginning/ending characters, as for the vectors whose delimiter is chosen
to be a comma.

page 313

TCodeEval CHAPTER VIII. THE RELAUNCHER MODULE

• TLineScript, Input file is created from scratch. Each TAttribute values are written on a specific line. Chang-
ing attribute means changing line. It is the equivalent of the Column format (from the Launcher module).

• TKeyScript, Input file is created from an original file. Each TAttribute is associated to a keyword. Values are
substituted using a "keyword = value" pattern.

• TFlagScript, Input file is created from a template file. Each TAttribute is associated to a keyword. Each
keyword is substituted directly by the current value.

TXmlScript is not provided in this version

The addInputmethod is used to declare parameters for all these file types. For TFlatScript and TLineScript,
it takes a single argument: a pointer to a TAttribute object, while in the two other cases, the same first argument
is completed by a const char * for the key. The declaration order is only significant when no key is specified (so for the
TFlatScript and TLineScript files).

// Input File Flat format case
TFlatScript finp1("input_rosenbrock_with_values_rows.dat");
finp1.addInput(&x); // Adding attributes in the correct order, one-by-one
finp1.addInput(&y);

// Or Input File Key format case
TKeyScript kinp1("input_rosenbrock_with_keys.dat");
kinp1.addInput(&x, "x"); // Adding attributes in the correct order, one-by-one
kinp1.addInput(&y, "y");

A more condensed version of this addInput method exists for all these input types: the setInputs method. Here
as well, it takes an extra compulsory argument, an integer which equals the number of attributes to come. The rest
of the arguments are either a single pointer to a TAttribute object for the TFlatScript and TLineScript
objects, or a pair composed of the same pointer directly followed by the key (for the two other input file types). Starting
back from our example written above, one could condensate this into these lines:

// Input File Flat format case
TFlatScript finp2("input_rosenbrock_with_values_rows.dat");
finp2.setInputs(2, &x, &y); // Adding attributes in the correct order, all at once

// Or Input File Key format case
TKeyScript kinp2("input_rosenbrock_with_keys.dat");
kinp2.setInputs(2, &x, "x", &y, "y"); // Adding attributes in the correct order, all at ←↩

once

Once done, the input files are provided to the TCodeEval object, using the addInputFile method, as shown
below:

// Add to the TCodeEval
TCodeEval code("rosenbrock -r"); // put "rosenbrock -k" instead for key
code.addInputFile(&finp1); // put &kinp1 instead for key

VIII.3.3.4 Output file

Output file formats supported by TCodeEval include:

• TFlatResult, Output file is made up of an header characterised by # as first line character, and a line of floats
separated by spaces. By default, it is constructed as the DataServer one (from Launcher module). One can consider
using a flat output file written over several lines (so constructed as a TOutputFileRow) but one needs to be very

page 314

CHAPTER VIII. THE RELAUNCHER MODULE Evaluation functions composition

careful about the fact that all attributes might not have the same number of entries (when dealing with vectors for
instance). This is discussed in the third item of Section IV.3.1.2.3 and in Section XIV.4.32.1. To do this a specific
method has to be called isMultiLine(string separ) which says to the class that the results are written
over many lines, and every field is separated by the string separ.

• TKeyResult, Value can be found on line composed with the key, a separator, the value and eventually a ; character.
A separator is composed with space, tab, = and : characters.

• TLineResult. All the values of a given TAttribute are written on a specific line. Changing attribute means
changing line. It is the equivalent of the Column format (from the Launcher module).

TXmlResult is not provided in this version

In a similar way of TInputFile, one should use the addOutput to declare parameters, the argument being the
pointer to the attribute under consideration for all these formats, pairing with the corresponding key when dealing with
a TKeyResult object. This step can be gathered in a single operation, as for the input file, using the setOutputs
method. Here is an example for the ongoing use-case.

// Input File Flat format case
TFlatResult fout("_output_rosenbrock_with_values_rows.dat");
fout.addOutput(&ros); // Or fout.setOutputs(1, &ros);

// Or Input File Key format case
TKeyResult kout("_output_rosenbrock_with_keys.dat");
kout.addOutput(&ros, "ros"); // Or kout.setOutputs(1, &ros);

Finally, use the addOutputFile method of TCodeEval to declare it:

// Add output file to the TCodeEval
code.addOutputFile(&fout); // put &kout instead for key

VIII.3.4 Evaluation functions composition

Composition offer the possibility to build an overall new kind of TEval from the succession of many others. It defines
an ordered sequence of evaluation functions. One important thing to notice is that composition does not deal with
distribution even if it is possible. It just applies sequentially all assessors and become really helpfull as the output of
an assessor at the i-Th rank can be used as input for the next assessor, the (i+1)-Th one. This is one by creating a
TComposeEval object as discussed briefly below.

VIII.3.4.1 TComposeEval

This composer can be seen as an overall new assessor that is, usually provided to the runner (or to a master directly).

The constructor have no argument. The only important method is the addEval one that allows users to add evaluation
functions, keeping in mind that they should be called in the correct order, regarding what they expect (the only argument
of the function being a pointer to the assessor to be stacked to create the chain). Examples of composition can be
found in Section XIV.8.14.

As for the input/output attributes or a regular assessor, one can use the setEvals (mind the "s") that allows to put
all the pointers as argument of the function, right after an int parameter that state the number of assessor procided to
define the composition.

page 315

TRun CHAPTER VIII. THE RELAUNCHER MODULE

VIII.4 TRun

The TRun sub-classes deals with the use of computer resources. Three modes are available:

• TSequentialRun: evaluations are computed sequentially on a single computer core.

• TThreadedRun: evaluations are computed using the computer multi-core resources. It uses the pthread library
with the shared memory paradigm. Using this runner prevents from using some assessor, as one should take care
of memory conflict.

• TMpiRun: evaluations are computed using a network of computers (usually multi-core) It uses the message passing
interface (MPI) library with a distributed memory paradigm.

If you run on a single node, you can use MPI or threads. MPI parallelisation is more expensive, but more generic (no
thread safe problem).

Warning
Disregarding the chosen solution to distribute the computation as long as it is parallelised (meaning whether
one is choosing thread or MPI) the number of allocated ressources (in the constructor or specify to the
mpirun command) should always be strickly greater than 1. CPU number 1 will always be the "master" that
is dealing with the distribution to its "slaves" and the gathering of all results.

The runner class hierarchy is smaller than the assessor one, as can be seen in Figure VIII.3. It starts with the TRun
class, which is a pure virtual one in which few methods are given along with an integer to describe the number of CPUs.

Figure VIII.3: Hierarchy of classes and structures for the runner part of the Relauncher module.

VIII.4.1 TSequentialRun

In this case, there is no distribution. If evaluations are fast, it remains the simplest way to run the evaluations. Here is
the interpretation of the inherited methods:

• startSlave: exits immediately,

• onMaster: tests is true

page 316

CHAPTER VIII. THE RELAUNCHER MODULE TThreadedRun

• and stopSlave: cleans TEval.

TSequentialRun constructor only has one argument, a pointer to a TEval object.

// Creating the sequential runner
TSequentialRun srun(&code);

VIII.4.2 TThreadedRun

In this case, the program starts using a single resource (the main thread), then it launches evaluation on dedicated
threads (children), uses them and stops them before ending.

Threads use a shared memory paradigm: all threads have access to the same address space. All objects that are
used are defined by the main thread. Evaluation threads only use (or duplicate) them. It’s only the main thread that
follows the macro instructions, while its children only do the evaluation loop. Here is the interpretation of the inherited
methods:

• startSlave starts some threads dedicated to evaluation (it is a unblocking operation), and then exits. These
threads loops for evaluations.

• As we are on the master thread, onMaster is true.

• stopSlave puts fake items for evaluation. When the thread gets it, it stops their evaluation loop and exits. Main
thread waits for all threads to be stopped.

TThreadedRun constructor has two arguments, a pointer to a TEval object and an integer. The second argument
is the number of threads that the user wants to use.

// Creating the threaded runner
TThreadedRun trun(&code,4);

One important thing to take care is that the user evaluation function need to be thread safe. For example, with the old
ROOT5 interpreter, the rosenbrock macro (see Section VIII.2) cannot be distributed with thread. This is because the
user function is interpreted and the Root interpreter is not thread safe. You have to turn it in a compiled format to make
it works with threads.

Thread safe problems come usually with variable affectation. If two (or more) threads modify the same memory address
at the same time, the code expected behaviour is usually disturbed. It can be a global or static variable, an embedded
object working variable, a file descriptor, etc. Thread unsafe bug is difficult to squash. It may be necessary to clone
objects to avoid such problems.

Warning One might want to use TDataServer objects in code of TCJitEval instances that would
be distributed with a TThreadedRun object. In this case, it is mandatory to call the method
EnableThreadSafety() to remove all dataserver and tree from the internal ROOT register which would
induce race-condition. This can be done as below:

ROOT::EnableThreadSafety();

An example of this (very specific) usage, is shown in Section XIV.8.3 for C++ mainly as it uses a CJit function
which cannot be used in python.

page 317

TMpiRun CHAPTER VIII. THE RELAUNCHER MODULE

VIII.4.3 TMpiRun

In this case, many processes are started on different nodes. MPI uses the distributed memory paradigm: each process
have is own address space. All processes run the same macro and define their own objects. If you create a big object
in the evaluation/master code section, all processes allocate it (this is why, generally, the main dataserver object is
created in the onMaster part to prevent from creating as many dataserver as there are slaves).

• the constructor calls MPI_Init for the initial process synchronisation. This step is automatical, as long as one
is running through the on-the-fly C++ compilator thanks to the root command or in python. In the peculiar case
of standalone compilation please refer to the provided exemple and the discussion on how to handle this in Sec-
tion XIV.8.8.2.

• startSlave either exits immediately for the master process (id=0) or starts evaluation loop for other ones.

• depending if we are on the master process or not, onMaster is true or false.

• stopSlave puts fake items for evaluation and then exits. Evaluation processes get it, stop their loop, exit from
startslave, and usually jump the master bloc instructions. Unlike threads, the master process is not waiting for
evaluation processes.

• the destructor calls MPI_Finalize for the final process synchronisation. .

TMpiRun constructor has one argument, a pointer to a TEval object.

// Creating the threaded runner
TMpiRun mrun(&code);

To run a macro in a MPI context, you have to use the mpirun command. Here is a simple way to run our example:

mpirun -n 8 root -l -q -b RosenbrockMacro.C

Here, we launch root on 8 cores (-n 8); -q option (quit) is needed to exit the ROOT interpreter at the script end; -b
option (batch) is needed when running on many nodes, preventing opening display. The mpirun command has other
options not mentioned here.

In general, one runs a MPI job on a cluster with a batch scheduler. The previous command is put in a shell script with
batch scheduler parameters. The ROOT macro does not use viewer, but saves results in a file. They will be analysed
in a post interactive session using all the ROOT facilities.

If one wants to run in a compiled way, this cannot be done just by adding a "+" to the command line. Effectively, if
all processes try to compile using the same output file, conflicts occur. One way to do is to run a first ROOT session
without mpirun to compile your macro. Then, if you run a second mpi root session with the single "+", processes will
use the pre-compiled macro. You can compile your macro with the command:

gROOT->LoadMacro("Rosenbrock.C++");

LoadMacro compiles it but does not execute it. Another possibility to run a code in a compile way is to consider the
standalone compilation which consists in considering Uranie as a set of libraries, as already discussed in Section I.2.3.

Warning
The TMpiRun implementation requires also at least 2 cores (one being the master and the other one the
core on which assessors are run). If only one core is provided, the loop will run infinitely.

page 318

CHAPTER VIII. THE RELAUNCHER MODULE TMaster

VIII.4.3.1 TBiMpiRun and TSubMpiRun

In some case, users want to use multi level of parallelism. Two examples are given in the use cases section : first one
is an optimization where each evaluation realizes an experiment design and launchs many evaluations and returns a
overview of values (max, min, mean) ; second one uses an MPI function (TCJitEval) for evaluation.

For a two level MPI, two classes are provided : TBiMpiRun and TSubMpiRun. TBiMpirun is the high level
class and splits MPI resources in different parts : one ressource for the TMaster and n resources for each TEval.
TSubMpiRun gives acces to the n ressources reserved for evaluation. For example with 16 resources, 1 resource
is reserved for the master and the rest can be splited in 3 parts of 5 resources each for evaluation. TBiMpiRun got
an extra parameter, an int defining the number of each evaluation resource. This number must be compatible with
available resources (with 16 resources, it could be only 3 or 5).

VIII.5 TMaster

The object inheriting from the TMaster class has a supervisor role: it defines items to be evaluated, and treats these
evaluations. Usually, it is created with a TDataServer, and a TRun (TEval implicitly) that is used for evaluations.
The TMaster retrieves information both:

• from TDataServer, it extracts the declaration of the input variables.

• from TEval, it extracts extra parameters that will be computed for each item.

We could distinguish two cases depending of the TDataServer data:

• if it contains a header and data, the TMaster will complete items data by adding information (columns). This
happens most of the time when considering the pure launching aspect, meaning when using the TLauncher2
object, briefly defined below.

• if it contains only a header, it will be used as items definition parameters. The TMaster will fill it with its own items
(lines and columns). This case happens both for pure the launching aspect, given that a design-of-experiments will
be constructed at some point, but also for optimisation issues.

Disregarding the case, TMaster interface defines an abstract method, solverLoop, that runs the evaluation loop
and completes or fills the TDataServer data. This method is the one to properly start the analysis.

VIII.5.1 Dealing with attributes

Disregarding the kind of master considered (the TLauncher2, discussed briefly below or those introduced in the
optimisation part, in Section IX.2 for instance), there are common methods that are discussed below in order to simplify
or precise some important behaviour of your current analysis.

In simple problem, the TDataServer object and the ones deriving from TEval have input parameters that fit
together. In this case, you can use the addAllInputs method from the TEval class to define the TDataServer
needed header (the only argument being a pointer to the considered dataserver object). For more complex one, there
might be a mismatch.

In other problem, one can distinguish between three kinds of situation:

page 319

TLauncher2 CHAPTER VIII. THE RELAUNCHER MODULE

• The TEval-based object is using few input parameters, one (or more) of which is requested to be set a constant
value for all the upcoming estimation. To do this properly, the parameter under consideration should be added to the
assessor but not to the dataserver. The method addConstantValue from the chosen TMaster inheriting object
is called with argument the pointer to the attribute and its value as second parameter. A third optionnal parameter
(set by default at false) specifies whether this value should be stored in the dataserver tuple at the end. This option
has been recently added as it might be better for bookkeeping to know what the underlying hypothesis was when the
computations were performed. An example of how to use this is provided in Section XIV.8. This method has also
been implemented to be able to cope with vectors and strings but this implies to handle complicated concept that are
used internally, so we strongly recommand to contact us if you have no other choice.

• The TEval-based object (or more oftently the composition of evaluators) is using many internal parameters (attribute
that are created from one assessor and used by any other later on in the chain). If these parameters are uninteresting
for the final purpose of the analysis, they can be removed, simply by calling the addTemporary method from the
chosen TMaster inheriting object. The only argument is a pointer to the attribute under consideration. Once more,
an example of how to use this is provided in Section XIV.8.

• Finally, in some pure launching problem (Sobol for instance), some TDataServer-objects have extra parameters
unused by the TEval. In this case, it means that the initial TDataServer is not empty and that the TMaster-
object is able to keep this parameters values, and completes the data by adding columns.

VIII.5.2 TLauncher2

TLauncher2 is a new version of TLauncher and TLauncherFunction using the relauncher classes. It’s
a basic implementation, and it has no extra method. The constructor takes the TMaster usual arguments: a
TDataServer and a TEval.

VIII.5.2.1 Dealing with failure

From time to time, there might be problem when running a code. The source of these problems might differ from one
instance to another. In the Relauncher module one can consider different case:

• the command is returning a failure code. A convention for a command is to return 0 if all went well which means
that what should be done has been done while any other returned value can be considered as a way to inform that
a problem has been met. From the Uranie point of view, there is no way to know what kind of error is meant as it is
command dependent.

• the system function is returning other values. The command provided by the user is passed to the system C++
function and on top of the non-zero returning value (discussed above), there are few specific cases. Among these,
one can find the case where the command is not known (the user made a mistake in the TCodeEval definition) or
the command is suffering from an internal problem preventing from even reaching the exit (a segmentation fault for
instance). With most Linux platforms, the former returned code is 127 while the latter is 139. This interpretation is
just given for illustration purpose but unfornutatly no generalisation can be done.

• no output file is created. In this case, nothing can be done, all output variables will be missing and this might arise
even if the code is not returning any specific failing code (see the discussion above).

• One or more output variables are missing in the output file. This is special, as it can arise if the command has
stopped during the writting process, but this also can be coming from an empty vector whose output formatting
has not properly being taken care of. This is discussed in Section VIII.3.3.2 and illustrated in a use-case macro
Section XIV.8.12 because of the way the output Key-format output file is written

page 320

CHAPTER VIII. THE RELAUNCHER MODULE TLauncher2

All these problems will be considered as a failure from the command. As such, the input configuration will be dis-
carded and not stored in the final dataserver object. The following paragraph discussed the way to get back all failed
configurations.

Unlike in Section VIII.5.1 where all the methods are inherited from the TMaster class, the method setSaveError(TDataServer

*tdserror) has been implemented in order to help handling the command failures discussed previously. Its only
argument is a pointer to a dataserver object in which all failing configurations will be stored. Example of its usage is
shown in two use-case macros with the classical flowrate case in Section VIII.3.3.2 and illustrated in a use-case macro
Section XIV.8.9 and when an empty vector is interpreted as a missing information because of the wrong output file
formatting, see Section XIV.8.12.

page 321

TLauncher2 CHAPTER VIII. THE RELAUNCHER MODULE

page 322

Chapter IX

The Reoptimizer module

IX.1 Introduction

The reoptimizer module provides optimisation features, using the relauncher architecture. It can indeed be considered
as a specialisation of this module for the closed-loop case (optimisation steps usually depends on the previous steps).
This document will present neither an introduction to the optimisation problem characteristics (one simple version can
be found in [30]), nor a description of the different algorithms. It will more discuss the possible combination of runners,
solvers and masters with (if possible) their pros and cons. For a glimpse at the way the implementation of a script can
be done, one can look at the use-cases, provided in Section XIV.9.

Two kinds of solver are proposed: local search ones, starting from an initial guess point and global search ones, starting
from a random population of potential solutions. They differ on many points:

• Problem types: only global solvers offer multi-objective optimisation.

• Constraints: Global solvers deal with inequality but not equality constraints, while local ones deal with both of them.

• Inputs nature: all solvers deal with continuous problems, and some global solvers can deal with combinatory prob-
lems, with extra works.

• Convergence speed and robustness: local solvers need less evaluations to converge but can be trapped in a local
minimum, while global ones are more robust.

• Unavailable items: only global solvers can deal with it.

• Parallelism: local solvers are intrinsically sequential, and the only way to parallelised them is to run many optimisa-
tions starting from different points. Global solvers are intrinsically parallel.

IX.1.1 local optimizer

A local solver proposes mono-objective optimisation with or without constraints. It uses the NLopt library [35] and
different solvers are proposed. These solvers could be distinguished with:

• Needed information: some solvers need gradient information while others use just the objective value.

• Constraints handling: some solvers handle constraints naturally while the others use the augmented Lagrangian
method.

page 323

global optimizer CHAPTER IX. THE REOPTIMIZER MODULE

IX.1.2 global optimizer

A global solver proposes mono and multiobjective optimisation, potentially with constraints. It uses the Vizir library [29]
and offers different solvers.

IX.1.3 Number of objectives

The number of objectives to be minimised plays a crucial part in the technique to be used, along with the time needed
for a given code to converge and provide results. The main idea behind this small discussion is to identify the needs
when starting an analysis.

• One objective or more than one but they are not antagonistic: a single objective optimisation can be done. When
dealing with several criteria the idea is then to combine them into an homemade criteria, based on whatever recipe
one wants to apply (weighted/unweighted criteria, L1 or L2 sum, ...). From there, the use of TNlopt algorithm is
recommended.

• More than one objective that cannot be combined. In this case, the approach recommended would be to use Vizir
which contains multi and many objectives algorithms. The difference between multi and many is tidious and is oftenly
set between 3 and 4. A discussion between these algorithm is provided in [30].

IX.2 Problem definition

An optimisation problem is a kind of parametric studies, so, it could make the best of the Relauncher architecture.
Having this in mind, having a look at Chapter VIII is crucial in order to get good understanding of the following, already-
introduced, concepts.

In this module, one will introduce new masters, meaning classes that inherit from TMaster which will handle the
distribution of evaluations, with extra specificities linked to their optimisation purpose. But before using them, the
runners (inheriting from TRun) and assessors (inheriting from TEval) have to be defined as well, respecting the
pattern separation between study and evaluation sides. Only the study side is concerned by optimisation objects (all
these notions are defined in Chapter VIII). The standard steps to solve an optimisation problem are:

• to declare the optimisation input parameters.

• to choose a solver (eventually configure it).

• to create a master (eventually configure it).

• to declare the objective and constraints of the problem.

• to run the optimisation.

• to analyse the results.

The Rosenbrock example script provided in Section VIII.2 gives a simple example of these steps.

There are few TMaster sub-classes depending of the local or global algorithm that is chosen (the underlying library).
The constructor has three arguments: the two TMaster usual arguments (a TDataServer and a TRun), and the
solver. A common method to all masters is setTolerance with a double as only argument. It defines a threshold to
stop the search. However, its interpretation is solver dependant.

page 324

CHAPTER IX. THE REOPTIMIZER MODULE Objectives and Constraints

As we saw in the TMaster section, item definition parameters are defined in the TDataServer used as first con-
structor argument. These attributes generally need to be defined with a domain, whose boundaries are used for the
optimisation.

The master and solver declaration will be covered in next section. Running the optimisation is done by the solverLoop
method, and results will be found in the TDataServer.

Tip
Before Uranie version 4.2, only the final results were kept in the dataserver and no option was allowing the
user to keep track of all performed estimation (either to see how the algorithm is driving the parameters
evolution, or just for bookkeeping). From version 4.2, it is possible to create an empty TDataServer and
to provide it to the chosen Master so that every computation will be stored in this specific object. For a
single objective optimisation this should look like this:

// ... Problem definition
runner.startSlave(); // Usual Relauncher construction
if(runner.onMaster())
{
// Create the main TDS
TDataServer tds("nloptDemo", "Param de l’opt nlopt pour la barre");
tds.addAttribute(&x);
tds.addAttribute(&y);

// Defining the optimisation condition
TNloptCobyla solv; // algorithm

// Create the single-objective constrained optimizer master
TNlopt opt(&tds, &runner, &solv);
// ... + objective, constraint...

// Create the dataserver in which all computation will be stored
TDataServer trc("allevents","dataserver containing all events");
opt.setTrace(&trc); // pass the dataserver to the master

opt.solverLoop(); //perform the optimisation
}

IX.2.1 Objectives and Constraints

An optimisation problem is defined by an objective (may be more for multi-objective problems) and eventually some
constraints (objectives can as well be called criteria in various literature). An item evaluation may return many values.
Some of them may be used as objectives or constraints, while the others are left unused by the solver. The master
methods addObjective, addConstraint and addEquality may be used to declare the corresponding val-
ues. The last method is only available in local solver. All these methods have a first argument, the output variable (a
pointer to its corresponding TAttribute object), and a second optional argument (a pointer to a modifier object).

Modifiers are used to overwrite the default solver behaviour: objectives have to be minimised, constraints are satisfied
when their values are lesser than zero, and equality when their value is zero. Once this is settled and when the returned
value does not fit with these defaults, a modifier have to be used. Existing modifier classes are:

• TMaximizeFit objective modifier: value has to be maximised.

• TTargetFit objective modifier: value has to be closed to a target value.

page 325

Sizing of a hollow bar example problem CHAPTER IX. THE REOPTIMIZER MODULE

• TLesserFit constraint modifier: value has to be lesser than a threshold value.

• TGreaterFit constraint modifier: value has to be greater than a threshold value.

• TInsideFit constraint modifier: value has to be inside a domain.

The chosen threshold value(s) are passed in the constructor.

Warning
In the current implementation, it is not allowed to use an input variable as an objective or a constraint.

IX.2.2 Sizing of a hollow bar example problem

In order to give a more detailed example of the usage of both local and global solvers, the hollow bar problem is
introduced. It consists in finding the lengths of the internal and external sides of a hollow bar with a square section,
minimising its weight (i.e. its section) and its deformation by an external force applied at its centre. The two lengths are
normalised so that they evolved in a 0 to 1 range and the pipe can be sketched as done in Figure IX.1.

Figure IX.1: Hollow Bar

The problem has then three variables:

• f1(x,y) = x− y which is called the thickness.

• f2(x,y) = x2− y2 which is called the section.

• f3(x,y) = (x4− y4)−1 which is called the distortion

and three natural constraints:

• 0 < x < 1.

• 0 < y < 1.

• x > y

page 326

CHAPTER IX. THE REOPTIMIZER MODULE Local solver

In the following sections the idea will be to study (if possible) the minimisation of the section of the bar and the distortion,
keeping a minimum thickness of about 0.4. This threshold is chosen so that the bar can sustain its own weight. The
examples will use an external code to compute the three previously-introduced variables once both the internal and
external lengths are provided. The code is written in python as following:

#!/usr/bin/env python
"""
Simple file to mimick the barAllCost function to emulate it as a code
"""

x = .8
y = .3

def barre(out_l, in_l):
"""Compute the constraint and objectives for the hollow bar
Arguments:
out_l -- outter length of the hollow bar
in_l -- inner length of the hollow bar
"""
epais = out_l - in_l
surf = out_l*out_l - in_l*in_l
defor = 1 / (1.e-66 + out_l*out_l*out_l*out_l - in_l*in_l*in_l*in_l)
return [epais, surf, defor]

def echo(out_l, in_l):
"""Print the results of the hollow bar computation
Arguments:
out_l -- outter length of the hollow bar
in_l -- inner length of the hollow bar
"""
print("#COLUMN_NAMES: c1|o1|o2")
print("")
evt = ""
for i in barre(out_l, in_l):

print i,
evt += "%.25g " % i

print(evt)

echo(x, y)

In both examples, the same tip is used: the bar.py file is used to perform the computation (as the code is defined by
python bar.py > output.dat) but it is also defined as the input file for the TCode. Thanks to this, the file is
copied to every temporary working directory (so no need to change the $PYTHONPATH environment variable) and no
extra file is needed to define the inputs. The output is directly stored as an ASCII file compatible with the usual Salome
table format so that it can easily be read and convert as a TDataServer

IX.3 Local solver

Local solvers proposed by Uranie come from the NLopt library (Non Linear OPTimization). This library is developed
by Steven G. Johnson, integrating many original algorithms in an uniform interface. The NLopt website provides
many useful information, that enhance the succinct ones provided here. The example used as support for this part
is given in Section XIV.9.1 with a specification with respect to the way it was described in Section IX.2.2: since there
is no multicriteria solver implemented from NLopt, the criteria on the distortion is downgraded to a constraint using a
randomly defined threshold (set to 14).

page 327

http://ab-initio.mit.edu/nlopt

TNlopt CHAPTER IX. THE REOPTIMIZER MODULE

IX.3.1 TNlopt

The TMaster subclass for local optimizer is called TNlopt.

Local optimization starts from an initial guess point. This point has to be defined using the setStartingPoint
method with an integer to precise the dimension, as first argument and a double * as second argument. This
has changed in order to be complient with python but also to be able to check that the provided number of double is
matching the dimension of our problem under consideration. You can call the setStartingPoint method many
times. In C++, it could look like this:

TNlopt opt(&tds, &runner, &solv);
...
vector<double> p{0.2,0.3};
opt.setStartingPoint(p.size(),&p[0]);

In this case, each optimization, starting from a corresponding starting point, may be done in parallel using an appropri-
ate TRun. If the results of the optimisation is not consistent when changing the starting points, this might be a sign for
a problem with local minimum. In this case a safer (but slower) solution might be to consider using global solvers.

To modify the default configuration, the setMaximumEval method, with an int as only argument, may be used.
The default value is 10 000. For multi starting point, it is interpreted as the accumulation of all evaluations.

IX.3.2 Solvers

Uranie proposes different Nlopt solvers. For direct solvers, there is:

• TNloptCobyla: Constrained Optimization BY Linear Approximation from M.J.D.Powell works. The only direct
algorithm that supports constraints naturally.

• TNloptBobyqa: Bounded Optimization BY Quadratic Approximation from M.J.D.Powell works. It is usually quicker
than the previous one, but might give nonphysical results if the problem should not be assumed to be quadratic.

• TNloptPraxis: It uses the PRincipal AXIS method of Richard Brend. This algorithm has a stochastic part.

• TNloptNelderMead: The well known Nelder-Mead Simplex algorithm.

• TNloptSubplexe: a simplex variant, the Tom Rowan’s subplex algorithm.

and for gradient-based solvers:

• TNloptMMA: Method of Moving Asymptotes from Krister Svanberg works. It deals with nonlinear inequality con-
straints naturally.

• TNloptSLSQP: Sequential Least-Squares Quadratic Programming from Dieter Kraft. It deals with both inequality
and equality constraints naturally.

• TNloptLBFGS: an implementation of the Limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm written by
Ladislaw lukan.

• TNloptNewtown: A preconditioned inexact truncated Newtown algorithm written by Ladislaw Lukan.

• TNloptVariableMetric: An implementation of shifted limited-memory variable-metric by Ladislaw lukan.

You may notice that actually none of Nlopt global solvers is provided.

page 328

CHAPTER IX. THE REOPTIMIZER MODULE Global solver

Tip
Remarks for the gradient case: oftenly one does not have access to the real gradient. In this case a finite
difference method is used by doing 2nX +1 computation around every point, which implies:

• a code that will provide results with a sufficient accuracy so that the gradient is not always assumed to be
null (which can happen when a code returns a value with a very low number of digits). Even with a non-null
estimation, the gradient accuracy needs to be sufficient since gradient-based solver usually estimates the
Hessian matrix.

• a possible parallelisation of the computation.

IX.4 Global solver

IRp spaces have no ordering relations when p is greater than 1. As a consequence, finding the minimum of a function
the output of which is defined in such a space has no meaning. Multicriteria optimisation solves this problem by finding
the inputs corresponding to the Pareto frontier in the costs space.

The evolutionary algorithm library Vizir, allows to perform multicriteria optimisation with a global approach, and is
available in Uranie. It is first introduced in a broad picture (even though more details can be found in [30]) before
considering the different solvers available and their possible configuration. We have also illustrate its use in a simple
example that can be found in Section XIV.9.3.

IX.4.1 A step-by-step description of Vizir

Figure IX.2: Schematic description of the requested steps of an optimisation procedure once this one is performed
with Vizir

The global organisation of an analysis performed within Uranie with the Vizir package is as followed: the user request
a certain number NCand of elements to describe correctly the Pareto set and front.

1. The first step is to create randomly, only using the research space definition, a population of the requested size.
An evaluation is performed for all candidates, meaning that the criteria and constrains will be tested and the
results will be stored in a vector for all candidates. All the calculation concerning a candidate will count as one
evaluation (this notion will be important later on when considering the number of evaluation NEval). This step (the
turquoise blue box in Figure IX.2) is followed by the ranking of all the candidates (red step in Figure IX.2).

2. As already discussed, ranking single criterion results is simple because there is an obvious relation order, but
this is not the case when dealing with multi-criteria. The chosen solution in the Uranie implementation is to affect
a rank to a candidate under study, corresponding to the number of other candidates that dominate it. The best
candidates have then a rank 0 (they are not-dominated), following by rank 1, rank 2... With the ranking step
completed the next step is to test whether the algorithm has converged or not.

page 329

TVizir2 and TVizirIsland CHAPTER IX. THE REOPTIMIZER MODULE

3. The test of convergence can reach three possible states:

• all the tested candidates are not-dominated. This means the algorithm have converged and the loop will stop
as the objective of having a description of both Pareto set and front is achieved.

• not all candidates are not-dominated but the maximum number of evaluation has been reached. In this case,
the algorithm stopped as well but this time without having converged. Restart the algorithm with different
configuration might be a possibility.

• not all candidates are not-dominated and the maximum number of evaluation is not reached.

4. In the latter case, a certain fraction of the candidates will be selected and used as a new starting point to recreate
a new population. A fraction λ is indeed kept (this fraction value being set by changing the survival rate in the
genetic case, whose default value is 40%) in order to produce a new generation that will hopefully converge
better than the current one. The evolutionary algorithm uses the selected fraction (λNCand) to complete the
total population (meaning re-generating 1−λNCand). This procedure is explained more deeply, in the case of a
genetic algorithm, in [30].

IX.4.2 TVizir2 and TVizirIsland

The TVizir2 and TVizirIsland classes are the TMaster subclass for global optimizer, the former being the
more commonly used disregarding the chosen solver and runner. The latter is dedicated to the island principle:
instead of growing a large population, NIs populations are defined (this parameter can be changed by the dedicated
setIsland(int) method) and are growing independently, exchanging inhabitants from time to time.

The setSize may be used to configure this. The first argument defines the population size (default to 250). The
second optional argument defines the maximum number of evaluations that the solver may use (default to 100 000).
The third optional argument defines the number of items born to create a new generation (default to 50).

IX.4.3 Solvers

The Vizir solvers, that are interfaced with Uranie, are:

• TVizirGenetic, a genetic algorithm using a diploid representation.

• TVizirSwarm, a particle swarm algorithm.

• TVizirSimplex, a Nelder Mead Simplex variant, adapted to work with a population, and to deal with multiobjec-
tive problem.

IX.4.3.1 TVizirGenetic

The TVizirGenetic (whose principle and vocabulary is define in [30]) can be configured using the following meth-
ods:

• setMutationRate, defines the rate of population items that are muted during creation. Default value is 0.01
(1%).

• setHomozygoteRate, defines the rate of population considered as homozygote. Default value is 0.5 (50%).

• setSurvivalRate, obsolete, defines the rate of population items that survive at each generation. use setSize
instead. Default value is 0.4 (40%).

page 330

CHAPTER IX. THE REOPTIMIZER MODULE Solvers

IX.4.3.2 TVizirSwarm

The TVizirSwarm behaviour can be configured using the following methods:

• setLocalSize, defines the particle memory size: its size and a generation step size.

The particle number is defines using the third parameter of setSize method (generation item number). It is half of it.
No specific method is actually provided.

IX.4.3.3 TVizirSimplex

The TVizirSimplex have not any specific configuration method.

IX.4.3.4 Many objectives methods

The global solvers discussed here have dedicated methods to call many-objective algorithms. An example of imple-
mentation can be shown in Section XIV.9.4.

• setMogaDiversity(int val=0)

• setCrowdDiversity(int vois=0)

• setPairDiversity(int vois=0)

• setIbeaDiversity(double k=0)

• setKneeDiversity(int vois=0, double taux=0.0);

• setMoeadDiversity(int cut1, int cut2=0, int vois=0)

• setStoppingCriteria(int stop=0)

page 331

Solvers CHAPTER IX. THE REOPTIMIZER MODULE

page 332

Chapter X

The Metamodel Optimization module

X.1 Introduction

For an optimization problem, when the evaluation function costs in term of resource, chaining the construction of a
surrogate model with the optimization process could be a good solution. Uranie provides modules that can be used
directly to do so. The Metamodel Optimization module gives another way to do similar things by coupling the two
process: the surrogate model construction and the optimization research.

So far, the module provides a parallelized version of the Efficient Global Optimization (EGO) algorithm for mono objec-
tive problems.

X.2 Efficient Global Optimization

X.2.1 Introduction

EGO[17] makes a global search. As a genetic algorithm, it needs an adequate numbers of initial evaluated items to
initiate its search: in our case, to be able to construct a sufficiently pertinent model. After this first phase, it builds
a surrogate model, and then loops on updating the model with new evaluations, and on searching a new promising
solution to evaluate using this model.

For its surrogate model, EGO uses kriging models which provide, for estimated points, a prediction value and an
associated variance. EGO defines an objective, the expected improvement, which takes both of them into account and
provides a trade-off between a good estimation value and a large uncertainty.

Because of its efficiency in term of evaluation number, this kind of algorithm is well suited when evaluations are
expensive to compute. EGO algorithm is expensive: both construction of the surrogate model and search of the next
attractive point are complex optimization problems, and are done many times, slowing down the problem resolution.

Extensions to constraints and/or to multi objective should come later in Uranie.

X.2.1.1 Parallelism

Uranie’s EGO provides an asynchronous parallelism. With n resources, synchronous parallelism generates n items,
evaluates them and waits for all results and iterates. In asynchronous parallelism, when a result comes, a new item is
generated which takes into account the n-1 evaluations in progress.

Usually a new point generation is not expensive and the resource that finishes its evaluation usually waits for it. It is
not the case for EGO. To avoid wasting computation time, different approaches are implemented:

page 333

Problem definition CHAPTER X. THE METAMODEL OPTIMIZATION MODULE

• the next point is generated before getting the evaluation result back (and so with n ongoing evaluations instead of
n-1)

• after a point generation, if more than one evaluation are available, we get all results back, and if the solver afford to
do so, we generate few points to be evaluated.

• otherwise, if no evaluation is available, the search of next attractive points are extended to try to improve them.

X.2.2 Problem definition

This module extends the Reoptimizer module and is kept in a separated module because of its dependency with the
Modeler module. Its use follows the same structure and is also based on the Relauncher architecture. Having that in
mind, it is suggested to have a look at Chapter VIII and at Chapter IX for a better understanding. As it uses a kriging
model, it is also suggested to look at Section V.6.

The principal difference is in the solver definition: we have to define the kriging model and its construction parameters;
and to use an adapted optimization solver.

X.2.2.1 TEGO

The TMaster subclass for EGO is TEGO. Its constructor has two standard arguments, a TDataServer and a
TRun pointer. Three kinds of TDataServer can be passed to the class :

• An empty tds with the input TAttribute declared: initial points are random;

• A tds filled with a sampler where input TAttribute are declared: initial points are defined by user but they need
to be evaluated.

• A tds filled with a launcher or relauncher where both input and output TAttribute are declared: initial filling phase
can be skipped;

The TEGO objects have a method named setSize with two integer arguments: the first one, used in the case of an
empty tds, gives the number of random points needed for the construction of the first surrogate model ; the second one
gives the maximum evaluation number of the expensive code.

Two different solvers can be defined, one for the surrogate model construction (using setModeler method) and one
for the next point search (using setSolver method). If they are not defined a default solver is used.

Optimization loop ends when either:

• max number evaluation is reached;

• expected improvement objective is lower than a threshold;

• a Cholesky decomposition problem occurs in the surrogate model construction.

In these version, results are not filtered: all evaluated points are saved in the TDataServer

page 334

CHAPTER X. THE METAMODEL OPTIMIZATION MODULE Problem definition

X.2.2.2 TEgoKBModeler

There is only one modeler currently available TEgoKBModeler

To deal with solutions that are currently under evaluation by the cpu resources (asynchronous parallelism), this modeler
uses the kriging believe principle (it trusts in the model prediction). Two models are created: a first one, built with all
the evaluated solutions, is used to estimate solutions under evaluation; a second model, built with both evaluated
solutions and estimated ongoing solutions, is used by the solver to find the next solution to evaluate. Predictions is not
significantly affected in the second model but the variances are, especially around ongoing solutions. The EI objective
takes it in account, naturally driving next solutions away from them.

As it is an optimization, advancing in its search, EGO will generate solution near existing ones. It is a difficulty for model
construction that can leads to Cholesky decomposition errors. To get around this problem, users can use the kriging
regulation.

it uses

X.2.2.2.1 TEgoKBModeler

The TEgoKBModeler has a constructor without argument and 2 user methods:

• setModel defines the model that will be used in optimization. It has 3 parameters: a const char* defining the
model to use ("matern7/2" for example); another const char * defining the trend ("const" for example);
a double defining a regularization (1.e-8, use 0.0 for no regularization).

• setSolver define how the model will be constructed. It has 4 parameters: a const char * defining the objec-
tive to minimize ("ML" for maximum likelihood); a const char * defining the NLopt solver to use ("Bobyqa"
for example); an int defining the size of the preliminary screening; an int defining the maximum evaluation number
for optimization.

Take a look at Section V.6 for details on possible parameter values.

X.2.2.3 TEgoSolver

There are 4 available solvers combining two distinct features:

• dynamic or static optimization: in static, the search restart with a new random population; in dynamic the search
restart from the previous population which should be rich enough to find a point that was put aside. In dynamic, the
first search is longer than the following one.

• genetic or HJMA algorithm;

This leads to the following classes: TEgoDynSolver, TEgoStdSolver, TEgoHjDynSolver and TEgoHjStdSolver

some methods are provided:

• significantEI with a double parameter is used to define the EI threshold to stop the search loop

• setManyNewItem with an int is used to define the maximum number of new items used to feed the empty
resources (unused with TEgoStdSolver).

page 335

Problem definition CHAPTER X. THE METAMODEL OPTIMIZATION MODULE

• for the class using HJMA, setSize with two int parameters defines the number of global search performed by
the optimization in the preliminary search and in the following ones.

• for the class using Vizir algorithm, setSolver with a pointer on a TVizirSolver defines the solver to use.

• for the TEgoDynSolver, the first and longer search uses the maximum evaluation number defined in the solver.
The following search are shorter and is defined using setStepSize and its int argument.

page 336

Chapter XI

The Calibration module

XI.1 Introduction

This section presents different calibration methods that are provided to help get a correct estimation of the parame-
ters of a model with respect to data (either from experiment or from simulation). The methods implemented in Uranie
are going from the point estimation to more advanced Bayesian techniques and they mainly differ from the hypoth-
esis that can be used. They’re all gathered in the in the libCalibration module. The namespace of this library is
URANIE::Calibration. Each and every technique discussed later-on is theoretically introduced in [30] along with a
general discussion on calibration and particularly on its statistical interpretation.

The data provided as reference will be compared to model predictions, the model being a mathematical function
fθ : RnX → RnY . From now on and unless otherwise specified (for distance definition for instance, see Section XI.1.1)
the dimension of the output is set to 1 (nY = 1) which means that the reference observations and the predictions of the
model are scalars (the observation will then be written y and the prediction of the model fθ (x)).

On top of the input vector which is problem-dependent, the model depends also on a parameter vector θ ∈ Θ ⊂ Rp

which is constant but unknown. The model is deterministic, meaning that fθ (x) is constant once both x and θ are
fixed. In the rest of this documentation, a given set of parameter value θ is called a configuration.

The rest of this section introduces the distance between observations and the predictions of the model, in Section XI.1.1
while the methods are discussed in their own sections. The already predefined calibration methods proposed in the
Uranie platform are listed below:

• The minimisation, discussed in Section XI.3

• The linear Bayesian estimation, discussed in Section XI.4

• The ABC approaches, discussed in Section XI.5

• The Markov-chain Monte-Carlo sampling, discussed in Section XI.6

As for other modules, there is a specific class organisation that links the main classes in this module. The class
hierarchy is shown in Figure XI.1 and is discussed a bit here to explain the the two main classes from which ev-
erything other classes are derived and corresponding shared function throughout the method. One can see this
organisation with the two sets of classes: those inheriting from the TCalibration class and those inheriting from
TDistanceFunction class. The former are the different methods that have been developed to calibrate a model
with respect to the observations and each and every method will be discussed in the upcoming sections. Whatever the
method under consideration, it always includes a distance function object, which belongs to the latter category and its

page 337

The distance used to compare observations and model predictions CHAPTER XI. THE CALIBRATION MODULE

main job is to quantify how close the model predictions are to the observations. These objects are discussed in the
rest of this introduction, see for instance in Section XI.1.1.

Figure XI.1: Hierarchy of classes and structures out of Doxygen for the Calibration module

XI.1.1 The distance used to compare observations and model predictions

There are many ways to quantify the agreement of the observations (our references) with the predictions of the model
given a provided vector of parameter θ . As a reminder, this step has to be run every time a new vector of parameter θ

is under investigation which means that the code (or function) should be run n times for each new parameter vector.

Starting from the formalism introduced above, many different distance functions can be computed. Given the fact that
the number of variable nY used to perform the calibration can be different than 1, one might also need variable weight
{ω j} j∈[1,nY] that might be used to ponderate the contribution of every variable with respect to the others. Given this,
here is a non-exhaustive list of distance functions:

• L1 distance function (sometimes called Manhattan distance): d(y, fθ (x)) =
nY

∑
j=1

ω j×
(n

∑
i=1
|y j

i − fθ (x)
j
i |
)

• Least square distance function: d(y, fθ (x)) =
nY

∑
j=1
×

√
ω j

n

∑
i=1

(y j
i − fθ (x)

j
i)

2

• Relative least square distance function: d(y, fθ (x)) =
nY

∑
j=1
×

√√√√ω j

n

∑
i=1

(
y j

i − fθ (x)
j
i

y j
i

)2

page 338

CHAPTER XI. THE CALIBRATION MODULE Calibration classes, distance functions, observations and model

• Weighted least square distance function: d(y, fθ (x))=
nY

∑
j=1
×

√
ω j

n

∑
i=1

ψi× (y j
i − fθ (x)

j
i)

2 where {ψi}i∈[1,n] are weights

used to ponderate each and every observations with respect to the others.

• Mahalanobis distance function: d(y, fθ (x)) =
nY

∑
j=1
×
√

ω j(y j− fθ (x) j)T Σ−1(y j− fθ (x) j) where Σ is the covariance

matrix of the observations.

Their implementation is discussed in Section XI.2.2

XI.2 Calibration classes, distance functions, observations and model

This section introduces the common part of all analysis in the Calibration module. Indeed the methods discussed
hereafter will be using the same architecture and will be needing a common list of items listed here:

• the model have to be settled as this is what one wants to calibrate. It can comes either as a Relauncher::TRun
instance, as a Launcher::TCode or a Launcher’s function. This part is introduced in Section XI.2.1 (for the
general concept and the difference with the usual organisation of model definition) and discussed later-on (mainly for
the TCalibration-inheriting object constructor) in Section XI.2.3 and in the dedicated section in each method.

• the reference observations have to be defined once and for all so that the model can be run for every newly define set
of parameter’s value (every new configuration). This part is discussed first in Section XI.2.1 and the way to provide
them is also partly discussed in Section XI.2.2.

• a distance function as to be created, usually within the calibration instance, to be able to quantify how close the
model under study can mimic a set of reference observations. This part is discussed in Section XI.2.2.

• a main object has to be created, a calibration method instance, that inherits from the TCalibration class. This
is discussed in Section XI.2.3.

XI.2.1 General introduction on data and model definition

All calibration problem will have, at least, two TDataServer objects:

• The reference one, usually called tdsRef, which contains the observations (both input and output attributes) onto
which the calibration is about to be performed. It is generally read from a simple input file as done below:

TDataServer *tdsRef = new TDataServer("reference","my reference");
tdsRef->fileDataRead("myInputData.dat");

• the parameter one, usually called tdsPar, it contains only attributes and must be empty of data. Its purpose is to
define the parameters that should be tested in the calibration process and, depending on the method chosen, will only
contain TAttributemembers (for minimisation, see Section XI.3) or only TStochasticAttribute inheriting
objects for all other methods. The latter case gathers the method doing the analytical computation when the chosen
priors are allowed (see Section XI.4) along with all those that require generating one or more design-of-experiments
(see Section XI.5 but also Section XI.6).

This step, which should represent the first lines of the calibration procedure, goes along with the model definition. This
one is tricky with respect to all the examples provided in Section XIV.4 and in Section XIV.8 as the inputs of the model
are coming from two different TDataServers, they can be split into to two categories:

page 339

Defining data and distance functions CHAPTER XI. THE CALIBRATION MODULE

• the reference ones will only have values from the reference input file myInputData.dat, meaning that for every
configuration, a reference attribute will take the n predefined values.

• the parameter ones whose value will be changed every time a new configuration will be tested: this value is constant
for all the entry of the reference datasets.

Depending on the way the model is coded (and more likely on the parameters the user would like to calibrate) these
attributes might not be separated in term of orders, meaning that the list of inputs of a model might look a bit like this:

// Example of input list for a fictive model (whatever the launching solution is chosen)
// ref_var1, ref_var2, ref_var3, ref_var4 are coming from the tdsRef dataserver
// par1, par2 are coming from the tdsPar dataserver
TString sinputList="ref_var1:par_1:ref_var2:ref_var3:ref_var4:par_2";

Warning
As a result, there is no implicit declaration allowed in the calibration classes constructor and a particular
attention must be taken when defining the model: the user must provide the list of inputs (for Launcher-type
model) or fill the input and output list into the TEval-inheriting object in the correct order (for Relauncher-
type model). This is further discussed in Section XI.2.3.

Finally, all model considered for calibration should have exactly as many outputs (whatever their name are) than the
number of output to be compared with (the output attributes in the tdsRef TDataServer object). These outputs
are those that will be used to compute the chosen agreement (meaning the result of the distance function) which is the
only quantifiable measurement we have between the reference and the predictions for a given configuration). At the
end of a calibration process, the user can found three different kinds of information (more can be added if needed, see
Section XI.2.3.4)

• the resulting parameter’s value (or values depending on the chosen method, as some of them are providing several
configurations) are being stored in the parameter TDataServer object: as this object was provided empty and
should contain only an attribute per parameter to be calibrated, it seems to be the best place to store results. This is
obviously the expected target but it should not be considered conclusive without having a look at the two other ones

• the agreement between the reference data and the model predictions, which are stored in the parameter TDataServer
object tdsPar for every kept configuration;

• the residues: the difference between the model predictions and the reference data for every n, using the a priori and a
posteriori configuration. These are stored in a dedicated TDataServer object, called the EvaluationTDS (referred
to as tdsEval) and it is mainly called through the drawResidues method (discussed in Section XI.2.3.7). If one
wants to access it, it is possible to get a hand on it by calling the getEvaluationTDS()method. The residues are
important to check that the behaviour our the newly performed calibration does not show unexpected and unexplained
tendency with respect to any variables in the defined uncertainty setup, see the dedicated discussion on this in [30]

XI.2.2 Defining data and distance functions

The different distance function already embedded in Uranie can be found in Section XI.1.1 and are further discussed,
from a theoretical point of view in [30]. From the user point of view, on the other hand, every distance function is
inheriting from the class TDistanceFunction, as can be seen in Figure XI.1, which is purely virtual (meaning that
no object can be created as an instance of TDistanceFunction) and which deals with several main purposes:

page 340

CHAPTER XI. THE CALIBRATION MODULE Defining data and distance functions

• it loads the reference data once and store them in internally as a vector of vector (or as a vector of TMatrixD
depending on the chosen formalism used to compute the distance itself);

• once done, the following loop will be called as long as one needs to test new configuration (by configuration we call
a new set of values for the θ vector):

1. it runs the chosen model (disregarding the nature of the object: TRun, TCode...) on the full reference datasets
to get the new predictions.

2. it loads the new model predictions for the configuration under study into a vector of vector (or as a vector of
TMatrixD depending on the chosen formalism).

3. it computes the distance using both vectors as stated by the equations in Section XI.1.1. This computation is
done within the localeval method (which is the only method that should be redefined if a user wants to
create its own distance function, see dedicated discussion in Section XI.2.2.2).

On a technical point of view, the TDistanceFunction inherits from the TDoubleEval class which is a part
of the Relauncher module. This inheritance is not very important as its main appeal is to considerably simplify the
implementation of the minimisation methods with the Reoptimizer module, allowing to simply use all TNlopt algorithms
but also the Vizir solutions (see Section XI.3).

Disregarding the considered calibration method, a distance function must be used to compare data and model predic-
tions. This is true even for the TLinearBayesian class which only computes the analytical posterior distribution as
the residues are computed both a priori and a posteriori in order to see the improvement of the prediction and possibly
their consistency within the uncertainty model (see discussion in [30]). In most of the case (if not all) the object will
be constructed with the recommended way (discussed in Section XI.2.2.1). Another possibility is anyway discussed in
Section XI.2.2.2

Whatever the situation (either discussed in Section XI.2.2.1 or in Section XI.2.2.2), once a calibration instance is
created (for the sake of genericity we will use here an instance, named cal, of the fake class TCalClass as if it were
inheriting from the TCalibration class), the first method to be called is the setDistanceAndReference, as
this is the method with which one defines both the type of distance function and the observation ensemble. The former
is further discussed in this section and the latter is crucial as without observations no calibration can be done.

XI.2.2.1 Recommended distance function construction method

The recommended way to create a distance function is to call a method implemented in the TCalibration class,
which is inherited in every calibration method classes. This method, is called setDistanceAndReference and
the prototype we’re discussing here is the following:

void setDistanceAndReference(const char *funcName, TDataServer *tdsRef, const char *input, ←↩
const char *reference, const char *weight="");

It takes up to five elements which are:

1. funcname: the name of the distance function describes of the already implemented one, as discussed in Sec-
tion XI.1.1. The possibility are

• "L1" for TL1DistanceFunction

• "LS" for TLSDistanceFunction

• "RelativeLS" for TRelativeLSDistanceFunction

• "WeightedLS" for TWeightedLSDistanceFunction

• "Mahalanobis" for TMahalanobisDistanceFunction

page 341

Defining data and distance functions CHAPTER XI. THE CALIBRATION MODULE

2. tdsRef: the TDataServer in which the observations are stored;

3. input: the input variables stored in the TDataServer tdsRef which have been defined as inputs in the code
just before creating the calibration object. This argument has the usual attribute list format "x:y:z".

4. reference: the reference variables stored in the TDataServer tdsRef, with which the output of the code or
function will be compared to. This argument has the usual attribute list format "out1:out2:out3".

5. weight: this argument is optional and can be used to define the name of the (single) variable stored in the
TDataServer tdsRef which should be used, in the case of a TWeightedLSDistanceFunction, to fill
the {ψi}i∈[1,n], i.e. the weights used to ponderate each and every observations with respect to the others (see
Section XI.1.1).

Warning A word of cautious about the string to be passed: the number of variable in the list weight
should match the number of output of your code that you are using to calibrate your parameters. Even
in the peculiar case where you’ll be doing calibration with two outputs, one being free of weights, then
one should add a "one" attribute to provide for the peculiar output if the other one needs uncertainty
model.

Once this method is called, the distance function is created and is stored within the calibration object. It might be
needed to put a hand on it for some option, but this is further discussed in Section XI.2.2.3.

The following line summarise this construction in a case where an instance cal of the fake class TCalClass (as if
this class were inheriting from the TCalibration class) is created.

// Define the dataservers
TDataServer *tdsRef = new TDataServer("reference","myReferenceData");
// Load the data, both inputs (ref_var1 and ref_var2) and a single output (ref_out1).
tdsRef->fileDataRead("myInputData.dat");
...
TDataServer *tdsPar = new TDataServer("parameters","myParameters");
tdsPar->addAttribute(new TNormalDistribution("par1",0,1));
// the parameter to calibrate
...
// Define the model
...
// Create the instance of TCalClass:
TCalClass *cal = new TCalClass(); // Constructor is discussed later-on
// Define the Least-Square distance
cal->setDistanceAndReference("LS", tdsRef, "ref_var1:ref_var2", "ref_out1");

In this fake example, the distance function is the Least-square one, and it will used the n values of both inputs
"ref_var1" and "ref_var1" and output "ref_out1" stored in tdsRef to calibrate the parameter "par1".
No observation weight is needed in this case, as least-square does not require it and as there is only a single output,
no variable weight has to be defined as well.

XI.2.2.2 Creating its own distance function

It is possible, if one wants to use a distance function not already implemented in Uranie to ???

XI.2.2.3 Options usable for every distance function

All distance function classes inherit from the TDistanceFunction one and the only difference between all of them
is the implementation of the localeval function. This means that a very large fraction of the code is shared by all
the distance function object, including the part that deals with their configurations and options.

page 342

CHAPTER XI. THE CALIBRATION MODULE Defining data and distance functions

This part is gathering all the share options that can be configured either through the optional "Option" in several method
and constructors, or by accessing the distance function object itself once created. In order to do so, one should call
the getDistanceFunction method that will return (if it has been created) the distance function instance stored in
the calibration instance under consideration. The following lines provide an example in the case where one is dealing
with and instance cal, of the fake class TCalClass (as if it were inheriting from the TCalibration class)

// Creating the calibration instance from a TDataServer and a Relauncher::TRun
TCalClass *cal = new TCalClass(tdsPar,runner,1,"");
// Creating the distance function (a least square one)
cal->setDistanceAndReference("LS",tdsRef,"logRe:logPr","logNu");
// Retrieving the instance to be able to change options
TLSDistanceFunction *dFunc = (TLSDistanceFunction*)cal->getDistanceFunction();

In the last line of the previous code bloc, the right hand side of the equality started by a cast of the pointer that is
returned by getDistanceFunction. As this method returns a pointer to a TDistanceFunction, in C++ one
should precise that here, this object is indeed an instance of TLSDistanceFunction.. In the case of python, this
is not needed and the equivalent code bloc should look like this:

XI.2.2.3.1 Define the variable weights

In the case where there are several variables used to compare predictions and observations, one might want to ponder-
ate their contribution to the distance. To do two methods are available, both called setVarWeights. Their difference
is only the prototype :

// Prototype 1
void setVarWeights(int nwei, double *wei);
// Prototype 2
void setVarWeights(vector<double> wei);

The idea behind this two prototypes is to have a way to control the number of elements in the array of double, either
by asking the user to provide it (in prototype 1) or as a by-product of the vector structure. From there, if the size of the
array is matching the number of output variables the weights are initialised, the program will crash otherwise.

XI.2.2.3.2 Dump all the estimations

Whatever the construction and evaluation-type (either based on Launcher or Relauncher), you might want to keep
track of all evaluations and not only the global distance for all the reference observations. This is possible by calling
the TDistanceFunction’s method:

void dumpAllDataservers();

This methods takes no argument and sets a boolean to true (by default it is set to false) which implies that every
configurations will be dumped as an ASCII file that would be named following this convention: Calibration_
testnumber_XX.dat where XX is the configuration number for the under-study analysis.

page 343

Defining data and distance functions CHAPTER XI. THE CALIBRATION MODULE

Warning Two words of caution:

• this options might dump a very large number of files which can fill your local disk (if you’re testing functions
for instance for which the limit on the number of configuration is not really a limit).

• used with a runner architecture (Relauncher-type evaluator), the parameters are not kept by default in the
dataserver (they’re defined as ConstantAttribute). To get the required behaviour (meaning having
parameter’s value in the ASCI file), the user should also call a TDistanceFunction’s method called

void keepParametersValue();

This function, which takes no argument, just set to true the final argument of all TLauncher2’s call of
addConstantAttribute.

XI.2.2.3.3 Define the observations covariance matrix

In the case where the observations are correlated with a known covariance structure, this covariance can be precised
as a TMatrixD using the following method:

void setObservationCovarianceMatrix(TMatrixD &mat);

This method and the possibility to define a covariance structure between the observations is only relevant when the
distance function is an instance of the TMahalanobisDistanceFunction.

XI.2.2.3.4 Specify a Launcher object or options

This method is very specific as it can be used for all calibration classes, but only if the model introduced is a Launcher::TCode.
This option pops up here, because the distance function is the place where the model is used to estimate the new pre-
dictions for a newly set parameter vector (see Section XI.2.2). This option allows not to use the usual TLauncher object
in order to use one of the other instance. This is done in a single function:

void changeLauncher(TString tlcName);

The only argument of this method is a TString object which is used to used of the two other instance in the Launcher
module for the TCode: either the TLauncherByStep or the TLauncherByStepRemote. When used, the
setDrawProgressBar method is also called to set this variable to false.

The main point of this is to switch from an usual TLauncher object to another one chosen by the user. Among the
possible solutions one can set

• TLauncherByStep: if the user wants to breakdown the launching process, decomposing the into preTreatment,
run and postTreatment.

• TLauncherByStepRemote: if the user wants to use the code on a cluster on which Uranie is not installed. This
is not recommended for any cluster set-up as all the CEA clusters are. This is based on the libssh library, see
Section IV.4.5 for more details.

Finally, the default option for the runmethod of whatever kind of TLauncher-inheriting instance is noIntermediateSteps,
that prevents the safety writing of the results into a file every five estimations. Two methods can be applied on a
TDistanceFunction objects to change these options:

page 344

CHAPTER XI. THE CALIBRATION MODULE The calibration classes common methods

// Adding more options to the code launcher run method
void addCodeLauncherOpt(TString opt);
// Change the code launcher run method options
void changeCodeLauncherOpt(TString opt);

The first one is written to keep the default and add more options on top, for instance options that would allow to
distribute the computation with the fork process (as a reminder, this option is "localhost=X" where X stands for the
number of threads to be used). On the other hand, the second method above allow to restart from scratch in order to
define the options has chosen by the user.

XI.2.2.3.5 Dump the distance details

In the case where one do not understand or trust the way the distance are computed, it is possible to dump the details
of their computation (warning this is really verbose). This can be done by calling the dumpDetails, whose prototype
is pretty simple:

void dumpDetails();

XI.2.3 The calibration classes common methods

All the calibration classes that derive from TCalibration share a lot of common methods and their organisation
has been factorised as much as possible. This section will describe all this shared code, preventing repetition in the
upcoming sections that will deal with every specific calibration method (from Section XI.3 to Section XI.6).

From Section XI.2.3.1 to Section XI.2.3.3, one discusses the different constructor explaining the different way the model
could be provided and what it implies while Section XI.2.3.4 provides a glimpse of the shared possible options that can
be defined and their purpose. Finally Section XI.2.3.6 and Section XI.2.3.7 introduce the drawing method in their
principle (but illustration for them will be postponed to the dedicated method in the rest of this documentation).

Warning As for some of the discussions above, the following methods are common to all TCalibration-
inheriting classes, so the example provided will be written using an instance cal of the fake class
TCalClass (as if this class were inheriting from the TCalibration class). A more realistic syntax
should be found in the dedicated sections (from Section XI.3 to Section XI.6).

The calibration classes can, generally, be constructed with 4 different ways, linked to the way the model has been
precised. To estimate how close the new set of parameter values (the configuration) is to the reference data, one
needs to be able to run the model on the data’s input variable. The input variables of the observation datasets are
not the only input variable of the model used within the calibration method, as the parameters themselves have to
be specified as inputs (as they also obviously affect the predictions). This section shows, in the fictive case of a not
existing TCalClass class how to construct our calibration objects.

XI.2.3.1 Construction with a runner

This constructor is using the Relauncher architecture. This approach allows a simple way to change the evaluator (to
pass from a C++ function to a python’s one or a code) but also to use either a sequential approach (for a code) to a
threaded one (to distribute locally the estimations). This approach is partly discussed in Chapter VIII.

The constructor in this case, should look like this

page 345

The calibration classes common methods CHAPTER XI. THE CALIBRATION MODULE

// Constructor with a runner
TCalClass(TDataServer *tds, TRun *runner, Int_t ns=1, Option_t *option="")

It takes up to four elements which are:

1. tds: a TDataServer object containing only an attribute for every parameter to be calibrated. This is the
TDataServer object called tdsPar, defined in Section XI.2.1.

2. runner: a TRun-inheriting instance that contains all the model information and whose type is defining the way
to distribute the estimation: it can either be a TSequentialRun instance or TThreadedRun for distributed
computations.

3. ns: the number of samples to be produced. This field only applies to methods for which more than one configu-
ration are expected which is not the case for local minimisation with a single point initialisation but also for linear
Bayesian analysis (see Section XI.4). The default value is 1.

4. option: the option that can be applied to the method. The option common to all calibration classes (so those
defined in the TCalibration class) are discussed in Section XI.2.3.4.

The key step in this constructor is the TRun-inheriting instance creation. As already stated, its type is giving the lead
on the way to distribute the estimations. When one is constructing such an object, it is done by passing an evaluator,
whose list is already largely discussed in Section VIII.3.

Taking back the formalism already introduced in Section XI.2.2.1, the model instance of a function Foo, a classical
TCIntEval function, is created as done below, when this model takes the following inputs ref_var1, par1 and
ref_var2 and it produce a single output to be compared with "ref_out1" (the comparison between this reference
and the model prediction is done through the distance function, as already discussed Section XI.2.2.1 in for this
example).

// Define the dataservers
TDataServer *tdsRef = new TDataServer("reference","myReferenceData");
// Load the data, both inputs (ref_var1 and ref_var2) and a single output (ref_out1).
tdsRef->fileDataRead("myInputData.dat");
...
TDataServer *tdsPar = new TDataServer("parameters","myParameters");
tdsPar->addAttribute(new TNormalDistribution("par1",0,1)); // the parameter to calibrate
...

// Define the model if a function Foo(double *x, double *y) is defined above
// for which x[0]=ref_var1, x[1]=par1 and x[2]=ref_var2 and y[0] is the model prediction
TCIntEval *model = new TCIntEval("Foo");
// Add inputs in the correct order
model->addInput(tdsRef->getAttribute("ref_var1"));
model->addInput(tdsPar->getAttribute("par1"));
model->addInput(tdsRef->getAttribute("ref_var2"));
// Define the output attribute
TAttribute *out = new TAttribute("out");
model->addOutput(out);
// Define a sequential runner to be used
TSequentialRun *runner = new TSequentialRun(model);

...
// Create the instance of TCalClass:
int ns=1;
TCalClass *cal = new TCalClass(tdsPar, runner, ns, "");

page 346

CHAPTER XI. THE CALIBRATION MODULE The calibration classes common methods

XI.2.3.2 Construction with a TCode

This constructor is using the Launcher architecture. This approach is pretty different from the Relauncher one, as it
is only focusing on the code case.

The constructor in this case, should look like this

// Constructor with a TCode
TCalClass(TDataServer *tds, TCode *code, Int_t ns=1, Option_t *option="")

It takes up to four elements which are:

1. tds: a TDataServer object containing only an attribute for every parameter to be calibrated. This is the
TDataServer object called tdsPar, defined in Section XI.2.1.

2. code: a TCode instance containing the output file (or files) that list the output attributes while all input attributes
have been assigned an input file by the usual methods (setFileKey, setFileFlag...).

3. ns: the number of samples to be produced. This field only applies to methods for which more than one configu-
ration are expected which is not the case for local minimisation with a single point initialisation but also for linear
Bayesian analysis (see Section XI.4). The default value is 1.

4. option: the option that can be applied to the method. The option common to all calibration classes (so those
defined in the TCalibration class) are discussed in Section XI.2.3.4.

Unlike the runner constructor discussed above, this construction does not bring any information on the way the com-
putation will be performed. The run method is called for every configuration with the following options as a default:
noIntermediateSteps, that prevents the safety writing of the results into a file every five estimations and quiet that
prevents the launcher to be too verbose. Two methods can be applied on a TDistanceFunction objects to change
these options:

// Adding more options to the code launcher
void addCodeLauncherOpt(TString opt);
// Change the code launcher option
void changeCodeLauncherOpt(TString opt);

The first one is written to keep the default and add more options on top, for instance options that would allow to
distribute the computation with the fork process (as a reminder, this option is "localhost=X" where X stands for the
number of threads to be used). On the other hand, the second method above allow to restart from scratch in order to
define the options has chosen by the user.

Taking back the formalism already introduced in Section XI.2.2.1, the model instance of a code Foo, using a TCode
instance, is shown below, when this model takes the following inputs ref_var1, par1 and ref_var2 and it
produces a single output to be compared with "ref_out1" (the comparison between this reference and the model
prediction is done through the distance function, as already discussed Section XI.2.2.1 in for this example).

// Define the dataservers
TDataServer *tdsRef = new TDataServer("reference","myReferenceData");
// Load the data, both inputs (ref_var1 and ref_var2) and a single output (ref_out1).
tdsRef->fileDataRead("myInputData.dat");
...
TDataServer *tdsPar = new TDataServer("parameters","myParameters");
tdsPar->addAttribute(new TNormalDistribution("par1",0,1)); // the parameter to calibrate
...

TString sIn = TString("code_foo_input.in");
// Set the reference input file and the key for each input attributes

page 347

The calibration classes common methods CHAPTER XI. THE CALIBRATION MODULE

tdsRef->getAttribute("ref_var1")->setFileKey(sIn, "var1");
tdsRef->getAttribute("ref_var2")->setFileKey(sIn, "var2");
tdsPar->getAttribute("par1")->setFileKey(sIn, "par1");
// The output file of the code
TOutputFileRow *fout = new TOutputFileRow("_output_code_foo_.dat");
// The attribute in the output file
fout->addAttribute(new TAttribute("out"));
// Creation of the code
TCode *code = new TCode(tdsRef, "foo -s -k");
mycode->addOutputFile(fout);

...
// Create the instance of TCalClass:
int ns=1;
TCalClass *cal = new TCalClass(tdsPar, code, ns, "");

XI.2.3.3 Construction for a function with the Launcher architecture

This constructor is using the Launcher architecture and deals with a function (C++ one with the usual prototype).

The constructors in this case, should look like this

// Constructor with a function pointer using Launcher
TCalClass(TDataServer *tds, void (*fcn)(Double_t*,Double_t*), const char *varexpinput, ←↩

const char *varexpoutput, int ns=1, Option_t *option="");
// Constructor with a function name using Launcher
TCalClass(TDataServer *tds, const char *fcn, const char *varexpinput, const char * ←↩

varexpoutput, int ns=1, Option_t *option="");

It takes up to six elements, four of which are compulsory:

1. tds: a TDataServer object containing only an attribute for every parameter to be calibrated. This is the
TDataServer object called tdsPar, defined in Section XI.2.1.

2. fcn: the second argument is either the name of the function or a pointer to this function. A good knowledge of
this function implies that the user must know in which order the input and output variables are provided.

3. varexinput: the list of input variables in the correct order, as an admixture of the reference attributes and the
parameter attributes.

4. varexpoutput: the list of output variables.

5. ns: the number of samples to be produced. This field only applies to methods for which more than one configu-
ration are expected which is not the case for local minimisation with a single point initialisation but also for linear
Bayesian analysis (see Section XI.4). The default value is 1.

6. option: the option that can be applied to the method. The option common to all calibration classes (so those
defined in the TCalibration class) are discussed in Section XI.2.3.4.

This constructor is the simplest one, as all information are provided on a single line, no option has to be defined
and no file should be created. Taking back the formalism already introduced in Section XI.2.2.1, the model being
considered is the function Foo, and the construction using the pointer prototype is shown below, when this model
takes the following inputs ref_var1, par1 and ref_var2 and it produces a single output to be compared with
"ref_out1" (the comparison between this reference and the model prediction is done through the distance function,
as already discussed Section XI.2.2.1 in for this example).

page 348

CHAPTER XI. THE CALIBRATION MODULE The calibration classes common methods

// Define the dataservers
TDataServer *tdsRef = new TDataServer("reference","myReferenceData");
// Load the data, both inputs (ref_var1 and ref_var2) and a single output (ref_out1).
tdsRef->fileDataRead("myInputData.dat");
...
TDataServer *tdsPar = new TDataServer("parameters","myParameters");
tdsPar->addAttribute(new TNormalDistribution("par1",0,1)); // the parameter to calibrate
...

// Create the instance of TCalClass:
int ns=1;
TCalClass *cal = new TCalClass(tdsPar, Foo, "ref_var1:par1:ref_var2", "out", ns, "");

XI.2.3.4 Running the estimation

Once the calibration-object is constructed and its distance function is also created, the aim is to perform the calibration,
meaning that the best value (or values) of the parameters have to be estimated. This is done by calling the method

void estimateParameters(Option_t *option="");

This method is global and it mainly call another internal method, defined in every TCalibration-inheriting class, in
which the real estimation is performed.

There are different options that can be applied to the estimateParameters method, among which:

"saveAllEval" this option allows to keep every single estimations in the internal dataserver that is later-on used to
produce residue plots (see Section XI.2.3.7). WARNING: this can very likely become unbearable, as the number
of estimation to keep might be gigantic.

"noAgreement" this options allows to get rid of the agreement attribute at the end of the estimation if one considers
the information is pointless.

Also, some options, not discussed here because they’re triggered by calling methods on the TDistanceFunction-
inheriting instance, might be of use to understand and validate the way the calibration has been performed. For this,
see Section XI.2.2.3.

There are few methods used to represent the results. The skeleton are defined within the TCalibration class
(even though some might not applied to few specific method). This section introduces the general concept and every
calibration method particularity will be discussed within the proper method section.

XI.2.3.5 Estimate custom residues

Once the estimation is performed, the a priori and a posteriori residuals are estimated, meaning that from both set of
parameter values (the a priori and a posteriori values estimation will depend on the chosen algorithm so this is not
specified here) one can ask to re-evaluate the residuals once another set of parameter values is provided. This can be
done through

void estimateCustomResidues(string resName, int theta_nb, double *theta_val);

which takes three arguments:

resName the name of the set to be kept as a tag;

page 349

The calibration classes common methods CHAPTER XI. THE CALIBRATION MODULE

theta_nb the number of values provided in the array (must be coherent with _nPar obviously);

theta_val the value of the parameters to be used as an array.

This construction should be called simply with a vector<double>numpy array for the sake of simplicity as shown below.

vector<double> mypar = {0., 2., 3.};
mycal->estimateCustomResidues("set1", mypar.size(), &mypar[0]);

The idea behind all this is to be able to re-estimate residuals when the a posteriori values of the parameter might have
to be carefully estimated provided the sample available in after the estimation (for instance in the case of Markov-Chain
to get rid of the warming-up estimations). Once done, the selection can be used in the drawResidues function
discussed later-on in Section XI.2.3.7.

XI.2.3.6 Drawing the parameters

This method’s purpose is to draw parameter’s value. The prototype is the following

void drawParameters(TString sTitre, const char *variable = "*", const char *select = "1>0", ←↩
Option_t * option = "");

It takes up to four arguments, three of which are optional:

sTitre The title of the plot to be produced (an empty string can be put).

variable This field should contain the parameter list to be drawn (with the usual format of parameter’s name splitted
by ":"). The default value is to draw all parameters (the "*" field).

select A selection field to remove some kept configurations (for instance if you want to consider the burn-in period or
lag procedure for the Metropolis-Hasting algorithm, see Section XI.6).

option The optional field can be used to tune a bit the plots, options being separated by commas

• "nonewcanvas": if this option is used the plot will be done in an existing canvas, if not, a new TCanvas will
be created on the spot.

• "vertical": if this option is used and more than one parameters have to be displayed, the canvas is splitted into
as many windows as parameters in the variable list, the windows being stacked one above the others, using
the full width. The default is "horizontal" so the plots are side-by-side.

XI.2.3.7 Drawing the residues

This method’s purpose is to draw output variable’s residue, meaning the difference between the model predictions and
the reference output. Two kinds of residues are generally discussed: the a priori ones (from the initialisation values of
the parameters) and the a posteriori ones (the results of the calibration procedure). The prototype is the following

void drawResidues(TString sTitre, const char *variable = "*", const char *select="1>0", ←↩
Option_t * option = "");

It takes up to four arguments, three of which are optional:

sTitre The title of the plot to be produced (an empty string can be put).

page 350

CHAPTER XI. THE CALIBRATION MODULE Use-case for this chapter

variable This field should contain the output variable list to be drawn (with the usual format of parameter’s name
splitted by ":"). The default value is to draw all variables (the "*" field).

select A selection field to remove some of the observations from the reference datasets.

option The optional field can be used to tune a bit the plots, options being separated by commas

• "nonewcanvas": if this option is used the plot will be done in an existing canvas, if not, a new TCanvas will
be created on the spot.

• "vertical": if this option is used and more than one parameters have to be displayed, the canvas is splitted into
as many windows as parameters in the variable list, the windows being stacked one above the others, using
the full width. The default is "horizontal" so the plots are side-by-side.

• "apriori/aposteriori": these options state whether only the a priori residues (with "apriori") or only the a poste-
riori (with "aposteriori") field. If none of this two fields is used, both kind of residues should be drawn.

• "custom=XXX": this option state whether one also wants to show the custom residues estimate through the
esimateCustomResidues method already introduced in Section XI.2.3.5. With the example provided in
the aforementionned section, the command can look like this, if one wants to compare a priori, a posteriori
and the "set1" custom set:

mycal->drawResidues("Residual title", "*", "", "nonewcanvas,apriori,aposteriori, ←↩
custom=sel1");

Summary: TCalibration and TDistanceFunction

1. Define both the parameter (tdsPar) and reference (tdsRef) objects, as explained in Section XI.2.1.

2. Define the model architecture (either Relauncher or Launcher-based) and the evaluator kind (code, C++-
function, python-function...). A peculiar attention is needed to specify the input and output attributes (the former
should be an admixture of attributes from tdsPar and tdsRef, as explained in Section XI.2.1.

3. Define the TCalibration-inheriting object (meaning the underlying method chosen for this analysis) and
construct it (see from Section XI.2.3.1 to Section XI.2.3.3).

4. Define the TDistanceFunction-inheriting object by calling the TCalibration’s method
setDistanceAndReference, see the recommended method in Section XI.2.2.1.

5. Set the method-dependent parameters (discussed in dedicated part, from Section XI.3 to Section XI.6).

6. Call the estimateParameters method with selected options (see Section XI.2.3.4).

7. Do the post-treatment thanks to method-dependent functions discussed in dedicated part, from Section XI.3 to
Section XI.6) and drawing methods (see also both Section XI.2.3.6 and Section XI.2.3.7).

XI.2.4 Use-case for this chapter

In order to illustrate the ongoing methods in the future sections, a bit more closely than the already introduced dummy
examples, a general use-case will be used. This use-case rely on the flowrate model introduced (along with a
descriptive sketch) in Chapter IV and whose equation is recalled below:

page 351

Use-case for this chapter CHAPTER XI. THE CALIBRATION MODULE

y = f (x) =
2πTu (Hu−Hl)

ln(r
rω
)
[
1+ 2LTu

ln(r
rω

)r2
ω Kω

+ Tu
Tl

]
EQUATION XI.1: Flowrate function

where the eight parameters are:

1. rω ∈ [0.05,0.15] (m): radius of borehole

2. r ∈ [100,50 000] (m): radius of influence

3. Tu ∈ [63 070,115 600] (m2/year): Transmitivity of the superior layer of water

4. Tl ∈ [63.1,116] (m2/year): Transmitivity of the inferior layer of water

5. Hu ∈ [990,1 110] (m): Potentiometric "head" of the superior layer of water

6. Hl ∈ [700,820] (m): Potentiometric "head" of the inferior layer of water

7. L ∈ [1 120,1 680] (m): length of borehole

8. Kω ∈ [9 855,12 045] (m): hydraulic conductivity of borehole

This example has been treated by several authors in the dedicated literature, for instance in [40]. With respect to our
concerns, the idea of the upcoming examples (in this chapter, along with those in the use-case macros section, see
Section XIV.11) is to consider that one has an observation sample. For this function, we consider that from all the
inputs, only two are have been varied (rω and L) and only one is actually unknown: Hl . The rest of the variables are set
to a frozen value: r = 25050, Tu = 89335, Tl = 89.55, Hu = 1050, Kω = 10950. This can be written as the following
function (using the usual C++ prototype)

void flowrateModel(double *x, double *y) {
double rw = x[1], r = 25050;
double tu = 89335, tl = 89.55;
double hu = 1050, hl = x[0];
double l = x[2], kw = 10950;

double num = 2.0 * TMath::Pi() * tu * (hu - hl);
double lnronrw = TMath::Log(r / rw);
double den = lnronrw * (1.0 + (2.0 * l * tu) / (lnronrw * rw * rw * kw) + tu / tl);

y[0] = num / den;
}

As discussed previously, this function shows that one might be aware of the way the inputs are organised. In this case,
the parameter to be calibrated (Hl) comes first while the varying inputs (rω and L) come later. The first lines of all
examples should look like this

// Name of the input reference file
TString ExpData="Ex2DoE_n100_sd1.75.dat";

// define the reference
TDataServer *tdsRef = new TDataServer("tdsRef","doe_exp_Re_Pr");
tdsRef->fileDataRead(ExpData.Data());

// define the parameters
TDataServer *tdsPar = new TDataServer("tdsPar","pouet");

page 352

CHAPTER XI. THE CALIBRATION MODULE Using minimisation techniques

tdsPar->addAttribute(new TAttribute("hl",700.0,760.0)); // if stochastic laws are needed
// use tdsPar->addAttribute(new TUniformDistribution("hl", 700.0, 760.0));

// Create the output attribute
TAttribute *out = new TAttribute("out");

XI.3 Using minimisation techniques

Warning
This method is fully relying on the Relauncher architecture so the only constructor available is the runner one
(discussed in Section XI.2.3.1). This means there is no constructor based on TCode or function (respectively
described in Section XI.2.3.2 and Section XI.2.3.3). This is explained as this method is a using the Nlopt-
algorithm bank, introduced in Chapter IX but also the Vizir package for multi and many criteria algorithm.

Even though the theory behind this method is not revolutionary, these methods are interested and are, historically
and conceptually, the simplest one, one can think of. Because of the way it has been organised, it can be used
with all Relauncher assessors and can call all NLopt algorithms along with the Vizir ones. This is explained in
Section XI.3.2.

XI.3.1 Constructing the instance

As stated above, the only constructor available is the one whose prototype contains an instance of TRun-inheriting
object. This approach allows a simple way to change the evaluator (to pass from a C++ function to a python’s one or a
code) but also to use either a sequential approach (for a code) to a threaded one (to distribute locally the estimations).

The constructor in this case, should look like this

// Constructor with a runner
TMinimisation(TDataServer *tds, TRun *runner, Int_t ns=1, Option_t *option="");

It takes up to four elements which are:

1. tds: a TDataServer object containing only an attribute for every parameter to be calibrated. This is the
TDataServer object called tdsPar, defined in Section XI.2.1.

2. runner: a TRun-inheriting instance that contains all the model information and whose type is defining the way
to distribute the estimation: it can either be a TSequentialRun instance or TThreadedRun for distributed
computations.

3. ns: the number of samples to be produced. This field does not apply here.

4. option: the option that can be applied to the method. The option common to all calibration classes (so those
defined in the TCalibration class) are discussed in Section XI.2.3.4.

The key step in this constructor is the TRun-inheriting instance creation. As already stated, its type is giving the lead
on the way to distribute the estimations. When one is constructing such an object, it is done by passing an evaluator,
whose list is already largely discussed in Section VIII.3.

page 353

Setting the optimisation properties CHAPTER XI. THE CALIBRATION MODULE

XI.3.2 Setting the optimisation properties

Once the object is constructed, the optimisation properties must be set, to decide which algorithm must be used. This
can be precised by calling the setOptimProperties, whose prototype is the following:

// Prototype for nlopt
void setOptimProperties(URANIE::Reoptimizer::TNloptSolver *solv, Option_t *option="");
// Prototype for vizir
void setOptimProperties(URANIE::Reoptimizer::TVizirSolverShare *solv, Option_t *option="");

In both cases, the option field is there if some option shows up at some point, even though so far it is useless. There
is only one difference between these two prototype: the kind of solver to be used knowing that the minimisation will be
done on the distance function value disregarding the number of parameter to calibrate.

Once the optimisation solver is chosen and configured, is provided to the TMinimisation instance, which we’ll
create automatically the optimisation master depending on the nature of the solver:

TNlopt This is the optimisation master used for any TNloptSolver instance. An example can be found in Sec-
tion XIV.11.1.

TVizir2 This is the optimisation master used for any TVizirSolverShare instance. Even though the optimisation
will remain mono-criterion, this might be useful for some intricate issues, as discussed in Section XIV.11.6.

As shown in the latter example, it is possible to get a hand at the optimisation master by calling the getOptimMaster
method. This method returns a pointer to the TOptimShare-newly created instance. This might be useful to set some
properties (for instance the tolerance).

Warning Caution has to be taken when calling the getOptimMaster method in C++, as the pointer can
be either a TNlopt or TVizir2 instance. If in python this should fully transparent, in C++ it might be useful
to cast the pointer returned by this method, as shown below:

// Set the calibration object
TMinimisation *cal = new TMinimisation(tdsPar,runner,1);
cal->setDistanceAndReference("relativeLS",tdsRef,"rw:l","Qexp");
bool vizir=true;
if(vizir){ // Set Viziroptimisaiton properties

TVizirGenetic solv;
solv.setSize(24,15000,100);
cal->setOptimProperties(&solv);
TVizir2 *optimMaster = ((TVizir2*)cal->getOptimMaster());

} else{ // Set Nlopt optimisaiton properties
TNloptSubplexe solv;
cal->setOptimProperties(&solv);
TNlopt *optimMaster = ((TNlopt*)cal->getOptimMaster());

}

Apart from the discussion above, there are no specific options and methods in the TMinimisation class, and
more information on method can be found in Section XI.2. Examples are also provided in the use-case sections
(see Section XIV.11), particularly one can have a loot at the residue distributions both a priori and a posteriori for a
point-estimation, which are shown in Figure XIV.96.

page 354

CHAPTER XI. THE CALIBRATION MODULE Analytical linear Bayesian estimation

XI.4 Analytical linear Bayesian estimation

This method is pretty simple from the algorithm point of view as it consists mainly in the analytical formulation of the
posterior distribution when the hypotheses on the prior are well set: the problem can be considered linear and the
prior distributions are normally distributed (or flat, as discussed in [30]). Practically, handling this technique is done by
following the recipe provided in Section XI.2 with an important difference though: the code or function, brought through
the constructor of the TLinearBayesian object, is not strictly speaking useful. The parameters estimation is indeed
analytical so the main point of providing an assessor is to get both the a priori and a posteriori residue distributions.
The important steps of this kind of analysis are gathered here, all classical steps being gathered in the first item:

1. Get the reference data, the model and its parameters. Choose the assessor type you’d like to use and construct
the TLinearBayesian object accordingly with the suitable distance function. Even though this mainly relies
on common code, this part is introduced also in Section XI.4.1, in particular for what happened to the distance
function (pay attention to the warning bloc).

2. Provide the input covariance matrix, i.e. the reference observation covariance (in [30] this would correspond to
the Σ). This is compulsory to get a valid estimation. This impact the distance function choice as discussed in
Section XI.4.2.

3. Provide the name of the regressors. This is also a key step as a regressor can be an input variable, but also any
function of one or many input variables, This is discussed in Section XI.4.2.

4. A transformation function can be provided but this is not compulsory. This is discussed in Section XI.4.3.

5. Finally the estimation is performed and the results can be extracted or draw with the usual plots. The specificities
are discussed in Section XI.4.3.

XI.4.1 Constructing the TLinearBayesian object

The constructors that can be used to get an instance of the TLinearBayesian class are those detailed in Sec-
tion XI.2.3. As a reminder the prototype available are these ones:

// Constructor with a runner
TLinearBayesian(TDataServer *tds, TRun *runner, Int_t ns=1, Option_t *option="");
// Constructor with a TCode
TLinearBayesian(TDataServer *tds, TCode *code, Int_t ns=1, Option_t *option="");
// Constructor with a function using Launcher
TLinearBayesian(TDataServer *tds, void (*fcn)(Double_t*,Double_t*), const char *varexpinput ←↩

, const char *varexpoutput, int ns=1, Option_t *option="");
TLinearBayesian(TDataServer *tds, const char *fcn, const char *varexpinput, const char * ←↩

varexpoutput, int ns=1, Option_t *option="");

The details about these constructor can be found in Section XI.2.3.1, Section XI.2.3.2 and Section XI.2.3.3 respectively
for the TRun, TCode and TLauncherFunction-based constructor. In all cases, the number of samples ns is set
to 1 by default and changing it will not change the results. As for the option, there are no specific options for this class.

The final step here it to construct the TDistanceFunction which is the compulsory step which should always
come right after the constructor, but a word of caution about this step:

Warning Whatever the distance function you’re choosing, the setDistanceAndReference is locally
redefined so that the distance function will only be a TMahalanobisDistance. As defining the observa-
tion covariance matrix is mandatory, it would make little sense to use any other distance function which would
not use the full extend of the input information. Furthermore, the distance function, in this method, is only
provided for illustration purpose, to check the difference between the a priori and a posteriori parameter’s
values.

page 355

Define the linear model properties CHAPTER XI. THE CALIBRATION MODULE

XI.4.2 Define the linear model properties

Once the TLinearBayesian instance is created along with its TDistanceFunction, two methods must be
called before getting into the parameters estimation. These methods are compulsory as they will define the heart of
the analytical formula to get the Gaussian parameter value of the a posteriori distribution (see [30]).

The first one (even though there is no particular order between the two) is setRegressor, whose prototype is

void setRegressor(const char *regressorname);

The only argument is the regressorname field, which is the list of regressor names split by ":", using the usual
format and this method, then, checks two things. The first one is the fact that the number of regressors must match
the number of parameters to be calibrated. On top of this, the code passes through the list of attributes available
in the reference observation TDataServer and check that every regressor name provided matches one existing
attributes. As stated above, if the observation TDataServer does not contains the regressors (when the input file
is loaded) these attributes have to be constructed from scratch either through TAttributeFormula or by using
another dedicated assessor (as done in the use-case shown in Section XIV.11.2).

The other method is setObservationCovarianceMatrix whose prototype is

void setObservationCovarianceMatrix(TMatrixD &mat);

The only argument here is a TMatrixD whose content is the covariance matrix of the reference observation data.
Once again, this method will check two things:

• the provided matrix must have the correct number of rows and columns (basically both should be set to n);

• the provided matrix should be symmetrical;

Given this, estimations can be performed. One can find an example of how to use these methods in the use-case
dedicated subsection, more precisely in Section XIV.11.2.

XI.4.3 Look at the results

Finally once the computation is done there are three different kinds of results and several ways to interpret but also
transform it. This section details some important and specific aspect to it.

XI.4.3.1 Transformation of the results

The idea is that when you want to consider your model as linear, you might have to transform it a bit to have a correct
linear behaviour and to express and compute the needed regressors. For this peculiar behaviour, one will rely on our
use-case discussed in Section XIV.11.2. In this case, one should linearise the flowrate function as done here by
writing:

fθ (x) = (2πTu)

(
ln(

r
rω

)

[
1+

2LTu

ln(r
rω
)r2

ωKω

+
Tu

Tl

])−1

θ = H×θ

where the regressor can be expressed as H = (2πTu)
(

ln(r
rω
)
[
1+ 2LTu

ln(r
rω

)r2
ω Kω

+ Tu
Tl

])−1
. From there, it is clear that we

will be calibrating a newly defined parameter θ = (Hu−Hl), so we will have to transform that back into our parameter
of interest at some point.

page 356

CHAPTER XI. THE CALIBRATION MODULE Look at the results

This is the the sole reason why the method setParameterTransformationFunction has been implemented:
transform the parameters estimated given the linear regressor, the observation covariance matrix and prior distribution.
As the transformations, it they do exist which is not compulsory, are expected to be done with simple operations using
constant values, they should not affect the covariance matrix of the posterior multidimensional normal distribution, only
the mean vector. The prototype of this function is as follows:

void setParameterTransformationFunction(void (*fTransfoParam)(double *in, double *out));

Its only argument is a pointer to the transformation function in the usual C++ prototype. This function provided to get
the proper values of the under-investigation parameters take two arguments: the input parameters which are the raw
one estimated from the analytical formula detailed in [30] and the output ones, which should be the ones one wants to
have. Both parameters are double-array whose size must be the number of parameters.

The example provided in the use-case is really simple as there is only one parameter to be estimated, which implies
that both argument are one-dimension double array which should look like this:

void transf(double *x, double *res)
{

res[0] = 1050 - x[0]; // simply H_l = \theta - H_u
}

Warning This is also possible in python but the transformation will still have to be the usual C++ one. To do
so, the function has to be put in a C-file, for example called myFunction.C and this file has to be loaded
in order to get the handle on the function. Here are the few lines that summarise these two steps in a fictional
macro that would define a cal instance of TLinearBayesian:

Define all the needed material: dataservers, models...
cal=Calibration.TLinearBayesian(...) # Create the instance and distance function
...
Load the file in which Transformation function
ROOT.gROOT.LoadMacro("myFunction.C")
Provide this function to the TLinearBayesian instance
cal.setParameterTransformationFunction(ROOT.transf)

XI.4.3.2 Accessing the results

When the estimation is done, it is possible to access the results numerically by calling three methods detailed below.
In all cases, the prototype is the same as these functions take no argument and return a TMatrixD instance filled
with corresponding information. The functions are:

getParameterValueMatrix It returns the raw value of the parameters, meaning the way they have been estimated
through the analytical formula. It should return a TMatrixD object that should look like a vector (only one-
varying dimension).

getParameterCovarianceMatrix It returns the covariance matrix of the estimated parameters, which means that the
TMatrixD object should be symmetrical and have a (nPar, nPar) dimension.

getTransfParameterValueMatrix It returns the transformed value of the parameters, in case the setParameterTransformationFunction
has been called properly. It should return a TMatrixD object that should look like a vector (only one-varying
dimension).

page 357

Prediction of the variance CHAPTER XI. THE CALIBRATION MODULE

XI.4.3.3 Drawing the parameters

The parameters can be drawn with the newly-defined instance of drawParameters whose prototype is the same
as the original one discussed in Section XI.2.3.6.

void drawParameters(TString sTitre, const char *variable = "*", const char *select = "1>0", ←↩
Option_t * option = "");

It takes up to four arguments, three of which are optional:

sTitre The title of the plot to be produced (an empty string can be put).

variable This field should contain the parameter list to be drawn (with the usual format of parameter’s name splitted
by ":"). The default value is to draw all parameters (the "*" field).

select A selection field to remove some kept configurations, which is useless in our case as no events are drawn, only
analytical functions, see below.

option The optional field can be used to tune a bit the plots, options being separated by commas

• "nonewcanvas": if this option is used the plot will be done in an existing canvas, if not, a new TCanvas will
be created on the spot.

• "vertical": if this option is used and more than one parameters have to be displayed, the canvas is splitted into
as many windows as parameters in the variable list, the windows being stacked one above the others, using
the full width. The default is "horizontal" so the plots are side-by-side.

• "apriori/aposteriori": by default, both distributions are drawn. If this not what’s wanted, it is possible to precise
either "apriori" or "aposteriori".

• "transformed": if this posteriori distribution has to be drawn, this option states that the transformed values
should be used as the mean-vector of the multivariate normal posterior distribution.

The main difference with the usual instance of drawParameters defined in TCalibration is that the object
drawn are analytical functions.

On top of the parameters, the residues can also be drawn by calling the drawResidue method and no modification
has been done to it (for more details, see Section XI.2.3.7).

XI.4.4 Prediction of the variance

Once the estimation has been done, it is obviously possible to estimate the central value for a new set of input val-
ues (meaning a new design-of-experiments) thanks to the newly estimated values of the parameters. Even though
this is true for every methods in the calibration module, the fact that the LinearBayesian procedure provides the
covariance matrix of the parameters means that it is possible (keeping in mind the hypothesis on the input law na-
ture) to get a variance from every newly predicted values that should reflect the uncertainty sorely from the pa-
rameters. For more information on the estimation, please have a look at [30]. This can be done by calling the
computePredictionVariance method:

void computePredictionVariance(URANIE::DataServer::TDataServer *tdsPred, string outname);

This methods takes two arguments:

tdsPred a dataserver that contains new location to be estimated and in which all regressors should be available
in order to be able to compute the covariance matrix.

outname the name of the attribute that would be created and which will be filled with the diagonal part (the variance)
of the Σ

pred
θ

matrix.

page 358

CHAPTER XI. THE CALIBRATION MODULE The Approximation Bayesian Computation techniques (ABC)

XI.5 The Approximation Bayesian Computation techniques (ABC)

This sections is discussing methods gathered below the ABC acronym, which stands for Approximation Bayesian
Computation. The idea behind these methods is to perform Bayesian inference without having to explicitly evaluate the
model likelihood function, which is why these methods are also referred to as likelihood-free algorithms [21].

As a reminder of what’s discussed in further details in [30], the principle of the Bayesian approach is recap in the
equation πpost(θ |y) = L(y|θ)πprior(θ)

π(y) ∝ L(y|θ)πprior(θ). where L(y|θ) represents the conditional probability of the ob-
servations knowing the values of θ , πprior(θ) is the a priori probability density of θ (the prior) and π(y) is the marginal
likelihood of the observations, which is constant (for more details see [30]).

On the technical point of view, methods in this section will inherit from the TABC class (which itself inherits from the
TCalibration one, in order to benefit from all the already introduced features). So far the only ABC method is
the Rejection one, discussed in [30] and whose implementation has been done through the TRejectionABC class
discussed below.

The way to use our Rejection ABC class is summarised in few key steps here:

1. Get the reference data, the model and its parameters. The parameters to be calibrated must be TStochasticAttribute-
inheriting instances. Choose the assessor type you’d like to use and construct the TRejectionABC object
accordingly with the suitable distance function. Even though this mainly relies on common code, this part is
introduced also in Section XI.5.1.

2. Provide algorithm properties, to define optional behaviour and precise the uncertainty hypotheses you want,
through the methods discussed in Section XI.5.2.

3. Finally the estimation is performed and the results can be extracted or draw with the usual plots. The specificities
are discussed in Section XI.5.3.

XI.5.1 Constructing the RejectionABC object

The constructors that can be used to get an instance of the TRejectionABC class are those detailed in Sec-
tion XI.2.3. As a reminder the prototype available are these ones:

// Constructor with a runner
TRejectionABC(TDataServer *tds, TRun *runner, Int_t ns=1, Option_t *option="");
// Constructor with a TCode
TRejectionABC(TDataServer *tds, TCode *code, Int_t ns=1, Option_t *option="");
// Constructor with a function using Launcher
TRejectionABC(TDataServer *tds, void (*fcn)(Double_t*,Double_t*), const char *varexpinput, ←↩

const char *varexpoutput, int ns=1, Option_t *option="");;
TRejectionABC(TDataServer *tds, const char *fcn, const char *varexpinput, const char * ←↩

varexpoutput, int ns=1, Option_t *option="");

The details about these constructor can be found in Section XI.2.3.1, Section XI.2.3.2 and Section XI.2.3.3 respectively
for the TRun, TCode and TLauncherFunction-based constructor. In all cases, the number of samples ns has to
set and represents the number of configurations kept in the final sample. An important point is discussed below about
the algorithm properties, as to know how many computations will be done, as from our implementation, it actually
depends on the percentile value chosen, see Section XI.5.2.1.

As for the option, there is a specific option which might be used to change the default value of the a posteriori behaviour.
The final sample is a distribution of the parameters value and if one wants to investigate the impact of the a posteriori
measurement, two possible choice can be made to get a single-point estimate that would best describes the distribution:

• use the mean of the distribution: the default option chosen

page 359

Define the TRejectionABC algorithm properties CHAPTER XI. THE CALIBRATION MODULE

• use the mode of the distribution: the user needs to add "mode" in the option field of the TRejectionABC con-
structor.

The default solution is straightforward, while the second needs an internal smoothing of the distribution in order to get
the best estimate of the mode.

The final step here it to construct the TDistanceFunction which is the compulsory step which should always
come right after the constructor, but a word of caution about this step:

Warning In the case where you are comparing your reference datasets to a deterministic model (meaning
no intrinsic stochastic behaviour is embedded in the code or function) then you might want to specify your
uncertainty hypotheses to the method, as discussed below in Section XI.5.2.2.

XI.5.2 Define the TRejectionABC algorithm properties

Once the TRejectionABC instance is created along with its TDistanceFunction, there are few methods that
can be of use in order to tune the algorithm parameters. All these methods are optional in the sens that there are
default value, each are detailed in the following sub-sections.

XI.5.2.1 Define the percentile

The first method discussed here is rather simple: the idea behind the rejection is to kept the best configuration tested
and this can be done either by looking at the distance results themselves with respect to a threshold value (called
δ in [30]) or looking at a certain fraction of configurations, defined through a percentile εDist . The latter is the one
implemented in the TRejectionABC method so fat, the default being 1%, which can be written

εDist = 0.01.

In order to change this, the user might want to call the method

void setPercentile(double eps);

in which the only argument is the value of the percentile that should be kept.

An important consequence of this is that the number of configurations that will be tested is computed as follow

nComp =
nS

εDist

where nS is the number of configurations that should be kept at the end.

XI.5.2.2 Introducing noise for deterministic function

As already explained previously, in the case where you are comparing your reference datasets to a deterministic model
(meaning no intrinsic stochastic behaviour is embedded in the code or function) then you might want to specify your
uncertainty hypotheses to the method. This can be done, by calling the

void setGaussianNoise(const char *stdname);

page 360

CHAPTER XI. THE CALIBRATION MODULE Look at the results

The idea here to inject random noise (assumed Gaussian and centred on 0) to the model prediction using internal
variable in the reference datasets to set the value of the standard deviation. The only argument is a list of variables
that should have the usual shape "stdvaria1:stdvaria2" and whose elements represent variable within the
reference TDataServer whose values are the standard deviation for every single observation points (which can
represents experimental uncertainty for instance). This solutions allows three things:

• define a common uncertainty (a general one throughout the observation of the reference datasets) by simply adding
an attribute with a TAttributeFormula where the formula would be constant.

• use experimental uncertainties are likely to be be provided along the reference values

• Store all hypotheses in the reference TDataServer object. For this reason we strongly recommend to save both
the parameter and reference datasets at the end of a calibration procedure.

Warning A word of cautious about the string to be passed: the number of variable in the list stdname should
match the number of output of your code that you are using to calibrate your parameters. Even in the peculiar
case where you’ll be doing calibration with two outputs, one being free of any kind of uncertainty, then one
should add a zero attribute to provide for this peculiar output if the other one needs uncertainty model.

XI.5.3 Look at the results

Finally once the computation is done there are two different methods (apart from looking at the final datasets): the two
drawing methods drawParameters and drawResidues already introduced respectively in Section XI.2.3.6 and
Section XI.2.3.7. There are no specific options or visualisation methods to discuss further.

XI.6 The Markov-chain approach

Unlike the Monte-Carlo methods already discussed in Chapter III to obtain design-of-experiments and which usually
provides independent samples (which means that the successive observations are statistically independent unless
correlation is purposely injected), the Monte-Carlo techniques describe here are called "Markov-chain" and they provide
dependent samples as the estimation of the i-Th iteration only depends of the value of the previous one, the (i-1)Th.
The method presented here, so far just the Metropolis-Hasting algorithm, is a way to generate posterior distributions
from a priori and data under the assumption that the residues are Gaussian (see [30] for a brief introduction and more
useful references).

The way to use our Metropolis-Hasting class is summarised in few key steps here:

1. Get the reference data, the model and its parameters. The parameters to be calibrated must be TStochasticAttribute-
inheriting instances. Choose the assessor type you’d like to use and construct the TMetropHasting object
accordingly with the suitable distance function. Even though this mainly relies on common code, this part is
introduced also in Section XI.6.1, in particular for what happened to the distance function (pay attention to the
warning bloc)..

2. Provide algorithm properties (not mandatory), to define optional behaviour and precise the uncertainty hypothe-
ses you want, through the methods discussed in Section XI.6.2.

3. Finally the estimation is performed and the results can be extracted or draw with the usual plots. The specificities
are discussed in Section XI.6.3.

page 361

Constructing the TMetropHasting object CHAPTER XI. THE CALIBRATION MODULE

4. A special step has to be considered for post-processing. As long as you have your TMetropHasting-
instance, even though you have exported you parameter TDataServer to be sure that you have it (this
should always be done), the you can investigate the quality of the sample through a plot and functions, see
Section XI.6.3 for more details.

XI.6.1 Constructing the TMetropHasting object

The constructors that can be used to get an instance of the TMetropHasting class are those detailed in Sec-
tion XI.2.3. As a reminder the prototype available are these ones:

// Constructor with a runner
TMetropHasting(TDataServer *tds, TRun *runner, Int_t ns=1, Option_t *option="");
// Constructor with a TCode
TMetropHasting(TDataServer *tds, TCode *code, Int_t ns=1, Option_t *option="");
// Constructor with a function using Launcher
TMetropHasting(TDataServer *tds, void (*fcn)(Double_t*,Double_t*), const char *varexpinput, ←↩

const char *varexpoutput, int ns=1, Option_t *option="");;
TMetropHasting(TDataServer *tds, const char *fcn, const char *varexpinput, const char * ←↩

varexpoutput, int ns=1, Option_t *option="");

The details about these constructor can be found in Section XI.2.3.1, Section XI.2.3.2 and Section XI.2.3.3 respectively
for the TRun, TCode and TLauncherFunction-based constructor. In all cases, the number of samples ns has to
set and represents the number of configurations kept in the final sample.

As for the option, there is a specific option which might be used to change the default value of the a posteriori behaviour.
The final sample is a distribution of the parameters value and if one wants to investigate the impact of the a posteriori
measurement, two possible choice can be made to get a single-point estimate that would best describes the distribution:

• use the mean of the distribution: the default option chosen

• use the mode of the distribution: the user needs to add "mode" in the option field of the TMetropHasting
constructor.

The default solution is straightforward, while the second needs an internal smoothing of the distribution in order to get
the best estimate of the mode.

The final step here it to construct the TDistanceFunction which is the compulsory step which should always
come right after the constructor, but a word of caution about this step:

Warning Whatever the distance function you’re choosing, the setDistanceAndReference is locally
redefined so that the distance function will only be a TWeightedLSDistanceFunction. As stated
previously, the underlying hypotheses here is that the residue under investigation is normally-distributed.
The user is requested to provide a guessed uncertainty (which does not have to be constant throughout the
reference observation datasets, but could be) to ponderate the difference (as it should reflect the uncertainty
coming from the model misknowledge and / or those affecting the observations). This is discussed in details
in [30] but the idea is to summarise the ratio of the likelihood (the newly tested configuration, θT with respect
to the latest one kept θk) which allows to get rid of constant factors and should look like this once transformed
to its log form:

log
L(y|θT)

L(y|θk)
=

1
2

n

∑
i=1

(yi− fθk(xi)

σεi

)2
− 1

2

n

∑
i=1

(yi− fθT (xi)

σεi

)2
.

page 362

CHAPTER XI. THE CALIBRATION MODULE Define the Metropolis-Hasting algorithm properties

XI.6.2 Define the Metropolis-Hasting algorithm properties

Once the TMetropHasting instance is created along with its TDistanceFunction, there are few methods that
can be of use in order to tune the algorithm parameters. All these methods are optional in the sens that there are
default value, each are detailed in the following sub-sections.

XI.6.2.1 Information about the process

The first method discussed here is rather simple: a Markov-Chain method might be rather long to estimate, particularly
when running a code, whatever the chosen architecture. This method just change the printing message showing how
well the algorithm is converging. The prototype is simply this one

void setNbDump(int nbDump);

in which the only argument is the modulo to which the algorithm will display where it stands. The default value being
1000, the output should starts like this:

1000 events done
2000 events done
3000 events done
...

XI.6.2.2 Initialising the process

As already explained in [30], the random walk algorithm starts at a given point and then move from there to the new
configuration. This means that two things have to be precised for every single parameters: a starting value, and a
variation range used to move to the next location. All the input parameters being stochastic (or in other way, they’re all
instance of TStochasticDistribution-inheriting classes), the default values are

• randomly drawn for the starting point values;

• the theoretical standard deviation as variation range.

The default behaviour can easily be overcome by calling the setInitialisation method with one of these two
prototypes:

// Protoype with arrays
void setInitialisation(int n, double *values, double *standDev);
// Protoype with vectors
void setInitialisation(vector<double> values, vector<double> standDev);

The first one is using simple arrays with a first argument being their size, the second one is safer as the simple of the
collection is embedded within the collection itself (the existence of these two prototypes is relevant because of python-
binding). Disregarding these technical details, the first argument should contains the starting point of all parameters
while the second one contains their variation range meaning that both arrays or vector, should have the size p.

XI.6.2.3 Tune the acceptation rate

As also explained in [30], there are theoretical discussion on the acceptation rate expected, depending on the dimen-
sion of the parameter space for instance. As stated in some references (see [22, 23]) when well initialised, a-single
dimension problem acceptation rate could be around 44% and this should go down to 23% as the dimension increases.
By default, the exploration parameters are set by the initialisation step (as discussed in Section XI.6.2.2

page 363

Look at the results CHAPTER XI. THE CALIBRATION MODULE

If one wants to change this, a possible handle would be to use the setAcceptationRatioRange method whose
prototype is the following

void setAcceptationRatioRange(double lower, double higher);

This prototype takes two argument: the lower (rlow) and higher (rhig) bounds. The idea is simply that after a certain
number of estimation (called batch, whose value is set to 100) the algorithm looks at the acceptation rate achieved
(actually this is computed for every configuration and kept in the final TDataServer object). If the lower and higher
bounds have been set, at the end of a batch, three cases are possibles (when the acceptation rate is called racc):

• racc ≤ rlow: the acceptation rate is too low with respect to your goal, which means that you might be moving to far
when moving from the latest conserved configuration. As a consequence, the variation range is reduced by 10% to
help convergence.

• rhig ≤ racc: the acceptation rate is too high with respect to your goal, which means that you might not be exploring
the parameter space as you should, only investigating a nicely working area. As a consequence, the variation range
is increased by 10% to help the exploration.

• rlow ≤ racc ≤ rhig: the acceptance rate is the desired range, so nothing’s done.

When the setAcceptationRatioRange method has been called, this process will be called at the end of every
batch. Otherwise, the default behaviour is to let the acceptation rate as it is, has no boundaries have been set.

Few words of caution: obviously, from the prototype and the behaviour discussed above, there are two rules that should
be followed when using this method: (rlow,rhig) ∈ [0,1]2 and rlow < rhig.

Finally, one can have a look at the evolution of the acceptation rate by plotting the information, as discussed in Sec-
tion XI.6.3.2.

XI.6.3 Look at the results

Finally once the computation is done there are three different kinds of results and several ways to interpret but also
transform it. This section details some important and specific aspect to it. The first thing to keep in mind is the fact
that this method should lead to a sample of configurations. This sections introduces first quality investigation for the
provided sample and then ways to illustrate these results.

Once the algorithm has stopped, the first thing to check is the quality of the sample which can be assessed by different
ways. Let’s start by introducing the theoretical aspects: when discussing the sample two parameters might be of
interest

• the burn-in (also called warm-up): it corresponds to the number of iteration needed to reached a suitable approxima-
tion of the target density (see [30]). This has to be defined by the user mainly from the trace plot (discussed below,
see Section XI.6.3.1).

• the auto-correlation: the idea behind this is to estimate how self-correlated the samples are. The argument called
lag can be used to thin the sample, see the discussion in the dedicated section Section XI.6.3.3.

XI.6.3.1 Drawing the trace

The trace plot is simply the evolution of the value of each parameter as a function of the iteration number. The idea is
to get a glimpse at two information:

page 364

CHAPTER XI. THE CALIBRATION MODULE Look at the results

• a possible bad behaviour in the low iteration region that could arise because the algorithm is supposed to converge
to the targeted density after a certain number of attempts (see [30]), which should lead to the definition of the burn-in

• a possible correlation between the estimations (spacial one) that could give hint to a lag estimation if needed but
also to increase the burn-in if peculiar behaviour is seen.

The method to do this is called drawTrace and as the following prototype:

void drawTrace(TString sTitre, const char *variable = "*", const char *select = "1>0", ←↩
Option_t * option = "");

It takes up to four arguments, three of which are optional:

sTitre The title of the plot to be produced (an empty string can be put).

variable This field should contain the parameter list to be drawn (with the usual format of parameter’s name splitted
by ":"). The default value is to draw all parameters (the "*" field).

select A selection field to remove some kept configurations for instance if you want to consider the burn-in period or
lag procedure.

option The optional field can be used to tune a bit the plots, options being separated by commas

• "nonewcanvas": if this option is used the plot will be done in an existing canvas, if not, a new TCanvas will
be created on the spot.

• "vertical": if this option is used and more than one parameters have to be displayed, the canvas is splitted into
as many windows as parameters in the variable list, the windows being stacked one above the others, using
the full width. The default is "horizontal" so the plots are side-by-side.

Taking back the example shown in Section XIV.11.4, one can split the trace plots (originally shown in Figure XIV.101)
into two regions using the selection argument. The first guess chosen here is to split events below and above a
threshold of 100 events with the following code, leading to Figure XI.2

TCanvas *cantr = new TCanvas("cantr","cantr",1200,800);
TPad *pad = new TPad("pad","ppad",0, 0.03, 1, 1); pad->Draw(); pad->cd();
pad->Divide(1,2);
pad->cd(1);
cal->drawTrace("Looking for burn-in","*",Form("%s < 100",tdsPar->getIteratorName())," ←↩

nonewcanvas");
pad->cd(2);
cal->drawTrace("Looking for burn-in","*",Form("%s > 100",tdsPar->getIteratorName())," ←↩

nonewcanvas");

page 365

Look at the results CHAPTER XI. THE CALIBRATION MODULE

Figure XI.2: Trace distributions split between below and above 100 threshold

From Figure XI.2, one can see, from the top pad, that the very beginning seem wrong, as too far away (probably an
initialisation far from the more probable value) and then the behaviour seem fine as it evolves around what’s seems to
be the most probable value going back and forth. From there a very small burn-in of for example 20 can be chosen.
Once this value is chosen it can be provided back to the calibration object and it will be used in many drawing methods
as part of the default cut value. This can be done by calling the setBurnin method whose signature is the following
one

void setBurnin(int burnin);

Warning Setting a burnin value with the setBurnin method will affect most the drawing method, and
one should see a line that state what’s the default cut used (either burnin or lag selection) to produce
a plot. Only the residues plot will not be affected as the a posteriori residues are computed during
the estimateParameters methods, so prior to any burnin or lag determination. If one wants to re-
estimate residues with a given set of parameters that takes into account either lag or burnin, use the 3
estimateCustomResidues method discussed in Section XI.2.3.5. If one wants to get rid of current cut,
use the clearDefaultCut method that does not require any argument and whose purpose is to remove
both lag and burnin:

void clearDefaultCut();

XI.6.3.2 Drawing the acceptation ratio

The acceptation ratio plot is simply the evolution of this value for each parameter as a function of the iteration number.
The idea is to get a glimpse at two information:

• a possible bad behaviour in the low iteration region that could arise because the algorithm is supposed to converge
to the targeted density after a certain number of attempts (see [30]), which might lead to the definition of the burn-in
(if the acceptance range has not been tuned by calling the method introduced in Section XI.6.2.3).

• check that the acceptance ratio target you’d like to have is achieved (and guess the impact on your variation range
guess).

page 366

CHAPTER XI. THE CALIBRATION MODULE Look at the results

The method to do this is called drawAcceptationRatio and as the following prototype:

void drawAcceptationRatio(TString sTitre, const char *variable = "*", const char *select = ←↩
"1>0", Option_t * option = "");

It takes up to four arguments, three of which are optional:

sTitre The title of the plot to be produced (an empty string can be put).

variable This field should contain the parameter list to be drawn (with the usual format of parameter’s name splitted
by ":"). The default value is to draw all parameters (the "*" field).

select A selection field to remove some kept configurations for instance if you want to consider the burn-in period or
lag procedure.

option The optional field can be used to tune a bit the plots, options being separated by commas

• "nonewcanvas": if this option is used the plot will be done in an existing canvas, if not, a new TCanvas will
be created on the spot.

• "vertical": if this option is used and more than one parameters have to be displayed, the canvas is splitted into
as many windows as parameters in the variable list, the windows being stacked one above the others, using
the full width. The default is "horizontal" so the plots are side-by-side.

This is illustred in Section XIV.11.5 that show another very simple use-case with two paramters to be estimated at once,
run in C++ and python.

XI.6.3.3 Estimate the auto-correlation and thin

As stated previously, a correlation between the estimations is expected because of the nature of the sampler: it is a
Markov-chain so every new location depends only on its the previous one. Having an uncorrelated sample is a goal if
one wants to use the standard deviation of the given sample to extract confidence interval for instance. The usual way
to do is to test lag value, meaning using 1 events out of lag as sample.

To compute this, the method getAutoCorrelation whose prototype is

void getAutoCorrelation(vector<int> l, vector<double> *out, int cut);

It takes thee argument, one being optional:

• a vector of integers containing the lag values one would like to investigate

• a vector of double containing the auto-correlation computed with all the lag values provided. If there are more than
one parameters, these auto-correlations are stored for the first parameters, with all lag values, then come the other
parameter with their lag value, and so on...

Taking back the example shown in Section XIV.11.4, one can look at the console in Section XIV.11.4.3 to see the values
for our simple case which shows and state that a lag of 5 is well enough to get an uncorrelated sample. In this case,
the final sample would be thinned to get only one event out of 5, for instance using a selection of this kind

int lag=5;
TString thin_cut=Form("(%s %% %d) == 0",tdsPar->getIteratorName(),lag);

page 367

Look at the results CHAPTER XI. THE CALIBRATION MODULE

Warning This approach is sometimes discussed as people might choose very large lag values which is very
crude way, because the auto-correlation might arise from a wrong choice of variation range for instance.
For more discussion on this, please look at [24]. Once this value is chosen it can be provided back to the
calibration object and it will be used in many drawing methods as part of the default cut value. This can be
done by calling the setLag method whose signature is the following one

void setLag(int lag);

Warning Setting a lag value with the setLag method will affect most the drawing method, and one
should see a line that state what’s the default cut used (either burnin or lag selection) to produce a
plot. Only the residues plot will not be affected as the a posteriori residues are computed during the
estimateParameters methods, so prior to any burnin or lag determination. If one wants to re-
estimate residues with a given set of parameters that takes into account either lag or burnin, use the 3
estimateCustomResidues method discussed in Section XI.2.3.5. If one wants to get rid of current cut,
use the clearDefaultCut method that does not require any argument and whose purpose is to remove
both lag and burnin:

void clearDefaultCut();

XI.6.3.4 Drawing the residues

The residues can be drawn with the classical instance of drawResidues whose arguments and options have been
introduced in details in Section XI.2.3.6, and whose prototype is recalled here for your convenience:

void drawResidues(TString sTitre, const char *variable = "*", const char *select = "1>0", ←↩
Option_t * option = "");

As no specific implementations has been done, the only remaining thing to discuss is the way both the a priori and a
posteriori configuration are chosen. The former is just using the initialisation of the parameters meaning that it either
comes from the user through the method discussed in Section XI.6.2.2 or, if this method has not been called, it comes
from a random drawing following the a priori probability density provided. The latter, one the other hand, has also been
discussed in the constructor section of this class (see Section XI.6.1). By default, the mean of the posterior will be
used, whereas if the option "mode" is precised when constructing the TMetropHasting object, the mode would be
estimated and used instead.

To get an example of this function, one can have a look at Figure XIV.102.

XI.6.3.5 Drawing the parameters

The parameters can be drawn with the newly-defined instance of drawParameters whose prototype is the same
as the original one discussed in Section XI.2.3.6.

void drawParameters(TString sTitre, const char *variable = "*", const char *select = "1>0", ←↩
Option_t * option = "");

The only difference with the usual instance of drawParameters defined in TCalibration is that the selection
field (the third argument of the function) is now always including an extra selection to take into account the burn-in
period (to get a discussion on the burn-in definition see Section XI.6.3).

To get an example of this function, one can have a look at Figure XIV.103.

page 368

Chapter XII

The Uncertainty modeler module

XII.1 Introduction

We present in this section the quantitative comparison of an already existing sample to a given probability density
function ("PDF") in the libUncertModeler module. The namespace of this library is URANIE::UncertModeler.

XII.2 Tests based on the Empirical Distribution Function ("EDF tests")

The implemented tests are the Kolmogorov-Smirnov (D) test, the Cramer-VonMises (W 2) test and the Anderson-
Darling (A2) test. Their aim is to compare a given attribute to a bunch of implemented laws among the following list:
the normal, lognormal and uniform law. The details of the computation is given in [30]. The following piece of code
gives an example of what can be achieved using these three classes and the usage of their options defined in the
summary block below. Figure XII.1 shows the results of such a script.

{
// Create a TDS with 3 kind of distributions
TDataServer *tds0 = new TDataServer();
tds0->addAttribute(new TNormalDistribution("n", 1.3, 4.5));
tds0->addAttribute(new TLogNormalDistribution("ln", 1.3, 4.5));
tds0->addAttribute(new TUniformDistribution("u", -1.3, 4.5));

// Create the sample
TBasicSampling *fsamp = new TBasicSampling(tds0, "lhs", 1000);
fsamp->generateSample();

//Create the canvas
TCanvas *c = new TCanvas("c1","",5,20,1300,600);
TPad *apad = new TPad("apad","apad",0, 0.03, 1, 1); apad->Draw(); apad->cd();
apad->Divide(3);

apad->cd(1);
TTestKolmogorovSmirnov *tks_n = new TTestKolmogorovSmirnov(tds0, "n");
TTestCramerVonMises *tcvm_n = new TTestCramerVonMises(tds0, "n");
TTestAndersonDarling *tad_n = new TTestAndersonDarling(tds0, "n");
/*Test wrt to a normal distribution whose mu and sigma are taken from
the original distribution */

tks_n->computeScore("same:normal");
tad_n->computeScore("same:normal(0.8,4.5))"); // put wrong mu
tcvm_n->computeScore("same:normal(1.3,5.5)"); // put wrong sigma

page 369

Tests based on the Empirical Distribution Function ("EDF tests")CHAPTER XII. THE UNCERTAINTY MODELER MODULE

apad->cd(2);
TTestKolmogorovSmirnov *tks_ln = new TTestKolmogorovSmirnov(tds0, "ln");
TTestCramerVonMises *tcvm_ln = new TTestCramerVonMises(tds0, "ln");
TTestAndersonDarling *tad_ln = new TTestAndersonDarling(tds0, "ln");
/*Test wrt to a lognormal distribution whose mu and sigma are taken from
the original distribution */
tks_ln->computeScore("same:lognormal");
tad_ln->computeScore("same:lognormal(1.2,4.5))"); // put wrong mu
tcvm_ln->computeScore("same:lognormal(1.3,3.5)"); // put wrong sigma

apad->cd(3);
TTestKolmogorovSmirnov *tks_u = new TTestKolmogorovSmirnov(tds0, "u");
TTestCramerVonMises *tcvm_u = new TTestCramerVonMises(tds0, "u");
TTestAndersonDarling *tad_u = new TTestAndersonDarling(tds0, "u");
/*Test wrt to an uniform distribution whose min and max are taken from
the original distribution (and compared to a normal as well, for fun)*/

tks_u->computeScore("same:uniform");
tad_u->computeScore("same:uniform(-1.2,4.5)"); // put wrong min
tcvm_u->computeScore("same:uniform(-1.3,4.6)"); // put wrong max
}

Figure XII.1: Results of the macro defined previously to produce variety of test of already implemented distributions

page 370

CHAPTER XII. THE UNCERTAINTY MODELER MODULE The Circe method

Summary: Tests based on the EDF (TTestKolmogorovSmirnov, TTestCramerVonMises and
TTestAndersonDarling classes)

• TTestKolmogorovSmirnov(TDataServer tds, const char * sAtt, Option_t * option="")

Define the Kolmogorov-Smirnov (D) test for the attribute sAtt. No option is used.

• TTestCramerVonMises(TDataServer tds, const char * sAtt, Option_t * option="")

Define the Cramer-VonMises (W2) test for the attribute sAtt. No option is used.

• TTestAndersonDarling(TDataServer tds, const char * sAtt, Option_t * option="")

Define the Anderson-Darling (A2) test for the attribute sAtt. No option is used.

• computeScore(Option_t* option="")

Compute the score for the current test (D, W2 and A2) with laws defined in the option parameter. The laws are
separated by the ":" character. If the parameters of the law are defined by the user, they are defined in brackets "()"
as normal(30576,1450). If the parameters must be estimated by the algorithm, do not use the brackets as normal.
Actually, the laws implemented are the normal and lognormal laws.

XII.3 The Circe method

The Circe method is a statistical approach which is applied as an alternative to the expert judgement, used to deter-
mine the uncertainty of physical model’s parameters. These uncertainties can be tricky to estimate as some of these
parameters might not be directly measurable. However, it might be possible to use SET (separate-effect tests) experi-
ments, which are sensitive to the physical model, to derive an estimation of these uncertainties. This method has been
implemented in Uranie throughout the TCirce class. A description of the method is provided in [30]

page 371

The Circe method CHAPTER XII. THE UNCERTAINTY MODELER MODULE

Summary: TCirce class

• TCirce(TDataServer tds, const char * Ystar, const char * Yhat, const char * Derivatives, const char *
YstarUncert="", Option_t * option="")

Define the Circe method on the TDataServer tds where the experimental attribute is Yhat, the output of the
code is Ystar and the derivatives from each parameter are specified in the Derivatives (list of attributes separated by
the "," character).

• estimate(Option_t* option="")

Launch the process to estimate the vector of bias and the correlation matrix. No option is used.

• setTolerance(Double_t dtol)

Set the tolerance parameter to stop the algorithm. The default value is 1.0e-5.

• setBVectorInitial(TVectorD vec)

Set the initial B Vector which default vector is the null vector.

• setCMatrixInitial(TMatrixD mat)

Set the initial C matrix which default matrix is the identity matrix.

• setNCMatrix(Int_t n)

Set the number of loops to execute the algorithm with different initials C matrix. The first one is always the identity
matrix and the default value is one.

• Double_t getLikelihood()

Get the likelihood for the retained iteration.

• TVectorD getBVector()

Get the B vector for the retained iteration.

• TMatrixD getCMatrix()

Get the C matrix for the retained iteration.

page 372

Chapter XIII

The Reliability module

XIII.1 Introduction

So far, the Reliability module only provides basic classes for FORM-SORM studies using the Relauncher architecture.

XIII.2 Form Sorm

The FORM (First Order Reliability Method) and SORM (Second Order Reliability Method) try to estimate the probability
of failure of a system. It is often used when a monte-carlo approach is not affordable due to evaluation cost.

In short, its principle uses the notion of design point : the most probable point that exceeds safety threshold. A
probability transformation is applied to pass from physical space to a gaussian space, where all random variables are
standard normal ones, statistically independent one from another. In this space, FORM approximates the separate
function between safe and unsafe solutions with a tangent hyper-plane, while SORM approximates it with a second
order taylor expansion. From this design point, FORM estimation is directly calculable, while SORM needs to evaluate
the curves around it. Design point search is treated as a constrained optimisation problem.

Currently, Multi-FORM and Multi-SORM are not available, as well as the conjoint use of importance sampling with
FORM SORM.

A FORM-SORM problem is a kind of parametric studies. So, it could make the best of the Relauncher architecture.
Having this in mind, having a look at Chapter VIII is crucial in order to get good understanding of the following, already-
introduced, concepts.

XIII.2.1 Study outline

Before getting into the heart of its study, the user has to define the reliability function, which determines if the system
is secure or not. The standard steps to make a FORM SORM studies are:

1. define the problem

• declare the input parameters with their statistical law.

• choose the probability transformation between random spaces.

• define the TEval providing the reliability function.

• compose the two previous functions in a TSormEval.

page 373

TSimpleTransform CHAPTER XIII. THE RELIABILITY MODULE

2. find the design point (optimisation problem)

• define a TDataServer

• choose an optimisation solver (eventually configure it),

• create the corresponding master (eventually configure it), and declare the objective and constraints of the
problem.

• run the optimisation.

3. (FORM estimation is directly accessible from the last step in the TDataServer)

4. calculate SORM estimation

• define the TSorm object.

• run the estimation.

5. and finally, analyse the results.

To match the relauncher mold, separating evaluation from study, all parts but first are on the study side.

The second part deals with a constraint optimisation problem: find the most probable solution (objective) that is unsafe
(constraint). As the transformation function does not provide the gradient matrix and problem is constrained, the
TNloptCobyla algorithm is the recommended local solver. See the Reoptimizer chapter for details.

The FORM estimation is implicit and the SORM estimation is optional. The classes dedicated to FORM SORM studies
are described in the next chapter.

XIII.2.2 TSimpleTransform

Currently, the only available probability transformation in Uranie is the simplest one. It supposes that all random
variables are independent and have its statistical law known.

TSimpleTransform is a TEval subclass: it does not returned the gradient matrix. Its constructor has no argu-
ment. The addParameter method adds the physical random variables.

In fact, it is the inverse transformation that is implemented. The inputs are the normal variable values, and it computes
the physical values, the Hasofer-Lind indicator, and the FORM estimation.

XIII.2.3 TFormEval

TFormEval is a TComposeEval subclass used to compose the probability transformation and the safety function. The
constructor have two arguments corresponding to this two functions. To complete the definition, the addConstraint
method select the output variable used to classify safe and unsafe items. It looks like the addConstraint method
of Reoptimizer classes and has the same arguments: a TAttribute and an optional modifier.

This class has a helper method (addOjective) to declare both the objective and the constraint to the design point
optimisation problem.

page 374

CHAPTER XIII. THE RELIABILITY MODULE TSorm

XIII.2.4 TSorm

The SORM estimation needs the principal curves of the design point. The implemented method approximates these
curve: for each half axe of the hyper-plane, it searches the border line points of the separation function. The returned
probability uses the Breitung approximation.

The TSorm class is a TMaster subclass. The constructor has the two standard arguments: a TDataServer and
a TRun.

For each design points found in the TDataServer, the solverLoop method performs an estimation of the curves,
and completes its data with the FORM correction factor and SORM estimation. If they are many design points in the
TDataServer, it may be useful to filter them to perform a SORM estimation only with principal ones.

These searches can be done in parallel using an adequate TRun. It does not exploit if there is many points (it is often
not the case), but inside a point estimation, can treat each half axe searches in parallel. For a 6 input variable problem,
10 evaluation resources may be exploited.

page 375

TSorm CHAPTER XIII. THE RELIABILITY MODULE

page 376

Chapter XIV

Use-cases in C++

XIV.1 Introduction

Several use-cases of Uranie are described in this chapter with a small description of the implemented methods in
the Uranie platform. These macros are located in the sub-directory "/share/uranie/macros" of the installation folder of
Uranie ($URANIESYS).

In this chapter, inside each macro, the Uranie specific namespaces might not always be specified anymore. These
specifications are gathered in the rootlogon.C file, introduced in Section I.2.4, which is automatically loaded when
executing root. An example would be:

using namespace URANIE::DataServer;
using namespace URANIE::Launcher;
using namespace URANIE::Sampler;
using namespace URANIE::Optimizer;
using namespace URANIE::Modeler;
using namespace URANIE::UncertModeler;
using namespace URANIE::Sensitivity;
using namespace URANIE::Relauncher;
using namespace URANIE::Reoptimizer;
using namespace URANIE::Calibration;
using namespace URANIE::Reliability;
// using namespace URANIE::XMLProblem;
// using namespace URANIE::MpiRelauncher;

void rootlogon()
{

gStyle->SetPalette(1);
gStyle->SetOptDate(21);

//General graphical style
// Default colors
int white = 0;
int color = 30;

//Legend
gStyle->SetLegendBorderSize(0);
gStyle->SetFillStyle(0);

// Pads
gStyle->SetPadColor(white);
gStyle->SetTitleFillColor(white);

page 377

Macros DataServer CHAPTER XIV. USE-CASES IN C++

gStyle->SetStatColor(white);

}

/* ==================== Hint ====================

Might be practical to store this in a convenient place (for instance
your home directory) and to create an alias to make sure that you use
only one rootlogon file independently of where you are.

example : alias root="root -l ${HOME}/rootlogon.C"

Many style issue can be set once and for all here.

Warnings :
=> The name of the main function (in between the void and the () part)
has to be the same as the name of the file (without extension).
=> If you intend to change this file name and make it a hidden file (let’s
say ${HOME}/.toto.C, the name of the main function would have to start with
an underscore, so here it would be "void _toto()".

*/

XIV.2 Macros DataServer

In a first step, to get accustomed with TDataServer , we propose different macros related to this subject. Since it
constitutes the preliminary and almost mandatory step of a proper use of Uranie, these macros are only for educational
purposes.

XIV.2.1 Macro "dataserverAttributes.C"

XIV.2.1.1 Objective

The goal of this macro is only to master the objects TAttribute and TDataServer of Uranie. Three attributes
will be created and linked to a TDataServer object, then the log of this object will be printed to check internal data
of this TDataServer.

XIV.2.1.2 Macro Uranie

{

// Define the attribute "x"
TAttribute *px = new TAttribute("x", -2.0, 4.0);
px->setTitle("#Delta P^{#sigma}");
px->setUnity("#frac{mm^{2}}{s}");

// Define the attribute "y"
TAttribute *py = new TAttribute("y", 0.0, 1.0);

// Define the DataServer of the study
TDataServer *tds = new TDataServer("tds", "my first TDS");
// Add the attributes in the TDataServer
tds->addAttribute(px);
tds->addAttribute(py);

page 378

CHAPTER XIV. USE-CASES IN C++ Macro "dataserverAttributes.C"

tds->addAttribute(new TAttribute("z", 0.25, 0.50));

tds->printLog();

}

The first attribute "x" is defined on [-2.0, 4.0]; its title is ∆Pσ and unity mm2

s

TAttribute *px = new TAttribute("x", -2.0, 4.0);
px->setTitle("#Delta P^{#sigma}");
px->setUnity("#frac{mm^{2}}{s}");

The second attribute "y" is defined on [0.0,1.0]; it will be set with its name as title but without unity.

TAttribute *py = new TAttribute("y", 0.0, 1.0);

Secondly, a TDataServer object is created and the two attributes x and y created before are linked to this one.

TDataServer *tds = new TDataServer("tds", "my first TDS");
tds->addAttribute(px);
tds->addAttribute(py);

Finally, the last attribute z (defined on [0.25,0.50]) is directly added to the TDataServer (its title will be its name and
it will be set without unity) by creating it. An attribute could, indeed, be added to a TDataServer meanwhile creating
it, but then no other information than those available in the constructor would be set.

tds->addAttribute(new TAttribute("z", 0.25, 0.50));

Then, the log of the TDataServer object is printed.

tds->printLog();

Generally speaking, all Uranie objects have the printLog method which allows to print internal data of the object.

XIV.2.1.3 Console

Processing dataserverAttributes.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

TDataServer::printLog[]
Name[tds] Title[my first TDS]
Origin[Unknown]
_sdatafile[]
_sarchivefile[_dataserver_.root]

** TDataSpecification::printLog ******
** Name[uheader__tds] Title[Header of my first TDS]

** relationName[Header of my first TDS]

** attributs[4]

**** With _listOfAttributes
Attribute[0/4]

** TAttribute::printLog ******
** Name[tds__n__iter__]

page 379

Macro "dataserverAttributes.C" CHAPTER XIV. USE-CASES IN C++

** Title[tds__n__iter__]

** unity[]

** type[0]

** share[1]

** Origin[kIterator]

** Attribute[kInput]

** _snote[]
-- ←↩

-- ←↩

** - min[] max[]

** - mean[] std[]

** lowerBound[-1.42387e+64] upperBound[1.42387e+64]

** NOT _defaultValue[]

** NOT _stepValue[]

** No Attribute to substitute level[0]

Attribute[1/4]

** TAttribute::printLog ******
** Name[x]

** Title[#Delta P^{#sigma}]

** unity[#frac{mm^{2}}{s}]

** type[0]

** share[2]

** Origin[kAttribute]

** Attribute[kInput]

** _snote[]
-- ←↩

-- ←↩

** - min[] max[]

** - mean[] std[]

** lowerBound[-2] upperBound[4]

** NOT _defaultValue[]

** NOT _stepValue[]

** No Attribute to substitute level[0]

Attribute[2/4]

** TAttribute::printLog ******
** Name[y]

** Title[y]

** unity[]

** type[0]

** share[2]

** Origin[kAttribute]

** Attribute[kInput]

** _snote[]
-- ←↩

-- ←↩

** - min[] max[]

** - mean[] std[]

** lowerBound[0] upperBound[1]

** NOT _defaultValue[]

** NOT _stepValue[]

** No Attribute to substitute level[0]

page 380

CHAPTER XIV. USE-CASES IN C++ Macro "dataserverMerge.C"

Attribute[3/4]

** TAttribute::printLog ******
** Name[z]

** Title[z]

** unity[]

** type[0]

** share[2]

** Origin[kAttribute]

** Attribute[kInput]

** _snote[]
-- ←↩

-- ←↩

** - min[] max[]

** - mean[] std[]

** lowerBound[0.25] upperBound[0.5]

** NOT _defaultValue[]

** NOT _stepValue[]

** No Attribute to substitute level[0]

** TDataSpecification::fin de printLog *******************************
fin de TDataServer::printLog[]

XIV.2.2 Macro "dataserverMerge.C"

XIV.2.2.1 Objective

The objective of this macro is to merge data contained in a TDataServerwith data contained in another TDataServer.
Both TDataServer have to contain the same number of patterns. We choose here to merge two TDataServer,
loaded from two ASCII files, each of which contains 9 patterns.

The first ASCII file "tds1.dat" defines the four variables x, dy, z, theta:

#COLUMN_NAMES: x| dy| z| theta
#COLUMN_TITLES: x_{n}| "#delta y"| ""| #theta
#COLUMN_UNITS: N| Sec| KM/Sec| M^{2}

1 1 11 11
1 2 12 21
1 3 13 31
2 1 21 12
2 2 22 22
2 3 23 32
3 1 31 13
3 2 32 23
3 3 33 33

and the second ASCII file "tds2.dat" defines the four other variables x2, y, u, ua:

#COLUMN_NAMES: x2| y| u| ua

1 1 102 11
1 2 104 12
1 3 106 13
2 1 202 21
2 2 204 22
2 3 206 23

page 381

Macro "dataserverMerge.C" CHAPTER XIV. USE-CASES IN C++

3 1 302 31
3 2 304 32
3 3 306 33

The merging operation will be executed in the first TDataServer tds1; so it will contain all the attributes at the end.

XIV.2.2.2 Macro Uranie

{

TDataServer * tds1 = new TDataServer();
TDataServer * tds2 = new TDataServer();
tds1->fileDataRead("tds1.dat");
cout<<"Dumping tds1"<<endl;
tds1->Scan("*");

tds2->fileDataRead("tds2.dat");
cout<<"Dumping tds2"<<endl;
tds2->Scan("*");

tds1->merge(tds2);
cout<<"Dumping merged tds1 and tds2"<<endl;
tds1->Scan("*","","colsize=3 col=9::::::::");

}

Both TDataServers are filled with ASCII data files with the method filedataRead().

tds1->fileDataRead("tds1.dat");
tds2->fileDataRead("tds2.dat");

Data of the second dataserver tds2 are then merged into the first one.

tds1->merge(tds2);

Data are then dumped in the terminal:

tds1->Scan("*");

XIV.2.2.3 Console

Processing dataserverMerge.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

Dumping tds1

**
* Row * tds1__n__ * x.x * dy.dy * z.z * theta.the *
**
* 0 * 1 * 1 * 1 * 11 * 11 *
* 1 * 2 * 1 * 2 * 12 * 21 *
* 2 * 3 * 1 * 3 * 13 * 31 *
* 3 * 4 * 2 * 1 * 21 * 12 *
* 4 * 5 * 2 * 2 * 22 * 22 *

page 382

CHAPTER XIV. USE-CASES IN C++ Macro "dataserverLoadASCIIFilePasture.C"

* 5 * 6 * 2 * 3 * 23 * 32 *
* 6 * 7 * 3 * 1 * 31 * 13 *
* 7 * 8 * 3 * 2 * 32 * 23 *
* 8 * 9 * 3 * 3 * 33 * 33 *
**
Dumping tds2

**
* Row * tds2__n__ * x2.x2 * y.y * u.u * ua.ua *
**
* 0 * 1 * 1 * 1 * 102 * 11 *
* 1 * 2 * 1 * 2 * 104 * 12 *
* 2 * 3 * 1 * 3 * 106 * 13 *
* 3 * 4 * 2 * 1 * 202 * 21 *
* 4 * 5 * 2 * 2 * 204 * 22 *
* 5 * 6 * 2 * 3 * 206 * 23 *
* 6 * 7 * 3 * 1 * 302 * 31 *
* 7 * 8 * 3 * 2 * 304 * 32 *
* 8 * 9 * 3 * 3 * 306 * 33 *
**
Dumping merged tds1 and tds2

**
* Row * tds1__n__ * x.x * dy. * z.z * the * x2. * y.y * u.u * ua. *
**
* 0 * 1 * 1 * 1 * 11 * 11 * 1 * 1 * 102 * 11 *
* 1 * 2 * 1 * 2 * 12 * 21 * 1 * 2 * 104 * 12 *
* 2 * 3 * 1 * 3 * 13 * 31 * 1 * 3 * 106 * 13 *
* 3 * 4 * 2 * 1 * 21 * 12 * 2 * 1 * 202 * 21 *
* 4 * 5 * 2 * 2 * 22 * 22 * 2 * 2 * 204 * 22 *
* 5 * 6 * 2 * 3 * 23 * 32 * 2 * 3 * 206 * 23 *
* 6 * 7 * 3 * 1 * 31 * 13 * 3 * 1 * 302 * 31 *
* 7 * 8 * 3 * 2 * 32 * 23 * 3 * 2 * 304 * 32 *
* 8 * 9 * 3 * 3 * 33 * 33 * 3 * 3 * 306 * 33 *
**

XIV.2.3 Macro "dataserverLoadASCIIFilePasture.C"

XIV.2.3.1 Objective

The objective of this macro is to load two TDataServer objects using two different ways: either with an ASCII file
"pasture.dat" or with a design-of-experiments. Then, we evaluate the analytic function ModelPasture on this
two TDataServer. The data file "pasture.dat" is written in the "Salome-table" format of Uranie:

#COLUMN_NAMES: time| yield

9 8.93
14 10.8
21 18.59
28 22.33
42 39.35
57 56.11
63 61.73
70 64.62
79 67.08

XIV.2.3.2 Macro Uranie

page 383

Macro "dataserverLoadASCIIFilePasture.C" CHAPTER XIV. USE-CASES IN C++

#include "TMath.h"

void ModelPasture(Double_t *x, Double_t *y)
{

Double_t theta1=69.95, theta2=61.68, theta3=-9.209, theta4=2.378;

y[0] = theta1;
y[0] -= theta2* TMath::Exp(-1.0 * TMath::Exp(theta3 + theta4 * TMath::Log(x[0])));

}

void dataserverLoadASCIIFilePasture()
{

TCanvas *C = new TCanvas("mycanvas","mycanvas",1);

TDataServer* tds = new TDataServer();
tds->fileDataRead("pasture.dat");

tds->getTuple()->SetMarkerStyle(8);
tds->getTuple()->SetMarkerSize(1.5);
tds->draw("yield:time");

TLauncherFunction *tlf = new TLauncherFunction(tds, ModelPasture,"time","yhat");
tlf->run();

tds->getTuple()->SetMarkerColor(kBlue);
tds->getTuple()->SetLineColor(kBlue);

tds->draw("yhat:time","","lpsame");

TDataServer *tds2 = new TDataServer();
tds2->addAttribute(new TUniformDistribution("time2",9, 80));

TSampling *tsamp = new TSampling(tds2, "lhs", 1000);
tsamp->generateSample();

tds2->getTuple()->SetMarkerColor(kGreen);
tds2->getTuple()->SetLineColor(kGreen);
tlf = new TLauncherFunction(tds2, ModelPasture,"","yhat2");
tlf->run();

tds2->draw("yhat2:time2","","psame");
tds->draw("yhat:time","","lpsame");

gPad->SaveAs("pasture.png");

}

The design ModelPasture is defined in a function

void ModelPasture(Double_t *x, Double_t *y)
{

Double_t theta1=69.95, theta2=61.68, theta3=-9.209, theta4=2.378;

y[0] = theta1;
y[0] -= theta2* TMath::Exp(-1.0 * TMath::Exp(theta3 + theta4 * TMath::Log(x[0])));

}

The first TDataServer is filled with the ASCII file "pasture.dat" through the fileDataRead method

page 384

CHAPTER XIV. USE-CASES IN C++ Macro "dataserverLoadASCIIFilePasture.C"

tds->fileDataRead("pasture.dat");

The design is evaluated with the function ModelPasture applied on the input attribute time, leading to the output
attribute named yhat.

TLauncherFunction *tlf = new TLauncherFunction(tds, ModelPasture,"time","yhat");
tlf->run();

A TAttribute, obeying an uniform law on [9;80] is added to the second TDataServer which is filled with a
design-of-experiments of 1000 patterns, using the LHS method.

tds2->addAttribute(new TUniformDistribution("time2",9, 80));
TSampling *tsamp = new TSampling(tds2, "lhs", 1000);
tsamp->generateSample();

The design is now evaluated with this TDataServer on the attribute time2

tlf = new TLauncherFunction(tds2, ModelPasture,"","yhat2");
tlf->run();

XIV.2.3.3 Graph

Figure XIV.1: Graph of the macro "dataserverLoadASCIIFilePasture.C"

XIV.2.3.4 Console

Processing loadASCIIFilePasture.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr

page 385

Macro "dataserverLoadASCIIFile.C" CHAPTER XIV. USE-CASES IN C++

Date: Tue Jan 09, 2024

Info in <TCanvas::Print>: png file pasture.png has been created

XIV.2.4 Macro "dataserverLoadASCIIFile.C"

XIV.2.4.1 Objective

Loading data in a TDataServer, using the "Salome-table" format of Uranie and applying basic visualisation methods
on attributes.

The data file is named "flowrateUniformDesign.dat" and data correspond to an Uniform design-of-experiments
of 32 patterns for a "code" with 8 inputs (rω , r, Tu, Tl , Hu, Hl , L, Kω) along with a response ("yhat"). The data file
"flowrateUniformDesign.dat" is in the "Salome-table" format of Uranie.

#NAME: flowrateborehole
#TITLE: Uniform design of flow rate borehole problem proposed by Ho and Xu(2000)
#COLUMN_NAMES: rw| r| tu| tl| hu| hl| l| kw | ystar
#COLUMN_TITLES: r_{#omega}| r | T_{u} | T_{l} | H_{u} | H_{l} | L | K_{#omega} | y^{*}
#COLUMN_UNITS: m | m | m^{2}/yr | m^{2}/yr | m | m | m | m/yr | m^{3}/yr

0.0500 33366.67 63070.0 116.00 1110.00 768.57 1200.0 11732.14 26.18
0.0500 100.00 80580.0 80.73 1092.86 802.86 1600.0 10167.86 14.46
0.0567 100.00 98090.0 80.73 1058.57 717.14 1680.0 11106.43 22.75
0.0567 33366.67 98090.0 98.37 1110.00 734.29 1280.0 10480.71 30.98
0.0633 100.00 115600.0 80.73 1075.71 751.43 1600.0 11106.43 28.33
0.0633 16733.33 80580.0 80.73 1058.57 785.71 1680.0 12045.00 24.60
0.0700 33366.67 63070.0 98.37 1092.86 768.57 1200.0 11732.14 48.65
0.0700 16733.33 115600.0 116.00 990.00 700.00 1360.0 10793.57 35.36
0.0767 100.0 115600.0 80.73 1075.71 751.43 1520.0 10793.57 42.44
0.0767 16733.33 80580.0 80.73 1075.71 802.86 1120.0 9855.00 44.16
0.0833 50000.00 98090.0 63.10 1041.43 717.14 1600.0 10793.57 47.49
0.0833 50000.00 115600.0 63.10 1007.14 768.57 1440.0 11419.29 41.04
0.0900 16733.33 63070.0 116.00 1075.71 751.43 1120.0 11419.29 83.77
0.0900 33366.67 115600.0 116.00 1007.14 717.14 1360.0 11106.43 60.05
0.0967 50000.00 80580.0 63.10 1024.29 820.00 1360.0 9855.00 43.15
0.0967 16733.33 80580.0 98.37 1058.57 700.00 1120.0 10480.71 97.98
0.1033 50000.00 80580.0 63.10 1024.29 700.00 1520.0 10480.71 74.44
0.1033 16733.33 80580.0 98.37 1058.57 820.00 1120.0 10167.86 72.23
0.1100 50000.00 98090.0 63.10 1024.29 717.14 1520.0 10793.57 82.18
0.1100 100.00 63070.0 98.37 1041.43 802.86 1600.0 12045.00 68.06
0.1167 33366.67 63070.0 116.00 990.00 785.71 1280.0 12045.00 81.63
0.1167 100.00 98090.0 98.37 1092.86 802.86 1680.0 9855.00 72.5
0.1233 16733.33 115600.0 80.73 1092.86 734.29 1200.0 11419.29 161.35
0.1233 16733.33 63070.0 63.10 1041.43 785.71 1680.0 12045.00 86.73
0.1300 33366.67 80580.0 116.00 1110.00 768.57 1280.0 11732.14 164.78
0.1300 100.00 98090.0 98.37 1110.00 820.00 1280.0 10167.86 121.76
0.1367 50000.00 98090.0 63.10 1007.14 820.00 1440.0 10167.86 76.51
0.1367 33366.67 98090.0 116.00 1024.29 700.00 1200.0 10480.71 164.75
0.1433 50000.00 63070.0 116.00 990.00 785.71 1440.0 9855.00 89.54
0.1433 50000.00 115600.0 63.10 1007.14 734.29 1440.0 11732.14 141.09
0.1500 33366.67 63070.0 98.37 990.00 751.43 1360.0 11419.29 139.94
0.1500 100.00 115600.0 80.73 1041.43 734.29 1520.0 11106.43 157.59

XIV.2.4.2 Macro Uranie

page 386

CHAPTER XIV. USE-CASES IN C++ Macro "dataserverLoadASCIIFileYoungsModulus.C"

{
// Create a TDataServer
TDataServer * tds = new TDataServer();
// Load the data base in the DataServer
tds->fileDataRead("flowrateUniformDesign.dat");

// Graph
TCanvas *Canvas = new TCanvas("c1", "Graph for the Macro loadASCIIFile",5,64,1270,667);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();
pad->Divide(2,2);

pad->cd(1); tds->draw("ystar");
pad->cd(2); tds->draw("ystar:rw");
pad->cd(3); tds->drawTufte("ystar:rw");
pad->cd(4); tds->drawProfile("ystar:rw");

tds->startViewer();

}

XIV.2.4.3 Graph

Figure XIV.2: Graph of the macro "dataserverLoadASCIIFile.C"

XIV.2.5 Macro "dataserverLoadASCIIFileYoungsModulus.C"

XIV.2.5.1 Objective

The objective of this macro is to load the ASCII data file "youngsmodulus.dat" and to apply visualisations on the
attribute E with different options. The data file "youngsmodulus.dat" is in the "Salome-table" format of Uranie.

#NAME: youngsmodulus
#TITLE: Young’s Modulus E for the Golden Gate Bridge
#COLUMN_NAMES: E
#COLUMN_TITLES: Young’s Modulues
#COLUMN_UNITS: ksi

28900

page 387

Macro "dataserverLoadASCIIFileYoungsModulus.C" CHAPTER XIV. USE-CASES IN C++

29200
27400
28700
28400
29900
30200
29500
29600
28400
28300
29300
29300
28100
30200
30200
30300
31200
28800
27600
29600
25900
32000
33400
30600
32700
31300
30500
31300
29000
29400
28300
30500
31100
29300
27400
29300
29300
31300
27500
29400

Data are then exported in header file "youngsmodulus.h" which can be imported in some C file:

// File "youngsmodulus.h" generated by ROOT v5.34/32
// DateTime Tue Nov 3 10:40:13 2015
// DataServer : Name="youngsmodulus" Title="Young’s Modulus E for the Golden Gate Bridge" ←↩

Global Select=""

#define youngsmodulus_nPattern 41

// Attribute Name="E"
Double_t E[youngsmodulus_nPattern] = {
2.890000000e+04,
2.920000000e+04,
2.740000000e+04,
2.870000000e+04,
2.840000000e+04,
2.990000000e+04,
3.020000000e+04,
2.950000000e+04,
2.960000000e+04,
2.840000000e+04,

page 388

CHAPTER XIV. USE-CASES IN C++ Macro "dataserverLoadASCIIFileYoungsModulus.C"

2.830000000e+04,
2.930000000e+04,
2.930000000e+04,
2.810000000e+04,
3.020000000e+04,
3.020000000e+04,
3.030000000e+04,
3.120000000e+04,
2.880000000e+04,
2.760000000e+04,
2.960000000e+04,
2.590000000e+04,
3.200000000e+04,
3.340000000e+04,
3.060000000e+04,
3.270000000e+04,
3.130000000e+04,
3.050000000e+04,
3.130000000e+04,
2.900000000e+04,
2.940000000e+04,
2.830000000e+04,
3.050000000e+04,
3.110000000e+04,
2.930000000e+04,
2.740000000e+04,
2.930000000e+04,
2.930000000e+04,
3.130000000e+04,
2.750000000e+04,
2.940000000e+04,

};
// End of attribute E

// End of File youngsmodulus.h

XIV.2.5.2 Macro Uranie

{

TDataServer * tds = new TDataServer();
tds->fileDataRead("youngsmodulus.dat");
// gEnv->SetValue("Hist.Binning.1D.x", 10);
// tds->getTuple()->Draw("E>>Attribute E(6, 25000, 34000)","","text");
// tds->getTuple()->Draw("E>>Attribute E(16, 25000, 34000)");

tds->computeStatistic("E");
tds->getAttribute("E")->printLog();

tds->exportDataHeader("youngsmodulus.h");

TCanvas *Canvas = new TCanvas("c1", "Graph for the Macro loadASCIIFile",5,64,1270,667);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();
pad->Divide(2,2);

pad->cd(1); tds->draw("E");
pad->cd(2); tds->draw("E" ,"", "nclass=sturges");
pad->cd(3); tds->draw("E" ,"", "nclass=scott");
pad->cd(4); tds->draw("E" ,"", "nclass=fd");

page 389

Macro "dataserverLoadASCIIFileYoungsModulus.C" CHAPTER XIV. USE-CASES IN C++

}

The TDataServer is filled with the ASCII data file "youngsmodulus.dat" with the method fileDataRead:

tds->fileDataRead("youngsmodulus.dat");

Variable E is then visualised with different options:

tds->draw("E" ,"", "nclass=sturges");
tds->draw("E" ,"", "nclass=scott");
tds->draw("E" ,"", "nclass=fd");

Characteristic values are computed (maximum, minimum, mean and standard deviation) with:

tds->computeStatistic("E");

Data are exported in a header file with

tds->exportDataHeader("youngsmodulus.h");

XIV.2.5.3 Graph

Figure XIV.3: Graph of the macro "dataserverLoadASCIIFileYoungsModulus.C"

XIV.2.5.4 Console

Processing loadASCIIFileYoungsModulus.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

** TAttribute::printLog ******
** Name[E]

** Title[Young’s Modulues]

** unity[ksi]

page 390

CHAPTER XIV. USE-CASES IN C++ Macro "dataserverLoadASCIIFileIonosphere.C"

** type[0]

** share[1]

** Origin[kAttribute]

** Attribute[kInput]

** _snote[]
-- ←↩

-- ←↩

** - min[25900] max[33400]

** - mean[29575.6] std[1506.95]

** lowerBound[-1.42387e+64] upperBound[1.42387e+64]

** NOT _defaultValue[]

** NOT _stepValue[]

** No Attribute to substitute level[0]

XIV.2.6 Macro "dataserverLoadASCIIFileIonosphere.C"

XIV.2.6.1 Objective

The objective of this macro is to load the ASCII data file ionosphere.dat which defines 34 input variables and
one output variable y and applies visualisation on one of these variables. The data file ionosphere.dat is in the
"Salome-table" format of Uranie but is not shown for convenience.

XIV.2.6.2 Macro Uranie

{
TDataServer * tds = new TDataServer();
tds->fileDataRead("ionosphere.dat");

tds->getAttribute("x28")->SetTitle("#Delta P_{e}^{F_{iso}}");

// Graph
TCanvas *Canvas = new TCanvas("c1", "Graph for the Macro loadASCIIFileIonosphere" ←↩

,5,64,1270,667);
tds->draw("x28");

}

The TDataServer is filled with ionosphere.dat with the fileDataRead method

tds->fileDataRead("ionosphere.dat");

A new title is set for the variable x28

tds->getAttribute("x28")->SetTitle("#Delta P_{e}^{F_{iso}}");

This variable is then drawn with its new title

tds->draw("x28");

page 391

Macro "dataserverLoadASCIIFileCornell.C" CHAPTER XIV. USE-CASES IN C++

XIV.2.6.3 Graph

Figure XIV.4: Graph of the macro "dataserverLoadASCIIFileIonosphere.C"

XIV.2.7 Macro "dataserverLoadASCIIFileCornell.C"

XIV.2.7.1 Objective

The objective of this macro is to load the ASCII data file cornell.dat which defines seven input variables and one
output variable y on twelve patterns. The input file cornell.dat is in the "Salome-table" format of Uranie

#NAME: cornell
#TITLE: Dataset Cornell 1990
#COLUMN_NAMES: x1 | x2 | x3 | x4 | x5 | x6 | x7 | y
#COLUMN_TITLES: x_{1} | x_{2} | x_{3} | x_{4} | x_{5} | x_{6} | x_{7} | y

0.00 0.23 0.00 0.00 0.00 0.74 0.03 98.7
0.00 0.10 0.00 0.00 0.12 0.74 0.04 97.8
0.00 0.00 0.00 0.10 0.12 0.74 0.04 96.6
0.00 0.49 0.00 0.00 0.12 0.37 0.02 92.0
0.00 0.00 0.00 0.62 0.12 0.18 0.08 86.6
0.00 0.62 0.00 0.00 0.00 0.37 0.01 91.2
0.17 0.27 0.10 0.38 0.00 0.00 0.08 81.9
0.17 0.19 0.10 0.38 0.02 0.06 0.08 83.1
0.17 0.21 0.10 0.38 0.00 0.06 0.08 82.4
0.17 0.15 0.10 0.38 0.02 0.10 0.08 83.2
0.21 0.36 0.12 0.25 0.00 0.00 0.06 81.4
0.00 0.00 0.00 0.55 0.00 0.37 0.08 88.1

XIV.2.7.2 Macro Uranie

{

TDataServer * tds = new TDataServer();
tds->fileDataRead("cornell.dat");

TMatrix matCorr = tds->computeCorrelationMatrix("");
matCorr.Print();

page 392

CHAPTER XIV. USE-CASES IN C++ Macro "dataserverComputeQuantile.C"

}

The TDataServer is filled with cornell.dat with the fileDataRead method:

tds->fileDataRead("cornell.dat");

Then the correlation matrix is computed on all attributes:

TMatrix matCorr = tds->computeCorrelationMatrix("");

XIV.2.7.3 Console

Processing loadASCIIFileCornell.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

8x8 matrix is as follows

| 0 | 1 | 2 | 3 | 4 |
--

0 | 1 0.1042 0.9999 0.3707 -0.548
1 | 0.1042 1 0.1008 -0.5369 -0.2926
2 | 0.9999 0.1008 1 0.374 -0.5482
3 | 0.3707 -0.5369 0.374 1 -0.2113
4 | -0.548 -0.2926 -0.5482 -0.2113 1
5 | -0.8046 -0.1912 -0.8052 -0.6457 0.4629
6 | 0.6026 -0.59 0.6071 0.9159 -0.2744
7 | -0.8373 -0.07082 -0.838 -0.7067 0.4938

| 5 | 6 | 7 |
--

0 | -0.8046 0.6026 -0.8373
1 | -0.1912 -0.59 -0.07082
2 | -0.8052 0.6071 -0.838
3 | -0.6457 0.9159 -0.7067
4 | 0.4629 -0.2744 0.4938
5 | 1 -0.6564 0.9851
6 | -0.6564 1 -0.7411
7 | 0.9851 -0.7411 1

XIV.2.8 Macro "dataserverComputeQuantile.C"

XIV.2.8.1 Objective

The objective of this macro is to test the classical quantile estimation and compare it to the Wilks estimation for a
dummy gaussian distribution. Four different estimations of the 95% quantile value are done (along with one estimation
of th 99% quantile) for illustration purposes:

• using the usual method with a 200-points sample.

page 393

Macro "dataserverComputeQuantile.C" CHAPTER XIV. USE-CASES IN C++

• using the usual method with a 400-points sample.

• using the Wilks method with a 95% confidence level (with 59-points sample).

• using the Wilks method with a 95% confidence level (with 400-points sample).

• using the Wilks method with a 99% confidence level (with 90-points sample).

XIV.2.8.2 Macro

{

//Create a DataServer
TDataServer *tds = new TDataServer("foo","pouet");
tds->addAttribute("x"); //With one attribute

//Create Histogram to store the quantile values
TH1F *Q200 = new TH1F("quantile200","",60,1,4); Q200->SetLineColor(1); Q200->SetLineWidth ←↩

(2);
TH1F *Q400 = new TH1F("quantile400","",60,1,4); Q400->SetLineColor(4); Q400->SetLineWidth ←↩

(2);
TH1F *QW95 = new TH1F("quantileWilks95","",60,1,4); QW95->SetLineColor(2); QW95-> ←↩

SetLineWidth(2);
TH1F *QW95400 = new TH1F("quantileWilks95400","",60,1,4); QW95400->SetLineColor(8); ←↩

QW95400->SetLineWidth(2);
TH1F *QW99 = new TH1F("quantileWilks99","",60,1,4); QW99->SetLineColor(6); QW99-> ←↩

SetLineWidth(2);

//Defining the sample size
int nb[4] = {200,400,59,90};
double quant=0.95; //Quantile value
double CL[2] = {0.95, 0.99};//Confidence level value for the two Wilks computation
//Loop over the number of estimation (2 usual with different number of sample and 1 with ←↩

Wilks estimation)
for(unsigned int iq=0; iq<4; iq++)
{

//Produce 10000 drawing to get smooth distributio,
for(unsigned int itest=0; itest < 10000; itest++)
{

tds->createTuple(); // Create the tuple to store value

// Fill it with random drawing of centered gaussian
for(unsigned int ival=0; ival < nb[iq]; ival++)

tds->getTuple()->Fill(ival+1, gRandom->Gaus(0,1));

// Estimate the quantile...
double value;
if (iq<2)
{

// ... with usual methods...
tds->computeQuantile("x",quant, value);
if(iq==0) Q200->Fill(value); // ... on a 200-points sample
else
{

Q400->Fill(value); // ... on a 400-points sample
tds->estimateQuantile("x", quant, value, CL[iq-1]);
QW95400->Fill(value); // compute the quantile at 95% CL
}

}
else

page 394

CHAPTER XIV. USE-CASES IN C++ Macro "dataserverComputeQuantile.C"

{
// ... with the wilks optimised sample
tds->estimateQuantile("x", quant, value, CL[iq-2]);
if(iq==2) QW95->Fill(value); // compute the quantile at 95% CL
else QW99->Fill(value); // compute the quantile at 99% CL

}

// Delete the tuple
tds->deleteTuple();

}
}

//Produce the plot with requested style
gStyle->SetOptStat(0);
TCanvas *can = new TCanvas("Can","Can",10,10,1000,1000);
Q400->GetXaxis()->SetTitle("Quant_{95%}(Gaus_{(0,1)})");
Q400->GetXaxis()->SetTitleOffset(1.2);
Q400->Draw();
Q200->Draw("same");
QW95->Draw("same");
QW95400->Draw("same");
QW99->Draw("same");

//Add the theoretical estimation
TLine *lin = new TLine(); lin->SetLineStyle(3);
lin->DrawLine(1.645,0,1.645, Q400->GetMaximum());

//Add a block of legend
TLegend *leg = new TLegend(0.4,0.6,0.8,0.85);
leg->AddEntry(lin,"Theoretical quantile","l");
leg->AddEntry(Q200, "Usual quantile (200 pts)","l");
leg->AddEntry(Q400, "Usual quantile (400 pts)","l");
leg->AddEntry(QW95, "Wilks quantile CL=95% (59 pts)","l");
leg->AddEntry(QW95400, "Wilks quantile CL=95% (400 pts)","l");
leg->AddEntry(QW99, "Wilks quantile CL=99% (90 pts)","l");
leg->SetBorderSize(0);
leg->Draw();

}

In this macro, a dummy dataserver is created with a single attribute named "x". Four histograms are prepared to store
the resulting value. Then the same loop will be used to computed 10000 values of every quantile with different switchs
to use one method instead of the other, or to change the number of points in the sample and/or the confidence level.
All this is defined in the small part before the loop:

//Defining the sample size
int nb[4] = {200,400,59,90};
double quant=0.95; //Quantile value
double CL[2] = {0.95, 0.99};//Confidence level value for the two Wilks computation

Then the computation is performed, first for the usual method (first two iterations of iq), then for the Wilks estimation
(last two iterations of iq). Every computational result is stored in the corresponding histogram which is finally displayed
and shown in the following subsection.

page 395

Macro "dataserverGeyserStat.C" CHAPTER XIV. USE-CASES IN C++

XIV.2.8.3 Graph

Figure XIV.5: Graph of the macro "dataserverComputeQuantile.C"

XIV.2.9 Macro "dataserverGeyserStat.C"

XIV.2.9.1 Objective

This part shows the complete code used to produce the console display in Section II.4.3.

XIV.2.9.2 Macro Uranie

{
TDataServer *tdsGeyser =new TDataServer("geyser","poet");
tdsGeyser->fileDataRead("geyser.dat");
tdsGeyser->computeStatistic("x1");

cout<<"min(x1)= "<<tdsGeyser->getAttribute("x1")->getMinimum()<<"; max(x1)= "<<tdsGeyser ←↩
->getAttribute("x1")->getMaximum()
<<"; mean(x1)= "<<tdsGeyser->getAttribute("x1")->getMean()<<"; std(x1)= "<< ←↩

tdsGeyser->getAttribute("x1")->getStd()<<endl;
}

page 396

CHAPTER XIV. USE-CASES IN C++ Macro "dataserverGeyserRank.C"

XIV.2.9.3 Console

This macro should result in this output in console:

min(x1)= 1.6; max(x1)= 5.1; mean(x1)= 3.48778; std(x1)= 1.14137

XIV.2.10 Macro "dataserverGeyserRank.C"

XIV.2.10.1 Objective

This part shows the complete code used to produce the console display in Section II.4.2.

XIV.2.10.2 Macro Uranie

{
TDataServer *tdsGeyser =new TDataServer("geyser","poet");
tdsGeyser->fileDataRead("geyser.dat");
tdsGeyser->computeRank("x1");
tdsGeyser->computeStatistic("Rk_x1");

cout<<"NPatterns="<<tdsGeyser->getNPatterns()<<"; min(Rk_x1)= "<<tdsGeyser->getAttribute ←↩
("Rk_x1")->getMinimum()
<<"; max(Rk_x1)= "<<tdsGeyser->getAttribute("Rk_x1")->getMaximum()<<endl;

}

XIV.2.10.3 Console

This macro should result in this output in console:

NPatterns=272; min(Rk_x1)= 1; max(Rk_x1)= 272

XIV.2.11 Macro "dataserverNormaliseVector.C"

XIV.2.11.1 Objective

This part shows the complete code used to produce the console display in Section II.4.1.

XIV.2.11.2 Macro Uranie

{
TDataServer *tdsop =new TDataServer("foo","pouet");
tdsop->fileDataRead("tdstest.dat");

//Compute a global normalisation of v, CenterReduced
tdsop->normalize("v","GCR",TDataServer::kCR,true);
//Compute a normalisation of v, CenterReduced (not global but entry by entry)
tdsop->normalize("v","CR",TDataServer::kCR,false);

//Compute a global normalisation of v, Centered
tdsop->normalize("v","GCent",TDataServer::kCentered);

page 397

Macro "dataserverComputeStatVector.C" CHAPTER XIV. USE-CASES IN C++

//Compute a normalisation of v, Centered (not global but entry by entry)
tdsop->normalize("v","Cent",TDataServer::kCentered,false);

//Compute a global normalisation of v, ZeroOne
tdsop->normalize("v","GZO",TDataServer::kZeroOne);
//Compute a normalisation of v, ZeroOne (not global but entry by entry)
tdsop->normalize("v","ZO",TDataServer::kZeroOne,false);

//Compute a global normalisation of v, MinusOneOne
tdsop->normalize("v","GMOO",TDataServer::kMinusOneOne,true);
//Compute a normalisation of v, MinusOneOne (not global but entry by entry)
tdsop->normalize("v","MOO",TDataServer::kMinusOneOne,false);

tdsop->scan("v:vGCR:vCR:vGCent:vCent:vGZO:vZO:vGMOO:vMOO","","colsize=4 col=2:5::::::::") ←↩
;

}

XIV.2.11.3 Console

This macro should result in this output in console:

* Row * Instance * v * vGCR * vCR * vGCe * vCen * vGZO * vZO * vGMO * vMOO *

* 0 * 0 * 1 * -1.46 * -1 * -4 * -3 * 0 * 0 * -1 * -1 *
* 0 * 1 * 2 * -1.09 * -1 * -3 * -3 * 0.12 * 0 * -0.7 * -1 *
* 0 * 2 * 3 * -0.73 * -1 * -2 * -3 * 0.25 * 0 * -0.5 * -1 *
* 1 * 0 * 4 * -0.36 * 0 * -1 * 0 * 0.37 * 0.5 * -0.2 * 0 *
* 1 * 1 * 5 * 0 * 0 * 0 * 0 * 0.5 * 0.5 * 0 * 0 *
* 1 * 2 * 6 * 0.365 * 0 * 1 * 0 * 0.62 * 0.5 * 0.25 * 0 *
* 2 * 0 * 7 * 0.730 * 1 * 2 * 3 * 0.75 * 1 * 0.5 * 1 *
* 2 * 1 * 8 * 1.095 * 1 * 3 * 3 * 0.87 * 1 * 0.75 * 1 *
* 2 * 2 * 9 * 1.460 * 1 * 4 * 3 * 1 * 1 * 1 * 1 *

XIV.2.12 Macro "dataserverComputeStatVector.C"

XIV.2.12.1 Objective

This part shows the complete code used to produce the console display in Section II.4.3.1.

XIV.2.12.2 Macro Uranie

{
TDataServer *tdsop =new TDataServer("foo","poet");
tdsop->fileDataRead("tdstest.dat");

//Considering every element of a vector independent from the others
tdsop->computeStatistic("x");
TAttribute *px = tdsop->getAttribute("x");

cout<<"min(x[0])= "<<px->getMinimum(0)<<"; max(x[0])= "<<px->getMaximum(0)
<<"; mean(x[0])= "<<px->getMean(0)<<"; std(x[0])= "<<px->getStd(0)<<endl;

cout<<"min(x[1])= "<<px->getMinimum(1)<<"; max(x[1])= "<<px->getMaximum(1)
<<"; mean(x[1])= "<<px->getMean(1)<<"; std(x[1])= "<<px->getStd(1)<<endl;

page 398

CHAPTER XIV. USE-CASES IN C++ Macro "dataserverComputeCorrelationMatrixVector.C"

cout<<"min(x[2])= "<<px->getMinimum(2)<<"; max(x[2])= "<<px->getMaximum(2)
<<"; mean(x[2])= "<<px->getMean(2)<<"; std(x[2])= "<<px->getStd(2)<<endl;

cout<<"min(xtot)= "<<px->getMinimum(3)<<"; max(xtot)= "<<px->getMaximum(3)
<<"; mean(xtot)= "<<px->getMean(3)<<"; std(xtot)= "<<px->getStd(3)<<endl;

//Statistic for a single realisation of a vector, not considering other events
tdsop->addAttribute("Min_x","Min$(x)");
tdsop->addAttribute("Max_x","Max$(x)");
tdsop->addAttribute("Mean_x","Sum$(x)/Length$(x)");

tdsop->scan("x:Min_x:Max_x:Mean_x","","colsize=5 col=2::::");
}

XIV.2.12.3 Console

This macro should result in this output in console, split in two parts, the first one being from Uranie’s method

min(x[0])= 1; max(x[0])= 7; mean(x[0])= 3; std(x[0])= 3.4641
min(x[1])= 2; max(x[1])= 8; mean(x[1])= 4.66667; std(x[1])= 3.05505
min(x[2])= 3; max(x[2])= 9; mean(x[2])= 6.66667; std(x[2])= 3.21455
min(xtot)= 1; max(xtot)= 9; mean(xtot)= 4.77778; std(xtot)= 3.23179

The second on the other hand results from ROOT’s methods (the second part of the code shown above):

* Row * Instance * x * Min_x * Max_x * Mean_x *

* 0 * 0 * 1 * 1 * 3 * 2 *
* 0 * 1 * 2 * 1 * 3 * 2 *
* 0 * 2 * 3 * 1 * 3 * 2 *
* 1 * 0 * 7 * 7 * 9 * 8 *
* 1 * 1 * 8 * 7 * 9 * 8 *
* 1 * 2 * 9 * 7 * 9 * 8 *
* 2 * 0 * 1 * 1 * 8 * 4.3333 *
* 2 * 1 * 4 * 1 * 8 * 4.3333 *
* 2 * 2 * 8 * 1 * 8 * 4.3333 *

XIV.2.13 Macro "dataserverComputeCorrelationMatrixVector.C"

XIV.2.13.1 Objective

This part shows the complete code used to produce the console display in Section II.4.5.1.

XIV.2.13.2 Macro Uranie

{
TDataServer *tdsop =new TDataServer("foo","poet");
tdsop->fileDataRead("tdstest.dat");

// Consider a and x attributes (every element of the vector)
TMatrixD globalOne = tdsop->computeCorrelationMatrix("x:a");
globalOne.Print();

// Consider a and x attributes (cherry-picking a single element of the vector)

page 399

Macro "dataserverComputeQuantileVec.C" CHAPTER XIV. USE-CASES IN C++

TMatrixD focusedOne = tdsop->computeCorrelationMatrix("x[1]:a");
focusedOne.Print();

}

XIV.2.13.3 Console

This macro should result in this output in console.

4x4 matrix is as follows

| 0 | 1 | 2 | 3 |

0 | 1 0.9449 0.6286 0.189
1 | 0.9449 1 0.8486 0.5
2 | 0.6286 0.8486 1 0.8825
3 | 0.189 0.5 0.8825 1

2x2 matrix is as follows

| 0 | 1 |

0 | 1 0.5
1 | 0.5 1

XIV.2.14 Macro "dataserverComputeQuantileVec.C"

XIV.2.14.1 Objective

This part shows the complete code used to produce the console display in Section II.4.4.1.

XIV.2.14.2 Macro Uranie

{
TDataServer *tdsvec = new TDataServer("foo", "bar");
tdsvec->fileDataRead("aTDSWithVectors.dat");

double probas[3]={0.2, 0.6, 0.8}; double quants[3];
tdsvec->computeQuantile("rank", 3, probas, quants);

TAttribute *prank = tdsvec->getAttribute("rank");
int nbquant;
prank->getQuantilesSize(nbquant); // (1)
cout << "nbquant = " << nbquant << endl;

double aproba=0.8; double aquant;
prank->getQuantile(aproba, aquant); // (2)
cout << "aproba = " << aproba << ", aquant = " <<
aquant << endl;

double theproba[3], thequant[3];
prank->getQuantiles(theproba, thequant); // (3)
for(int i_quant=0; i_quant<nbquant; ++i_quant) {

cout << "(theproba, thequant)[" << i_quant << "] = "

page 400

CHAPTER XIV. USE-CASES IN C++ Macro "dataserverDrawQQPlot.C"

<< "(" << theproba[i_quant] << ", " <<
thequant[i_quant] << ")" << endl;

}

vector<double> allquant;
prank->getQuantileVector(aproba, allquant); // (4)
cout << "aproba = " << aproba << ", allquant = ";
for(double quant_i: allquant)

cout << quant_i << " ";
cout << endl;

}

XIV.2.14.3 Console

This macro should result in this output in console:

nbquant = 3
aproba = 0.8, aquant = 6.4
(theproba, thequant)[0] = (0.2, 1.6)
(theproba, thequant)[1] = (0.6, 4.8)
(theproba, thequant)[2] = (0.8, 6.4)
aproba = 0.8, allquant = 6.4 7.4

XIV.2.15 Macro "dataserverDrawQQPlot.C"

XIV.2.15.1 Objective

This macro is an example of how to produce QQ-plot for a certain number of randomly-drawn samples, providing the
correct parameter values along with modified versions to illustrate the impact.

XIV.2.15.2 Macro Uranie

{
// Create a TDS with 8 kind of distributions
double p1=1.3, p2=4.5, p3=0.9, p4=4.4; // Fixed values for parameters

TDataServer *tds0 = new TDataServer();
tds0->addAttribute(new TNormalDistribution("norm", p1, p2));
tds0->addAttribute(new TLogNormalDistribution("logn", p1, p2));
tds0->addAttribute(new TUniformDistribution("unif", p1, p2));
tds0->addAttribute(new TExponentialDistribution("expo", p1, p2));
tds0->addAttribute(new TGammaDistribution("gamm", p1, p2, p3));
tds0->addAttribute(new TBetaDistribution("beta", p1, p2, p3, p4));
tds0->addAttribute(new TWeibullDistribution("weib", p1, p2, p3));
tds0->addAttribute(new TGumbelMaxDistribution("gumb", p1, p2));

// Create the sample
TBasicSampling *fsamp = new TBasicSampling(tds0, "lhs", 200);
fsamp->generateSample();

// Define number of laws, their name and numbers of parameters
unsigned int nLaws=8;
string laws[8]={"normal", "lognormal", "uniform", "gamma", "weibull", "beta", " ←↩

exponential", "gumbelmax"}; // number of parameters to put in () for the ←↩
corresponding law

page 401

Macro "dataserverDrawQQPlot.C" CHAPTER XIV. USE-CASES IN C++

int npar[8]={2, 2, 2, 3, 3, 4, 2, 2};

//Create the canvas
TCanvas *c = new TCanvas("c1","",800,1000);
//Create the 8 pads
TPad *apad = new TPad("apad","apad",0, 0.03, 1, 1); apad->Draw(); apad->cd();
apad->Divide(2,4);

// Number of points to compare theoretical and empirical values
int nS=1000;
double mod=0.8; // Factor used to artificially change the parameter values

TString opt=""; //option of the drawQQPlot method
stringstream sstr;
for(unsigned int ilaw=0; ilaw<nLaws; ilaw++)
{

// Clean sstr
sstr.str("");
// Add nominal configuration
sstr << laws[ilaw] << "("<<p1<<","<<p2<<((npar[ilaw]>=3)?Form(",%g",p3):"")<<((npar ←↩

[ilaw]>=4)?Form(",%g",p4):"")<<")";
// Changing par1
sstr << ":" << laws[ilaw] << "("<<p1*mod<<","<<p2<<((npar[ilaw]>=3)?Form(",%g",p3): ←↩

"")<<((npar[ilaw]>=4)?Form(",%g",p4):"")<<")";
// Changing par2
sstr << ":" << laws[ilaw] << "("<<p1<<","<<p2*mod<<((npar[ilaw]>=3)?Form(",%g",p3): ←↩

"")<<((npar[ilaw]>=4)?Form(",%g",p4):"")<<")";
// Changing par3
if(npar[ilaw] >=3)

sstr << ":" << laws[ilaw] << "("<<p1<<","<<p2<<((npar[ilaw]>=3)?Form(",%g",p3* ←↩
mod):"")<<((npar[ilaw]>=4)?Form(",%g",p4):"")<<")";

// Changing par4
if(npar[ilaw] >=4)

sstr << ":" << laws[ilaw] << "("<<p1<<","<<p2<<((npar[ilaw]>=3)?Form(",%g",p3): ←↩
"")<<((npar[ilaw]>=4)?Form(",%g",p4*mod):"")<<")";

//cout<<sstr.str()<<endl;

apad->cd(ilaw+1);
// Produce the plot
tds0->drawQQPlot(laws[ilaw].substr(0,4).c_str(), sstr.str().c_str(), nS, opt);

}

}

The very first step of this macro is to create a sample that will contain a design-of-experiments filled with 200 locations,
using various statistical laws. All the tested laws, are those available in the drawQQPlot method and they might
depend on 2 to 4 parameters, defined a but randomly at the beginning of this piece of code.

// Create a TDS with 8 kind of distributions
double p1=1.3, p2=4.5, p3=0.9, p4=4.4; // Fixed values for parameters

TDataServer *tds0 = new TDataServer();
tds0->addAttribute(new TNormalDistribution("norm", p1, p2));
tds0->addAttribute(new TLogNormalDistribution("logn", p1, p2));
tds0->addAttribute(new TUniformDistribution("unif", p1, p2));
tds0->addAttribute(new TExponentialDistribution("expo", p1, p2));
tds0->addAttribute(new TGammaDistribution("gamm", p1, p2, p3));
tds0->addAttribute(new TBetaDistribution("beta", p1, p2, p3, p4));
tds0->addAttribute(new TWeibullDistribution("weib", p1, p2, p3));
tds0->addAttribute(new TGumbelMaxDistribution("gumb", p1, p2));

page 402

CHAPTER XIV. USE-CASES IN C++ Macro "dataserverDrawQQPlot.C"

Once done, the sample is generated using TBasicSampling object with an LHS algorithm. On top of this, despite
the plot preparation with canvas and pad generation, several variables are set to prepare the tests, as shown below

// Define number of laws, their name and numbers of parameters
unsigned int nLaws=8;
string laws[8]={"normal", "lognormal", "uniform", "gamma", "weibull", "beta", "exponential" ←↩

, "gumbelmax"};
int npar[8]={2, 2, 2, 3, 3, 4, 2, 2}; // number of parameters to put in () for the ←↩

corresponding law

// Number of points to compare theoretical and empirical values
int nS=1000;
double mod=0.8; // Factor used to artificially change the parameter values

Finally, after the line of hypothesis to be tested is constructed (the first paragraph in the for loop) the drawQQPlot
method is called for every empirical law in the following line.

tds0->drawQQPlot(laws[ilaw].substr(0,4).c_str(), sstr.str().c_str(), nS, opt);

For the first case, when one wants to test the TNormalDistribution "norm" with the known parameters and a
variation of each, it resumes as if this line was run:

tds0->drawQQPlot("norm", "normal(1.3,4.5):normal(1.04,4.5):normal(1.3,3.6)", nS);

The first field is the attribute to be tested, while the second one provides the three hypothesis with which our attribute
under investigation will be compared. The third argument is the number of steps to be computed for quantiles. The
result of this macro is shown below.

page 403

Macro "dataserverDrawQQPlot.C" CHAPTER XIV. USE-CASES IN C++

XIV.2.15.3 Graph

Figure XIV.6: Graph of the macro "dataserverDrawQQPlot.C"

page 404

CHAPTER XIV. USE-CASES IN C++ Macro "dataserverDrawPPPlot.C"

XIV.2.16 Macro "dataserverDrawPPPlot.C"

XIV.2.16.1 Objective

This macro is an example of how to produce PP-plot for a certain number of randomly-drawn samples, providing the
correct parameter values along with modified versions to illustrate the impact.

XIV.2.16.2 Macro Uranie

{
// Create a TDS with 8 kind of distributions
double p1=1.3, p2=4.5, p3=0.9, p4=4.4; // Fixed values for parameters

TDataServer *tds0 = new TDataServer();
tds0->addAttribute(new TNormalDistribution("norm", p1, p2));
tds0->addAttribute(new TLogNormalDistribution("logn", p1, p2));
tds0->addAttribute(new TUniformDistribution("unif", p1, p2));
tds0->addAttribute(new TExponentialDistribution("expo", p1, p2));
tds0->addAttribute(new TGammaDistribution("gamm", p1, p2, p3));
tds0->addAttribute(new TBetaDistribution("beta", p1, p2, p3, p4));
tds0->addAttribute(new TWeibullDistribution("weib", p1, p2, p3));
tds0->addAttribute(new TGumbelMaxDistribution("gumb", p1, p2));

// Create the sample
TBasicSampling *fsamp = new TBasicSampling(tds0, "lhs", 200);
fsamp->generateSample();

// Define number of laws, their name and numbers of parameters
unsigned int nLaws=8;
string laws[8]={"normal", "lognormal", "uniform", "gamma", "weibull", "beta", " ←↩

exponential", "gumbelmax"}; // number of parameters to put in () for the ←↩
corresponding law

int npar[8]={2, 2, 2, 3, 3, 4, 2, 2};

//Create the canvas
TCanvas *c = new TCanvas("c1","",800,1000);
//Create the 8 pads
TPad *apad = new TPad("apad","apad",0, 0.03, 1, 1); apad->Draw(); apad->cd();
apad->Divide(2,4);

// Number of points to compare theoretical and empirical values
int nS=1000;
double mod=0.8; // Factor used to artificially change the parameter values

TString opt=""; //option of the drawPPPlot method
stringstream sstr;
for(unsigned int ilaw=0; ilaw<nLaws; ilaw++)
{

// Clean sstr
sstr.str("");
// Add nominal configuration
sstr << laws[ilaw] << "("<<p1<<","<<p2<<((npar[ilaw]>=3)?Form(",%g",p3):"")<<((npar ←↩

[ilaw]>=4)?Form(",%g",p4):"")<<")";
// Changing par1
sstr << ":" << laws[ilaw] << "("<<p1*mod<<","<<p2<<((npar[ilaw]>=3)?Form(",%g",p3): ←↩

"")<<((npar[ilaw]>=4)?Form(",%g",p4):"")<<")";
// Changing par2
sstr << ":" << laws[ilaw] << "("<<p1<<","<<p2*mod<<((npar[ilaw]>=3)?Form(",%g",p3): ←↩

"")<<((npar[ilaw]>=4)?Form(",%g",p4):"")<<")";

page 405

Macro "dataserverDrawPPPlot.C" CHAPTER XIV. USE-CASES IN C++

// Changing par3
if(npar[ilaw] >=3)

sstr << ":" << laws[ilaw] << "("<<p1<<","<<p2<<((npar[ilaw]>=3)?Form(",%g",p3* ←↩
mod):"")<<((npar[ilaw]>=4)?Form(",%g",p4):"")<<")";

// Changing par4
if(npar[ilaw] >=4)

sstr << ":" << laws[ilaw] << "("<<p1<<","<<p2<<((npar[ilaw]>=3)?Form(",%g",p3): ←↩
"")<<((npar[ilaw]>=4)?Form(",%g",p4*mod):"")<<")";

cout<<sstr.str()<<endl;

apad->cd(ilaw+1);
// Produce the plot
tds0->drawPPPlot(laws[ilaw].substr(0,4).c_str(), sstr.str().c_str(), nS, opt);

}

}

The macro is based on the one discussed in Section XIV.2.15. The only difference is this line

tds0->drawPPPlot(laws[ilaw].substr(0,4).c_str(), sstr.str().c_str(), nS, opt);

The call of the drawing method above can be resume, for the first case, like this:

tds0->drawPPPlot("norm", "normal(1.3,4.5):normal(1.04,4.5):normal(1.3,3.6)", nS);

The first field is the attribute to be tested, while the second one provides the three hypothesis with which our attribute
under investigation will be compared. The third argument is the number of steps to be computed for probabilities. The
result of this macro is shown below.

page 406

CHAPTER XIV. USE-CASES IN C++ Macro "dataserverDrawPPPlot.C"

XIV.2.16.3 Graph

Figure XIV.7: Graph of the macro "dataserverDrawPPPlot.C"

page 407

Macro "dataserverPCAExample.C" CHAPTER XIV. USE-CASES IN C++

XIV.2.17 Macro "dataserverPCAExample.C"

XIV.2.17.1 Objective

The goal of this macro is to show how to handle a PCA analysis. It is not much discussed here, as a large description
of both methods and concepts is done in Section II.6.

XIV.2.17.2 Macro Uranie

{
// Read the database
TDataServer * tdsPCA = new TDataServer("tdsPCA", "my TDS");
tdsPCA->fileDataRead("Notes.dat");

// Create the PCA object precising the variables of interest
TPCA * tpca = new TPCA(tdsPCA, "Maths:Physics:French:Latin:Music");
tpca->compute();

bool graphical=true; // do graphs
bool dumponscreen=true; //or dumping results
bool showcoordinate=false; // show the coordinate of the points while dumping results

if(graphical)
{

// Draw all point in PCA planes
TCanvas *cPCA = new TCanvas("cpca", "PCA",800,800);
TPad *apad1 = new TPad("apad1","apad1",0, 0.03, 1, 1); apad1->Draw(); apad1->cd();
apad1->Divide(2,2);
apad1->cd(1); tpca->drawPCA(1,2,"Pupil");
apad1->cd(3); tpca->drawPCA(1,3,"Pupil");
apad1->cd(4); tpca->drawPCA(2,3,"Pupil");

// Draw all variable weight in PC definition
TCanvas *cLoading = new TCanvas("cLoading", "Loading Plot",800,800);
TPad *apad2 = new TPad("apad2","apad2",0, 0.03, 1, 1); apad2->Draw(); apad2->cd();
apad2->Divide(2,2);
apad2->cd(1); tpca->drawLoading(1,2);
apad2->cd(3); tpca->drawLoading(1,3);
apad2->cd(4); tpca->drawLoading(2,3);

// Draw the eigen values in different normalisation
TCanvas *c = new TCanvas("cEigenValues", "Eigen Values Plot",1100,500);
TPad *apad3 = new TPad("apad3","apad3",0, 0.03, 1, 1); apad3->Draw(); apad3->cd();
apad3->Divide(3,1);
TNtupleD *ntd = tpca->getResultNtupleD();
apad3->cd(1); ntd->Draw("eigen:i","","lp");
apad3->cd(2); ntd->Draw("eigen_pct:i","","lp"); gPad->SetGrid();
apad3->cd(3); ntd->Draw("sum_eigen_pct:i","","lp"); gPad->SetGrid();

}

if(dumponscreen)
{

int nPCused=5; // 3 to see only the meaningful ones
TString PCname="", Cosname="", Contrname="", Variable="Pupil";
for (unsigned int iatt=1; iatt<=nPCused; iatt++)
{

page 408

CHAPTER XIV. USE-CASES IN C++ Macro "dataserverPCAExample.C"

PCname+=Form("PC_%d",iatt)+((iatt!=nPCused)?TString(":"):TString(""));
Cosname+=Form("cosca_%d",iatt)+((iatt!=nPCused)?TString(":"):TString(""));
Contrname+=Form("contr_%d",iatt)+((iatt!=nPCused)?TString(":"):TString(""));

}

cout<<endl<<"========= EigenValues ====================="<<endl;
tpca->getResultNtupleD()->Scan("*");

if(showcoordinate)
{

cout<<endl<<"========= EigenVectors ====================="<<endl;
tpca->_matEigenVectors.Print();

cout<<endl<<"========= New Coordinates ====================="<<endl;
tdsPCA->scan((Variable+":"+PCname).Data());

}

TDSNtupleD *varRes = tpca->getVariableResultNtupleD();
cout<<endl<<"=============== Looking at variables: Quality of representation ←↩

====================="<<endl;
varRes->Scan(("Variable:"+Cosname).Data());

cout<<endl<<"==================== Looking at variables: Contribution to axis ←↩
====================="<<endl;

varRes->Scan(("Variable:"+Contrname).Data());

cout<<endl<<"================== Looking at events: Quality of representation ←↩
===================="<<endl;

tdsPCA->scan((Variable+":"+Cosname).Data());

cout<<endl<<"===================== Looking at events: Contribution to axis ←↩
======================="<<endl;

tdsPCA->scan((Variable+":"+Contrname).Data());

}
}

This first part of this macro is described in Section II.6. We will focus here on the second part, where all the numerical
results are dumped on screen. These results are stored in the dataserver for the points and in a dedicated ntuple for
the variable that can be retrieved by calling the method getVariableResultNtupleD. In both cases, the results
can be split into two kinds:

• the quality of the representation: it is called "cosca_X" as it is a squared cosinus of the projection of the source under
study (point or subject) on the X-th PC.

• the contribution to axis: it is called "contr_X" as it is the contribution of the source under study (point or subject) to
the definition of the X-th PC.

We start by defining the list of variables that one might want to display

int nPCused=5; // 3 to see only the meaningful ones
TString PCname="", Cosname="", Contrname="", Variable="Pupil";
for (unsigned int iatt=1; iatt<=nPCused; iatt++)
{
//list of PC: PC_1:PC_2:PC_3:PC_4:PC_5
PCname+=Form("PC_%d",iatt)+((iatt!=nPCused)?TString(":"):TString(""));
//list of quality coeff: cosca_1:cosca_2:cosca_3:cosca_4:cosca_5
Cosname+=Form("cosca_%d",iatt)+((iatt!=nPCused)?TString(":"):TString(""));

page 409

Macro "dataserverPCAExample.C" CHAPTER XIV. USE-CASES IN C++

//list of contribution: contr_1:contr_2:contr_3:contr_4:contr_5
Contrname+=Form("contr_%d",iatt)+((iatt!=nPCused)?TString(":"):TString(""));
}

From there, once the variable ntuple is retrieved, one can dump both the quality and contribution coefficients for the
variable, here the subjects (it leads to the second and third block in the output shown in Section XIV.2.17.3).

TDSNtupleD *varRes = tpca->getVariableResultNtupleD();
cout<<endl<<"=============== Looking at variables: Quality of representation ←↩

====================="<<endl;
varRes->Scan(("Variable:"+Cosname).Data());

cout<<endl<<"==================== Looking at variables: Contribution to axis ←↩
====================="<<endl;

varRes->Scan(("Variable:"+Contrname).Data());

Finally, one can do the same for the data points, with the same Scan method (which lead to the fourth and fifth block
in the output shown in Section XIV.2.17.3).

cout<<endl<<"================== Looking at events: Quality of representation ←↩
===================="<<endl;

tdsPCA->scan((Variable+":"+Cosname).Data());

cout<<endl<<"===================== Looking at events: Contribution to axis ←↩
======================="<<endl;

tdsPCA->scan((Variable+":"+Contrname).Data());

XIV.2.17.3 Console

========= EigenValues =====================

**
* Row * i.i * eigen.eig * eigen_pct * sum_eigen *
**
* 0 * 1 * 2.8618175 * 57.236350 * 57.236350 *
* 1 * 2 * 1.1506811 * 23.013622 * 80.249973 *
* 2 * 3 * 0.9831407 * 19.662814 * 99.912787 *
* 3 * 4 * 0.0039371 * 0.0787424 * 99.991530 *
* 4 * 5 * 0.0004234 * 0.0084696 * 100 *
**

=============== Looking at variables: Quality of representation =====================

**
* Row * Variable * cosca_1 * cosca_2 * cosca_3 * cosca_4 * cosca_5 *
**
* 0 * Maths * 0.649485 * 0.32645 * 0.0235449 * 0.0003614 * 0.0001582 *
* 1 * Physics * 0.804627 * 0.185581 * 0.0086212 * 0.0010515 * 0.0001193 *
* 2 * French * 0.574697 * 0.373378 * 0.0509446 * 0.0008976 * 8.252e-05 *
* 3 * Latin * 0.828562 * 0.157999 * 0.0117556 * 0.0016205 * 6.335e-05 *
* 4 * Music * 0.0044470 * 0.107272 * 0.888274 * 5.976e-06 * 8.299e-08 *
**

==================== Looking at variables: Contribution to axis =====================

**
* Row * Variable * contr_1 * contr_2 * contr_3 * contr_4 * contr_5 *
**
* 0 * Maths * 0.226948 * 0.283702 * 0.0239486 * 0.0917987 * 0.373602 *
* 1 * Physics * 0.281159 * 0.16128 * 0.0087691 * 0.267082 * 0.28171 *
* 2 * French * 0.200815 * 0.324485 * 0.0518182 * 0.228004 * 0.194878 *
* 3 * Latin * 0.289523 * 0.137309 * 0.0119572 * 0.411598 * 0.149613 *

page 410

CHAPTER XIV. USE-CASES IN C++ Macros Sampler

* 4 * Music * 0.0015539 * 0.0932252 * 0.903507 * 0.0015180 * 0.0001959 *
**

================== Looking at events: Quality of representation ====================

**
* Row * Pupil * cosca_1 * cosca_2 * cosca_3 * cosca_4 * cosca_5 *
**
* 0 * Jean * 0.8854534 * 0.0522119 * 0.0619429 * 0.0002655 * 0.0001260 *
* 1 * Aline * 0.7920409 * 0.0542262 * 0.1530381 * 0.0006354 * 5.916e-05 *
* 2 * Annie * 0.4784294 * 0.4813342 * 0.0384099 * 0.0018007 * 2.560e-05 *
* 3 * Monique * 0.8785990 * 0.0024790 * 0.1180158 * 0.0009035 * 2.557e-06 *
* 4 * Didier * 0.8515216 * 0.1382946 * 0.0079754 * 0.0021718 * 3.640e-05 *
* 5 * Andre * 0.2465355 * 0.3961581 * 0.3567663 * 9.471e-05 * 0.0004451 *
* 6 * Pierre * 0.0263090 * 0.7670958 * 0.2060832 * 0.0004625 * 4.925e-05 *
* 7 * Brigitte * 0.1876629 * 0.5897686 * 0.2211409 * 0.0013390 * 8.836e-05 *
* 8 * Evelyne * 0.0583185 * 0.3457931 * 0.5953786 * 0.0004600 * 4.957e-05 *
**

===================== Looking at events: Contribution to axis =======================

**
* Row * Pupil * contr_1 * contr_2 * contr_3 * contr_4 * contr_5 *
**
* 0 * Jean * 0.3012931 * 0.0441856 * 0.0613538 * 0.0656820 * 0.2897335 *
* 1 * Aline * 0.0618830 * 0.0105370 * 0.0348056 * 0.0360894 * 0.0312404 *
* 2 * Annie * 0.0401366 * 0.1004284 * 0.0093797 * 0.1098075 * 0.0145176 *
* 3 * Monique * 0.3784615 * 0.0026558 * 0.1479781 * 0.2828995 * 0.0074454 *
* 4 * Didier * 0.1484067 * 0.0599446 * 0.0040461 * 0.2751439 * 0.0428726 *
* 5 * Andre * 0.0348742 * 0.1393737 * 0.1469047 * 0.0097384 * 0.4255425 *
* 6 * Pierre * 0.0041001 * 0.2973223 * 0.0934888 * 0.0524003 * 0.0518702 *
* 7 * Brigitte * 0.0157710 * 0.1232678 * 0.0540974 * 0.0817989 * 0.0501849 *
* 8 * Evelyne * 0.0150734 * 0.2222843 * 0.4479453 * 0.0864396 * 0.0865925 *
**

XIV.3 Macros Sampler

XIV.3.1 Macro "samplingFlowrate.C"

XIV.3.1.1 Objective

The objective of this macro is to generate a design-of-experiments, of length 100 using the LHS method, with eight
random attributes (rω , r, Tu, Tl , Hu, Hl , L, Kω) which obey uniform laws on specific intervals.

XIV.3.1.2 Macro Uranie

{
Int_t nS = 1000;
// Define the DataServer
TDataServer *tds = new TDataServer("tdsFlowrate", "Design of experiments for Flowrate");

// Add the study attributes
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));

page 411

Macro "samplingFlowrate.C" CHAPTER XIV. USE-CASES IN C++

tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

// test Generateur de plan d’experience
TSampling * sampling = new TSampling(tds, "lhs", nS);
sampling->generateSample();

tds->exportData("_flowrate_sampler_.dat");

// Visualisation
TCanvas *Canvas = new TCanvas("Canvas", "Graph for the Macro samplingFlowrate" ←↩

,5,64,1270,667);
gStyle->SetPalette(1);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();

pad->Divide(2, 2);
pad->cd(1); tds->draw("r");
pad->cd(2); tds->draw("rw");
pad->cd(3); tds->drawTufte("rw:r");
pad->cd(4); tds->draw("rw:r:hu");

}

An uniform law is set for each attribute and then, linked to a the TDataServer:

tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

The sampling is generated with the LHS method:

TSampling * sampling = new TSampling(tds, "lhs", nS);
sampling->generateSample();

Data are exported in an ASCII file:

tds->exportData("_flowrate_sampler_.dat");

page 412

CHAPTER XIV. USE-CASES IN C++ Macro "samplingLHS.C"

XIV.3.1.3 Graph

Figure XIV.8: Graph of the macro "samplingFlowrate.C"

XIV.3.2 Macro "samplingLHS.C"

XIV.3.2.1 Objective

Generate a design-of-experiments of 5000 patterns, using the LHS method, with three random attributes:

1. Attribute x1 obeys an uniform law on interval [3, 4];

2. Attribute x2 obeys a normal law with mean value equal to 0.5 and standard deviation set to 1.5;

3. Attribute x3 follows a triangular law on interval [1, 5] with mode 4.

XIV.3.2.2 Macro Uranie

{
// Create a TDataServer
TDataServer * tds = new TDataServer();
// Fill the DataServer with the three attributes of the study
tds->addAttribute(new TUniformDistribution("x1", 3., 4.));
tds->addAttribute(new TNormalDistribution("x2", 0.5, 1.5));
tds->addAttribute(new TTriangularDistribution("x3", 1., 5., 4.));

// Generate the sampling from the TDataServer
TSampling *sampling = new TSampling(tds, "lhs", 5000);
sampling->generateSample();

tds->StartViewer();

// Graph
TCanvas *Canvas = new TCanvas("c1", "Graph for the Macro sampling",5,64,1270,667);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();
pad->Divide(2,2);

page 413

Macro "samplingLHSCorrelation.C" CHAPTER XIV. USE-CASES IN C++

pad->cd(1); tds->Draw("x1");
pad->cd(2); tds->Draw("x2");
pad->cd(3); tds->Draw("x3");
pad->cd(4); tds->drawTufte("x1:x2");

}

Laws are set for each attribute and linked to a TDataServer:

tds->addAttribute(new TUniformDistribution("x1", 3., 4.));
tds->addAttribute(new TNormalDistribution("x2", 0.5, 1.5));
tds->addAttribute(new TTriangularDistribution("x3", 1., 5., 4.));

The sampling is generated with the LHS method!

TSampling *sampling = new TSampling(tds, "lhs", 5000);
sampling->generateSample();

XIV.3.2.3 Graph

Figure XIV.9: Graph of the macro "samplingLHS.C"

XIV.3.3 Macro "samplingLHSCorrelation.C"

XIV.3.3.1 Objective

Generate a design-of-experiments, of 3000 patterns using the LHS method, with 3 random attributes and taking into
account a correlation between the first two attributes. This correlation, equals to 0.99, is computed using the rank
values (the Spearmann definition, c.f. Section III.3 and in [?] for more details).

1. Attribute x1 follows an uniform law on interval [3, 4];

2. Attribute x2 follows a normal law with a mean value equal to 0.5 and 1.5 as standard deviation;

3. Attribute x3 obeys a triangular law on interval [1, 5] with mode 4.

page 414

CHAPTER XIV. USE-CASES IN C++ Macro "samplingLHSCorrelation.C"

XIV.3.3.2 Macro Uranie

{
// Create a TDataServer
TDataServer * tds = new TDataServer();
// Fill the DataServer with the three attributes of the study
tds->addAttribute(new TUniformDistribution("x1", 3., 4.));
tds->addAttribute(new TNormalDistribution("x2", 0.5, 1.5));
tds->addAttribute(new TTriangularDistribution("x3", 1., 5., 4.));

// Generate the sampling from the TDataServer
TSampling *sampling = new TSampling(tds, "lhs", 3000);
sampling->setUserCorrelation(0, 1, 0.99);
sampling->generateSample();

tds->exportData("toto.dat","x1:x3");
tds->exportDataHeader("toto.h","x1:x2");

// Graph
TCanvas *Canvas = new TCanvas("c1", "Graph for the Macro samplingCorrelation" ←↩

,5,64,1270,667);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();
pad->Divide(2,2);

pad->cd(1); tds->Draw("x1");
pad->cd(2); tds->Draw("x2");
pad->cd(3); tds->Draw("x3");
pad->cd(4); tds->drawTufte("x1:x2");

}

Laws are set for each attribute and linked to a TDataServer:

tds->addAttribute(new TUniformDistribution("x1", 3., 4.));
tds->addAttribute(new TNormalDistribution("x2", 0.5, 1.5));
tds->addAttribute(new TTriangularDistribution("x3", 1., 5., 4.));

The sampling is generated with the LHS method and a correlation is set between the two first attributes:

TSampling *sampling = new TSampling(tds, "lhs", 3000);
sampling->setUserCorrelation(0, 1, 0.99);
sampling->generateSample();

Data are partially exported in an ASCII file and a header file:

tds->exportData("toto.dat","x1:x3");
tds->exportDataHeader("toto.h","x1:x2");

page 415

Macro "samplingQMC.C" CHAPTER XIV. USE-CASES IN C++

XIV.3.3.3 Graph

Figure XIV.10: Graph de la macro "samplingLHSCorrelation.C"

XIV.3.4 Macro "samplingQMC.C"

XIV.3.4.1 Objective

Generate a design-of-experiments of 100 patterns using quasi Monte-Carlo methods ("Halton" or "Sobol") with 12
random attributes, following an uniform law on [3.,2.]. All these information are introduced by variables which will be
used by the rest of the macro.

XIV.3.4.2 Macro Uranie

{
// Parameters
Int_t nSampler = 100;
TString sQMC ="halton"; // halton / sobol
Int_t nVar = 12;

// Create a TDataServer
TDataServer * tds = new TDataServer();

// Fill the DataServer with the nVar attributes of the study
for (Int_t ivar=0; ivar<nVar; ivar++)
tds->addAttribute(new TUniformDistribution(Form("x%d", ivar+1), -3.0, 2.0));

// Generate the quasi Monte-Carlo sequence from the TDataServer
TQMC * qmc = new TQMC(tds, sQMC, nSampler);
qmc->generateSample();

// Visualisation
TCanvas *Canvas = new TCanvas("c1", "Graph for the Macro qmc",5,64,1270,667);
Canvas->Range(0,0,25,18);

page 416

CHAPTER XIV. USE-CASES IN C++ Macro "samplingBasicSampling.C"

TPaveLabel *pl = new TPaveLabel(1,16.3,24,17.5, Form("qMC sequence : %s", sQMC.Data())," ←↩
br");

pl->SetBorderSize(0);
pl->Draw();

pad1 = new TPad("pad1", "Determ", 0.02,0.05,0.48,0.88);
pad2 = new TPad("pad2","Stoch",0.52,0.05,0.98,0.88);
pad1->Draw();
pad2->Draw();

pad1->cd(); tds->drawTufte("x2:x1");
pad2->cd(); tds->drawTufte("x11:x12");

}

Laws are set for each attribute and linked to a TDataServer:

for (Int_t ivar=0; ivar<nVar; ivar++)
tds->addAttribute(new TUniformDistribution(Form("x%d", ivar+1), -3.0, 2.0));

The sampling is generated with the QMC method and a correlation is set between the two first attributes:

TString sQMC ="halton";
TQMC * qmc = new TQMC(tds, sQMC, nSampler);
qmc->generateSample();

The rest of the code is used to produce a plot.

XIV.3.4.3 Graph

Figure XIV.11: Graph of the macro "samplingQMC.C"

XIV.3.5 Macro "samplingBasicSampling.C"

XIV.3.5.1 Objective

The objective is to perform three basic samplings, the first with 10000 variables on 10 patterns using a SRS method,
the second with 10000 variables on 10 patterns with a LHS method and the third with 10000 variables on 5000 patterns
with a SRS method. Each sampling is related to a specific function, and these three functions are run in a fourth one.

page 417

Macro "samplingBasicSampling.C" CHAPTER XIV. USE-CASES IN C++

XIV.3.5.2 Macro Uranie

void test_big_sampling(Bool_t bsave = kFALSE)
{

TDataServer *tds = new TDataServer();

cout << " - Creating attributes..." << endl;
for(Int_t i = 0; i < 4000; i++)

tds->addAttribute(new TUniformDistribution(Form("x_%d",i), 0.0, 1.0));

TBasicSampling *s = new TBasicSampling(tds, "srs", 5000);

cout << " - Starting sampling..." << endl;
s->generateSample();

if (bsave) {
// WARNING: The generated file is quite big (~300 Mo)
cout << " - Saving data..." << endl;
tds->exportData("_sampling_basic_sampling_big_sampling_.dat");

} else {
cout << " - No saving data (bsave = kFALSE); and the generated file is quite big ←↩

(~300 Mo)." << endl;
}

}

void test_small_srs_sampling(Bool_t bsave = kFALSE)
{

TDataServer *tds = new TDataServer();

cout << " - Creating attributes..." << endl;
for(Int_t i = 0; i < 10000; i++)

tds->addAttribute(new TUniformDistribution(Form("x_%d",i), 0.0, 1.0));

TBasicSampling *s = new TBasicSampling(tds, "srs", 10);

cout << " - Starting sampling..." << endl;
s->generateSample();

if (bsave) {
cout << " - Saving data..." << endl;
tds->exportData("_sampling_basic_sampling_small_srs_sampling_.dat");

} else
cout << " - No saving data (bsave = kFALSE)." << endl;

}

void test_small_lhs_sampling(Bool_t bsave = kFALSE)
{

TDataServer *tds = new TDataServer();

cout << " - Creating attributes..." << endl;
for(Int_t i = 0; i < 10000; i++)

tds->addAttribute(new TUniformDistribution(Form("x_%d",i), 0.0, 1.0));

TBasicSampling *s = new TBasicSampling(tds, "lhs", 10);

cout << " - Starting sampling..." << endl;
s->generateSample();

if (bsave) {
cout << " - Saving data..." << endl;
tds->exportData("_sampling_basic_sampling_small_lhs_sampling_.dat");

page 418

CHAPTER XIV. USE-CASES IN C++ Macro "samplingOATRegular.C"

} else
cout << " - No saving data (bsave = kFALSE)." << endl;

}

void samplingBasicSampling()
{
cout << endl << "***" << endl;
cout << " ** Test small SRS sampling (10000 attributes, 10 data)" << endl;
test_small_srs_sampling(kTRUE);
cout << "***" << endl;
gROOT->ls();

cout << endl << "***" << endl;
cout << " ** Test small LHS sampling (10000 attributes, 10 data)" << endl;
test_small_lhs_sampling(kTRUE);
cout << "***" << endl;
gROOT->ls();

cout << endl << "***" << endl;
cout << " ** Test big sampling (4000 attributes, 5000 data)" << endl;
test_big_sampling();
cout << "***" << endl;
gROOT->ls();

}

XIV.3.6 Macro "samplingOATRegular.C"

XIV.3.6.1 Objective

This part shows the complete code used to produce the console display in Section III.6.3.3.

XIV.3.6.2 Macro Uranie

{
// step 1
TDataServer *tds = new TDataServer("tdsoat","Data server for simple OAT design");
tds->addAttribute(new TAttribute("x1"));
tds->addAttribute(new TAttribute("x2"));

// step 2
tds->getAttribute("x1")->setDefaultValue(0.0);
tds->getAttribute("x2")->setDefaultValue(10.0);

// step 3
TOATDesign *oatSampler = new TOATDesign(tds, "regular", 4);

// step 4
Bool_t use_percentage = kTRUE;
oatSampler->setRange("x1", 2.0);
oatSampler->setRange("x2", 40.0, use_percentage);

page 419

Macro "samplingOATRandom.C" CHAPTER XIV. USE-CASES IN C++

// step 5
oatSampler->generateSample();

// display
tds->scan();

}

XIV.3.7 Macro "samplingOATRandom.C"

XIV.3.7.1 Objective

This part shows the complete code used to produce the console display in Section III.6.3.4.

XIV.3.7.2 Macro Uranie

{
// step 1
TDataServer *tds = new TDataServer("tdsoat","Data server for simple OAT design");
tds->addAttribute(new TUniformDistribution("x1", -5.0, 5.0));
tds->addAttribute(new TNormalDistribution("x2", 11.0, 1.0));

// step 2
tds->getAttribute("x1")->setDefaultValue(0.0);
tds->getAttribute("x2")->setDefaultValue(10.0);

// step 3
TOATDesign *oatSampler = new TOATDesign(tds, "lhs", 1000);

// step 4
Bool_t use_percentage = kTRUE;
oatSampler->setRange("x1", 2.0);
oatSampler->setRange("x2", 40.0, use_percentage);

// step 5
oatSampler->generateSample();

TCanvas c("can","can",10,32,1200,600);
TPad *apad = new TPad("apad","apad",0, 0.03, 1, 1);
apad->Draw();
apad->Divide(2,1);
apad->cd(1);
tds->draw("x1","__modified_att__ == 1");
apad->cd(2);
tds->draw("x2","__modified_att__ == 2");

}

XIV.3.8 Macro "samplingOATMulti.C"

XIV.3.8.1 Objective

This part shows the complete code used to produce the console display in Section III.6.3.5.

page 420

CHAPTER XIV. USE-CASES IN C++ Macro "samplingOATRange.C"

XIV.3.8.2 Macro Uranie

{
// step 1
TDataServer *tds = new TDataServer("tdsoat","Data server for simple OAT design");
tds->fileDataRead("myNominalValues.dat");

// step 3
TOATDesign *oatSampler = new TOATDesign(tds);

// step 4
Bool_t use_percentage = kTRUE;
oatSampler->setRange("x1", 2.0);
oatSampler->setRange("x2", 40.0, use_percentage);

// step 5
oatSampler->generateSample();

// display
tds->scan();
}

XIV.3.9 Macro "samplingOATRange.C"

XIV.3.9.1 Objective

This part shows the complete code used to produce the console display in Section III.6.3.6.

XIV.3.9.2 Macro Uranie

{
// step 1
TDataServer *tds = new TDataServer("tds","Data server for simple OAT design");
tds->fileDataRead("myNominalValues.dat");

// step 3
TOATDesign *oatSampler = new TOATDesign(tds);

// step 4
Bool_t use_percentage = kTRUE;
oatSampler->setRange("x1", "rx1");
oatSampler->setRange("x2", 40.0, use_percentage);

// step 5
oatSampler->generateSample();

// display
tds->scan();
}

XIV.3.10 Macro "samplingSpaceFilling.C"

XIV.3.10.1 Objective

This macro shows the usage of the TSpaceFilling class and the resulting design-of-experiments in three simple
dataserver cases:

page 421

Macro "samplingSpaceFilling.C" CHAPTER XIV. USE-CASES IN C++

• with two uniform distributions

• with one uniform and one gaussian distributions

• with two gaussian distributions

For each of these configurations (represented in the following plot by a line), the three available algorithms are also
tested. They are called:

• SaltelliA

• SaltelliB

• Cukier

This kind of design-of-experiments is not intented to be used regurlarly, it is requested only by few mechanisms like the
FAST and RBD methods which rely on fourier transformations. This macro and, above all, the following plot, is made
mainly for illustration purpose.

XIV.3.10.2 Macro Uranie

void GenerateAndDrawIt(TPad* pad, TDataServer *tds, TSpaceFilling *tsp, int nb, const char ←↩
*title)

{
pad->cd(nb+1);
tds->deleteTuple();
tsp->generateSample();
tds->drawTufte("x2:x1");
((TPaveLabel*)(pad->GetPad(nb+1)->GetPrimitive("TPave")))->SetLabel("");
((TH1F*)gPad->GetPrimitive("htemp"))->SetTitle(title);
gPad->Modified();

}

void samplingSpaceFilling()
{

//Attributes
TUniformDistribution *att1 = new TUniformDistribution("x1",10,12);
TUniformDistribution *att2 = new TUniformDistribution("x2",0,3);
TNormalDistribution *nor1 = new TNormalDistribution("x1",0,1);
TNormalDistribution *nor2 = new TNormalDistribution("x2",3,5);

// Pointer to DataServer and Samplers
TDataServer *tds[3];
TSpaceFilling *tsp[9];
string algoname[3]={"SaltelliA","SaltelliB","Cukier"};

// Canvas to produce the 3x3 plot
TCanvas *Can = new TCanvas("Can","Can",10,32,1200,1200);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();
pad->Divide(3,3);
int counter=0;

for(unsigned int itds=0; itds<3; itds++)
{

// Create a DataServer to store new configuration (UnivsUni, GausvsUni, Gaus vs Gaus)
tds[itds] = new TDataServer("test","test");
switch(itds)
{

page 422

CHAPTER XIV. USE-CASES IN C++ Macro "samplingSpaceFilling.C"

case 0: tds[itds]->addAttribute(att1); tds[itds]->addAttribute(att2); break;
case 1: tds[itds]->addAttribute(att1); tds[itds]->addAttribute(nor2); break;
case 2: tds[itds]->addAttribute(nor1); tds[itds]->addAttribute(nor2); break;
}

// Looping over the 3 spacefilling algo available
for(unsigned int ialg=0; ialg<3; ialg++)
{

// Instantiate the sampler
switch(ialg)
{
case 0: tsp[counter] = new TSpaceFilling(tds[itds], "srs", 1000, TSpaceFilling:: ←↩

kSaltelliA); break;
case 1: tsp[counter] = new TSpaceFilling(tds[itds], "srs", 1000, TSpaceFilling:: ←↩

kSaltelliB); break;
case 2: tsp[counter] = new TSpaceFilling(tds[itds], "srs", 1000, TSpaceFilling:: ←↩

kCukier); break;
}
//Draw with correct legend
GenerateAndDrawIt(pad, tds[itds], tsp[counter], counter, algoname[ialg].c_str());

counter++;
}
}}

page 423

Macro "samplingMaxiMinLHSFromLHSGrid.C" CHAPTER XIV. USE-CASES IN C++

XIV.3.10.3 Graph

Figure XIV.12: Graph of the macro "samplingSpaceFilling.C"

XIV.3.11 Macro "samplingMaxiMinLHSFromLHSGrid.C"

XIV.3.11.1 Objective

This macro shows the usage of the TMaxiMinLHS class in the case where it is used with an already provided LHS
grid. The class itself can generate a LHS grid from scratch (on which the simulated annealing algorithm will be applied
to get a maximin grid) but the idea for this macro is to do this procedure in two steps to be able to compare the original
LHS grid and the results of the optimisation. The orginal design-of-experiments is done with two uniformly-distributed
variables.

The resulting design-of-experiments presented is presented side-by-side with the original one and the mindist criterion
calculated is displayed on top of both grid, for illustration purpose.

page 424

CHAPTER XIV. USE-CASES IN C++ Macro "samplingMaxiMinLHSFromLHSGrid.C"

XIV.3.11.2 Macro Uranie

void niceplot(TDataServer *tds, TLatex *lat, string Title)
{

tds->getTuple()->SetMarkerStyle(20); tds->getTuple()->SetMarkerSize(1);
tds->Draw("X2:X1");
stringstream sstr; sstr.str("");
sstr<<Title<<", MinDist="<<TMaxiMinLHS::getMinDist(tds->getMatrix());
((TH2F*)gPad->GetPrimitive("__tdshisto__0"))->SetTitle("");
((TH2F*)gPad->GetPrimitive("__tdshisto__0"))->GetXaxis()->SetRangeUser(0.,1.);
((TH2F*)gPad->GetPrimitive("__tdshisto__0"))->GetYaxis()->SetRangeUser(0.,1.);
lat->DrawLatex(0.25,0.94,sstr.str().c_str());

}

void samplingMaxiMinLHSFromLHSGrid()
{

// Canvas to produce the 2x1 plot to compare LHS designs
TCanvas *Can = new TCanvas("Can","Can",10,32,1200,550);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1);
pad->Draw();
pad->Divide(2,1);

int size = 20; // Size of the samples to be produced
TLatex *lat = new TLatex(); lat->SetNDC(); lat->SetTextSize(0.038); // To write titles

// Create dataserver and define the attributes
TDataServer *tds = new TDataServer("tds","pouet");
tds->addAttribute(new TUniformDistribution("X1",0,1)); tds->getAttribute("X1")-> ←↩

delShare(); // Define attribute and state to tds that it owns it
tds->addAttribute(new TUniformDistribution("X2",0,1)); tds->getAttribute("X2")-> ←↩

delShare(); // Define attribute and state to tds that it owns it

// Generate the original LHS grid
TSampling *sampl = new TSampling(tds,"lhs",size);
sampl->generateSample();

// Display it
pad->cd(1);
niceplot(tds, lat, "Original LHS");

// Transform the grid in a maximin LHD
// Set initial temperature to 0.1, c factor to 0.99 and loop limitations to 300 ←↩

following official recommandation in methodology manual
TMaxiMinLHS *maxim = new TMaxiMinLHS(tds, size, 0.1, 0.99, 300, 300);
maxim->generateSample();

// Display it
pad->cd(2);
niceplot(tds, lat, "MaximMin LHS");

}

The macro very much looks like any other design-of-experiments generating macro above: the dataserver is created
and the problem is defined along with the input variables. A LHS grid is generated through the use of TSampling
and display in the first part of the canvas, calling a generic function niceplot defined on top of this macro. The new
part comes with the following lines:

page 425

Macro "samplingConstrLHSLinear.C" CHAPTER XIV. USE-CASES IN C++

// Transform the grid in a maximin LHD
// Set initial temperature to 0.1, c factor to 0.99 and loop limitations to 300 following ←↩

official recommandation in methodology manual
TMaxiMinLHS *maxim = new TMaxiMinLHS(tds, size, 0.1, 0.99, 300, 300);
maxim->generateSample();

The construction line of a TMaxiMinLHS is a bit different from the usual TSampling object: on top of a pointer to
the dataserver, it requires the size of the grid to be generated and the main characteristic of the simulated annealing
method to be used for the optimisation of the mindist criteria. A more complete discussion is done on this subject in
[30]

XIV.3.11.3 Graph

Figure XIV.13: Graph of the macro "samplingMaxiMinLHSFromLHSGrid.C"

XIV.3.12 Macro "samplingConstrLHSLinear.C"

XIV.3.12.1 Objective

This macro shows the usage of the TConstrLHS class when one wants to create a constrained LHS with three linear
constraints. In order to illustate the concept, it is applied on three input variables drawn from uniform distribution with
well-thought boundaries (as the concept of the LHS is to have nicely distributed marginals).

XIV.3.12.2 Macro Uranie

#include "ConstrFunctions.C"

void nicegrid(TDataServer *tds, TCanvas *Can)
{

int ns=tds->getNPatterns(), nx=tds->getNAttributes();
tds->drawPairs();
TH1F *h[nx];
TAttribute *att=NULL;
gStyle->SetOptStat(0);

page 426

CHAPTER XIV. USE-CASES IN C++ Macro "samplingConstrLHSLinear.C"

for(int iatt=0; iatt<nx; iatt++)
{

Can->GetPad(iatt*(nx+1)+1)->cd();
att=tds->getAttribute(iatt);
h[iatt] = new TH1F(Form("%s_histo",att->GetName()), Form("%s_histo;x_%i",att-> ←↩

GetName(), iatt), ns, att->getLowerBound(), att->getUpperBound());
tds->Draw(Form("%s>>%s_histo", att->GetName(), att->GetName()),"","goff");
h[iatt]->Draw();

}
}

int samplingConstrLHSLinear()
{

// Canvas to produce the 2x1 plot to compare LHS designs
TCanvas *Can = new TCanvas("Can","Can", 10, 32, 1000, 1000);

int ns = 250, nx = 3; // Size of the samples to be produced
// Create dataserver and define the attributes
TDataServer *tds = new TDataServer("tds","pouet");
for(int iatt=0; iatt<nx; iatt++)
{

tds->addAttribute(new TUniformDistribution(Form("x_%i",iatt),0,iatt+1));
tds->getAttribute(Form("x_%i",iatt))->delShare();

}

// Generate the constr lhs
TConstrLHS *constrlhs = new TConstrLHS(tds, ns);
vector<int> inputs = {1,0,2,1};
constrlhs->addConstraint(Linear, 2, inputs.size(), &inputs[0]);
constrlhs->generateSample();

// Do the plot
nicegrid(tds, Can);

return 0;
}

The very beginning of these macros is the nicegrid method which is here only to show the nice marginal distribu-
tions and the scatter plots. One can clearly skip this part to focus on the rest in the main function.

The macro very much looks like any other design-of-experiments generating macro above: the dataserver is created
along with the canvas object and the problem is defined along with the input variables and the number of locations to
be produced. Once done, then the TConstrLHS instance is created with the four following lines:

// Generate the constr lhs
TConstrLHS *constrlhs = new TConstrLHS(tds, ns);
vector<int> inputs = {1,0,2,1};
constrlhs->addConstraint(Linear, 2, inputs.size(), &inputs[0]);
constrlhs->generateSample();

The constructor is pretty obvious, as it takes only the dataserver object and the number of locations. Once created the
main method to be called is the addConstraint function which has been largely discussed in Section III.2.4. The
first argument of this method is the pointer to the C++ function which has been included in our macro through the very
first line:

#include "ConstrFunctions.C"

which contains the Linear function. The rest of the argument are the number of constraints, the size of the list of
parameters and its content. Finally the nicegrid method is called to produce the nice plot shown in Figure XIV.14

page 427

Macro "samplingConstrLHSEllipses.C" CHAPTER XIV. USE-CASES IN C++

XIV.3.12.3 Graph

Figure XIV.14: Graph of the macro "samplingConstrLHSLinear.C"

XIV.3.13 Macro "samplingConstrLHSEllipses.C"

XIV.3.13.1 Objective

This macro shows the usage of the TConstrLHS class when one wants to create a constrained LHS with non-linear
constraints. In order to illustate the concept, it is applied on three input variables drawn from uniform distribution
with well-thought boundaries (as the concept of the LHS is to have nicely distributed marginals). The constraints are
excluding the inner part of an ellipse for one of the input plane and the outter part of another ellipse for another input
plane.

XIV.3.13.2 Macro Uranie

#include "ConstrFunctions.C"

void nicegrid(TDataServer *tds, TCanvas *Can)
{

int ns=tds->getNPatterns(), nx=tds->getNAttributes();
tds->drawPairs();
TH1F *h[nx];
TAttribute *att=NULL;
gStyle->SetOptStat(0);
for(int iatt=0; iatt<nx; iatt++)
{

page 428

CHAPTER XIV. USE-CASES IN C++ Macro "samplingConstrLHSEllipses.C"

Can->GetPad(iatt*(nx+1)+1)->cd();
att=tds->getAttribute(iatt);
h[iatt] = new TH1F(Form("%s_histo",att->GetName()), Form("%s_histo;x_%i",att-> ←↩

GetName(), iatt), ns, att->getLowerBound(), att->getUpperBound());
tds->Draw(Form("%s>>%s_histo", att->GetName(), att->GetName()),"","goff");
h[iatt]->Draw();

}
}

int samplingConstrLHSEllipses()
{

// Canvas to produce the 2x1 plot to compare LHS designs
TCanvas *Can = new TCanvas("Can","Can", 10, 32, 1000, 1000);

int ns = 250, nx = 3; // Size of the samples to be produced
// Create dataserver and define the attributes
TDataServer *tds = new TDataServer("tds","pouet");
for(int iatt=0; iatt<nx; iatt++)
{

tds->addAttribute(new TUniformDistribution(Form("x_%i",iatt),0,iatt+1));
tds->getAttribute(Form("x_%i",iatt))->delShare();

}

// Generate the constr lhs
TConstrLHS *constrlhs = new TConstrLHS(tds, ns);
vector<int> inputs = {1,0,1,2};
constrlhs->addConstraint(CircularRules, 2, inputs.size(), &inputs[0]);
constrlhs->generateSample();

// Do the plot
nicegrid(tds, Can);

return 0;
}

The very beginning of these macros is the nicegrid method which is here only to show the nice marginal distribu-
tions and the scatter plots. One can clearly skip this part to focus on the rest in the main function.

The macro very much looks like any other design-of-experiments generating macro above: the dataserver is created
along with the canvas object and the problem is defined along with the input variables and the number of locations to
be produced. Once done, then the TConstrLHS instance is created with the four following lines:

// Generate the constr lhs
TConstrLHS *constrlhs = new TConstrLHS(tds, ns);
vector<int> inputs = {1,0,1,2};
constrlhs->addConstraint(CircularRules, 2, inputs.size(), &inputs[0]);
constrlhs->generateSample();

The constructor is pretty obvious, as it takes only the dataserver object and the number of locations. Once created the
main method to be called is the addConstraint function which has been largely discussed in Section III.2.4. The
first argument of this method is the pointer to the C++ function which has been included in our macro through the very
first line:

#include "ConstrFunctions.C"

which contains the CircularRules function. The rest of the argument are the number of constraints, the size
of the list of parameters and its content. Finally the nicegrid method is called to produce the nice plot shown in
Figure XIV.15

page 429

Macro "samplerSingularCorrelationCase.C" CHAPTER XIV. USE-CASES IN C++

XIV.3.13.3 Graph

Figure XIV.15: Graph of the macro "samplingConstrLHSEllipses.C"

XIV.3.14 Macro "samplerSingularCorrelationCase.C"

XIV.3.14.1 Objective

This macro shows the usage of the SVD decomposition for the specific case where the target correlation matrix
is singular. The idea is to provide a tool that will allow the user to compare quickly both the TSampling and
TBasicSampling implementation, with a singular correlation matrix, or not. In order to do that, a toy random
correlation matrix generator is provided.

The resulting design-of-experiments is presented side-by-side with the residual of the obtained correlation matrix.

XIV.3.14.2 Macro Uranie

{
// What classes to be used (true==TSampling, false==TBasicSampling)
bool ImanConover=false;
TString SamplingType="srs";
TString SamplerOption="svd"; // Remove svd to use Cholesky

// Generating randomly a singular correlation matrix
// dimension of the problem in total.
int n = 10;
// number of dimension self explained.

page 430

CHAPTER XIV. USE-CASES IN C++ Macro "samplerSingularCorrelationCase.C"

// SHOULD BE SMALLER (singular) OR EQUAL TO (full-rank) n.
int p = 6;
// number of location in the doe
int m=300;

// ===
// Internal recipe to get this correlation matrix
// ===
TMatrixD A(n,p);
TRandom3 *Rand = new TRandom3();
for(int i=0;i<n;i++){

for(int j=0;j<p;j++){
A(i,j) = Rand->Gaus(0.,1.);

}
}

TMatrixD Gamma(A,TMatrixD::kMultTranspose,A);
Gamma*=1./n;

TMatrixD Sig(n,n);
for(int i=0;i<n;i++) Sig(i,i)=1./sqrt(Gamma(i,i));

TMatrixD Corr(Sig,TMatrixD::kMult, Gamma);
Corr*=Sig;
// ===
// Corr is our correlation matrix.
// ===

// Creating the TDS
TDataServer *tds = new TDataServer("pouet","pouet");

// Adding attributes
for(int i=0;i<n;i++) tds->addAttribute(new TNormalDistribution(Form("n%d",i),0.,1.));

// Create the sampler and generate the doe
if(ImanConover){

TSampling *sam = new TSampling(tds,SamplingType.Data(),m);
sam->setCorrelationMatrix(Corr);
sam->generateSample(SamplerOption.Data());

}else{
TBasicSampling *sam = new TBasicSampling(tds,SamplingType.Data(),m);
sam->setCorrelationMatrix(Corr);
sam->generateCorrSample(SamplerOption.Data());

}

// Compute the empirical correlation matrix
TMatrixD ResultCorr=tds->computeCorrelationMatrix();
// Change it into a residual matrix
ResultCorr-=Corr;

gStyle->SetOptStat(1110);
// Plot the results
TCanvas *c=new TCanvas("c","c",1800,900);
TPad *apad=new TPad("apad","apad",0, 0.03, 1, 1); apad->Draw(); apad->cd();
apad->Divide(2,1);
apad->cd(1);
// Residual distribution
TH1F *h=new TH1F("h",";#Delta_{#rho}",100,-0.2,0.2);
for(int i=0;i<n;i++)
{

for(int j=i;j<n;j++) h->Fill(ResultCorr(i,j));
}

page 431

Macro "samplerSingularCorrelationCase.C" CHAPTER XIV. USE-CASES IN C++

h->Draw();

// all variables
apad->cd(2);
tds->drawPairs();

}

This macro starts by a bunch of variables provided to offer many possible configuration, among which:

• use Iman and Conover method or the more simple one to get the correlation (see [30] for a complete description of
their respective correlation handling);

• produce a stratified or fully random sample;

• use Cholesky or SVD decomposition to decompose the target correlation matrix;

• use a full-rank or singular correlation matrix. This is allowed thanks to the toy random correlation matrix generator:
one has to define the number of variable (n) and the number of dimension that should be self-explained (p). If the
latter is strickly lower than the former, then the correlation matrix generated will be singular, whereas it will be a
full-rank one if both quantities are equal.

This is the main part of this macro

// What classes to be used (true==TSampling, false==TBasicSampling)
bool ImanConover=false;
TString SamplingType="srs";
TString SamplerOption="svd"; // Remove svd to use Cholesky

// Generating randomly a singular correlation matrix
// dimension of the problem in total.
int n = 10;
// number of dimension self explained.
// SHOULD BE SMALLER (singular) OR EQUAL TO (full-rank) n.
int p = 6;
// number of location in the doe
int m=300;

Once this is settled, the correlation matrix is created and the dataserver is created and n centered-reduced normal
attributes are added. The chosen design-of-experiments is generated with the chosen options:

// Create the sampler and generate the doe
if(ImanConover){
TSampling *sam = new TSampling(tds,SamplingType.Data(),m);
sam->setCorrelationMatrix(Corr);
sam->generateSample(SamplerOption.Data());
}else{
TBasicSampling *sam = new TBasicSampling(tds,SamplingType.Data(),m);
sam->setCorrelationMatrix(Corr);
sam->generateCorrSample(SamplerOption.Data());
}

Finally the obtained design-of-experiments is shown along with the residual of all the correlation coefficients (difference
between the target values and the obtained ones). This is shown in Figure XIV.16 and can be used to compare the
performance of the samplers.

page 432

CHAPTER XIV. USE-CASES IN C++ Macros Launcher

XIV.3.14.3 Graph

Figure XIV.16: Graph of the macro "samplerSingularCorrelationCase.C"

XIV.4 Macros Launcher

XIV.4.1 Macro "launchFunctionDataBase.C"

XIV.4.1.1 Objective

Evaluating an analytic function towards a design-of-experiments given in an ASCII file.

This analytic function is written in C++ using the protocol of Uranie in file "UserFunctions.C" (the file can be
found in the folder ${URANIESYS}/share/uranie/macros/). This function is named "flowrateModel" and it requires 8
inputs (rω , r, Tu, Tl , Hu, Hl , L, Kω) and returns a scalar ("ymod"). The analytic expression of the function is given in
(Section IV.1.2.1).

The design-of-experiments is the same as in precedent macro (Section XIV.2.4).

XIV.4.1.2 Macro Uranie

{
// Create a TDataServer
TDataServer * tds = new TDataServer();
// Load the data set in the DataServer
tds->fileDataRead("flowrateUniformDesign.dat");

// Load the function in the UserFunction macros file
gROOT->LoadMacro("UserFunctions.C");

// Create a TLauncherFunction from a TDataServer and an analytical function
// Rename the outpout attribute "ymod"
TLauncherFunction * tlf = new TLauncherFunction(tds, "flowrateModel","","ymod");
// Evaluate the function on all the points in the Design Of Experiments (DoE)

page 433

Macro "launchFunctionSampling.C" CHAPTER XIV. USE-CASES IN C++

tlf->run();

// Graph
TCanvas *Canvas = new TCanvas("c1", "Graph for the Macro loadASCIIFile",5,64,1270,667);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();
pad->Divide(2,4);
pad->cd(1); tds->draw("ymod:rw");
pad->cd(2); tds->draw("ymod:r");
pad->cd(3); tds->draw("ymod:tu");
pad->cd(4); tds->draw("ymod:tl");
pad->cd(5); tds->draw("ymod:hu");
pad->cd(6); tds->draw("ymod:hl");
pad->cd(7); tds->draw("ymod:l");
pad->cd(8); tds->draw("ymod:kw");

}

XIV.4.1.3 Graph

Figure XIV.17: Graph of the macro "launchFunctionDataBase.C"

XIV.4.2 Macro "launchFunctionSampling.C"

XIV.4.2.1 Objective

Evaluating an analytic function in a stochastic design-of-experiments made with the LHS method.

This analytic function is written in C++ using the protocol of Uranie in file "UserFunctions.C" (the file can be
found in the folder ${URANIESYS}/share/uranie/macros/). This function is named "flowrateModel" and it requires 8
inputs (rω , r, Tu, Tl , Hu, Hl , L, Kω) and returns a scalar ("ymod"). The analytic expression of the function is given in
(Section IV.1.2.1).

The design-of-experiments is made using the LHS method requesting 1000 samples.

page 434

CHAPTER XIV. USE-CASES IN C++ Macro "launchFunctionSampling.C"

XIV.4.2.2 Macro Uranie

{
Int_t nS = 1000;
// Create a TDataServer
TDataServer * tds = new TDataServer("tdsFlowrate","TDS for flowrate");
// Add the eight attributes of the study with uniform law
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

// Generate the sampling from the TDataServer
TSampling *sampling = new TSampling(tds, "lhs", nS);
sampling->generateSample();

// Load the function in the UserFunction macros file
gROOT->LoadMacro("UserFunctions.C");

// Create a TLauncherFunction from a TDataServer and an analytical function
// Rename the outpout attribute "ymod"
TLauncherFunction * tlf = new TLauncherFunction(tds, "flowrateModel","","ymod");
// Evaluate the function on all the design of experiments
tlf->run();

// Graph
TCanvas *Canvas = new TCanvas("c1", "Graph for the Macro loadASCIIFile",5,64,1270,667);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();
pad->Divide(2,4);
pad->cd(1); tds->drawProfile("ymod:rw","","same");
pad->cd(2); tds->drawProfile("ymod:r","","same");
pad->cd(3); tds->drawProfile("ymod:tu","","same");
pad->cd(4); tds->drawProfile("ymod:tl","","same");
pad->cd(5); tds->drawProfile("ymod:hu","","same");
pad->cd(6); tds->drawProfile("ymod:hl","","same");
pad->cd(7); tds->drawProfile("ymod:l","","same");
pad->cd(8); tds->drawProfile("ymod:kw","","same");
}

page 435

Macro "launchFunctionSamplingGraphs.C" CHAPTER XIV. USE-CASES IN C++

XIV.4.2.3 Graph

Figure XIV.18: Graph of the macro "launchFunctionSampling.C"

XIV.4.3 Macro "launchFunctionSamplingGraphs.C"

XIV.4.3.1 Objective

The objective of this macro is to evaluate the flowrateModel function on a design-of-experiments, then to per-
form visualisations with different options. The sampling is made out of 1000 patterns using the LHS method. The
flowrateModel function is used as a function and uses parameters obeying uniform laws on specific intervals
defined in Section IV.1.2.1.

XIV.4.3.2 Macro Uranie

{
Int_t nS = 1000;
// Create a TDataServer
TDataServer * tds = new TDataServer("tdsFlowrate","TDS for flowrate");
// Add the eight attributes of the study with uniform law
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

// Generate the sampling from the TDataServer
TSampling *sampling = new TSampling(tds, "lhs", nS);
sampling->generateSample();

// Load the function in the UserFunction macros file

page 436

CHAPTER XIV. USE-CASES IN C++ Macro "launchFunctionSamplingGraphs.C"

gROOT->LoadMacro("UserFunctions.C");

// Create a TLauncherFunction from a TDataServer and an analytical function
// Rename the outpout attribute "ymod"
TLauncherFunction * tlf = new TLauncherFunction(tds, "flowrateModel","","ymod");
// Evaluate the function on all the design of experiments
tlf->run();

// Graph
TCanvas *Canvas = new TCanvas("c1", "Graph for the Macro launchFunctionSampling" ←↩

,5,90,935,614);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();
pad->Divide(2,4);
pad->cd(1); tds->drawTufte("rw:r","","same");
pad->cd(2); tds->drawCDF("rw");
pad->cd(3); tds->draw("ymod");
pad->cd(4); tds->drawCDF("ymod","","ccdf");
pad->cd(5); tds->draw("ymod:rw:hu");
pad->cd(6); tds->drawProfile("ymod:r","","same");
pad->cd(7); tds->drawProfile("ymod:rw","","same");
pad->cd(8); tds->draw("ymod:rw","","colz");
}

The attributes linked to the TDataServer obey uniform laws:

tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

The sampling is built with a LHS method on 1000 patterns:

TSampling *sampling = new TSampling(tds, "lhs", 1000);
sampling->generateSample();

The flowrateModel function is evaluated on the design-of-experiments:

TLauncherFunction * tlf = new TLauncherFunction(tds, "flowrateModel","","ymod");
tlf->run();

Different visualisations are then performed on attributes:

tds->drawTufte("rw:r","","same");
tds->drawCDF("rw");
tds->draw("ymod");
tds->drawCDF("ymod","","ccdf");
tds->draw("ymod:rw:hu");
tds->drawProfile("ymod:r","","same");
tds->drawProfile("ymod:rw","","same");
tds->draw("ymod:rw","","colz");

page 437

Macro "launchCodeFlowrateKeyDataBase.C" CHAPTER XIV. USE-CASES IN C++

XIV.4.3.3 Graph

Figure XIV.19: Graph of the macro "launchFunctionSamplingGraphs.C"

XIV.4.4 Macro "launchCodeFlowrateKeyDataBase.C"

XIV.4.4.1 Objective

The objective of the macro is to evaluate the flowrate external code on a design-of-experiments where the input
file ’flowrate_input_with_keys.in’ is a "key=value" type and the output file "_output_flowrate_
withRow_.dat" is a "values in rows" type. This flowrate code is described in Section IV.1.2.3.1.1.

The database is contained in the file flowrateUniformDesign.dat containing 32 patterns.

#NAME: flowrateborehole
#TITLE: Uniform design of flow rate borehole problem proposed by Ho and Xu(2000)
#COLUMN_NAMES: rw| r| tu| tl| hu| hl| l| kw | ystar
#COLUMN_TITLES: r_{#omega}| r | T_{u} | T_{l} | H_{u} | H_{l} | L | K_{#omega} | y^{*}
#COLUMN_UNITS: m | m | m^{2}/yr | m^{2}/yr | m | m | m | m/yr | m^{3}/yr

0.0500 33366.67 63070.0 116.00 1110.00 768.57 1200.0 11732.14 26.18
0.0500 100.00 80580.0 80.73 1092.86 802.86 1600.0 10167.86 14.46
0.0567 100.00 98090.0 80.73 1058.57 717.14 1680.0 11106.43 22.75
0.0567 33366.67 98090.0 98.37 1110.00 734.29 1280.0 10480.71 30.98
0.0633 100.00 115600.0 80.73 1075.71 751.43 1600.0 11106.43 28.33
0.0633 16733.33 80580.0 80.73 1058.57 785.71 1680.0 12045.00 24.60
0.0700 33366.67 63070.0 98.37 1092.86 768.57 1200.0 11732.14 48.65
0.0700 16733.33 115600.0 116.00 990.00 700.00 1360.0 10793.57 35.36
0.0767 100.0 115600.0 80.73 1075.71 751.43 1520.0 10793.57 42.44
0.0767 16733.33 80580.0 80.73 1075.71 802.86 1120.0 9855.00 44.16
0.0833 50000.00 98090.0 63.10 1041.43 717.14 1600.0 10793.57 47.49
0.0833 50000.00 115600.0 63.10 1007.14 768.57 1440.0 11419.29 41.04

page 438

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeFlowrateKeyDataBase.C"

0.0900 16733.33 63070.0 116.00 1075.71 751.43 1120.0 11419.29 83.77
0.0900 33366.67 115600.0 116.00 1007.14 717.14 1360.0 11106.43 60.05
0.0967 50000.00 80580.0 63.10 1024.29 820.00 1360.0 9855.00 43.15
0.0967 16733.33 80580.0 98.37 1058.57 700.00 1120.0 10480.71 97.98
0.1033 50000.00 80580.0 63.10 1024.29 700.00 1520.0 10480.71 74.44
0.1033 16733.33 80580.0 98.37 1058.57 820.00 1120.0 10167.86 72.23
0.1100 50000.00 98090.0 63.10 1024.29 717.14 1520.0 10793.57 82.18
0.1100 100.00 63070.0 98.37 1041.43 802.86 1600.0 12045.00 68.06
0.1167 33366.67 63070.0 116.00 990.00 785.71 1280.0 12045.00 81.63
0.1167 100.00 98090.0 98.37 1092.86 802.86 1680.0 9855.00 72.5
0.1233 16733.33 115600.0 80.73 1092.86 734.29 1200.0 11419.29 161.35
0.1233 16733.33 63070.0 63.10 1041.43 785.71 1680.0 12045.00 86.73
0.1300 33366.67 80580.0 116.00 1110.00 768.57 1280.0 11732.14 164.78
0.1300 100.00 98090.0 98.37 1110.00 820.00 1280.0 10167.86 121.76
0.1367 50000.00 98090.0 63.10 1007.14 820.00 1440.0 10167.86 76.51
0.1367 33366.67 98090.0 116.00 1024.29 700.00 1200.0 10480.71 164.75
0.1433 50000.00 63070.0 116.00 990.00 785.71 1440.0 9855.00 89.54
0.1433 50000.00 115600.0 63.10 1007.14 734.29 1440.0 11732.14 141.09
0.1500 33366.67 63070.0 98.37 990.00 751.43 1360.0 11419.29 139.94
0.1500 100.00 115600.0 80.73 1041.43 734.29 1520.0 11106.43 157.59

The input file flowrate_input_with_keys.in is "key=value" format:

#
#
INPUT FILE with KEYS for the "FLOWREATE" code
\date 2008-04-22 12:53:35
#

date = 123456 ;

#########################
##
exclude points
##
chu = 1050;
chl = 770;
cr = 1100;
##
#########################

#########################
##
parameters : 8
##
Rw = 0.0500 ;
R = 33366.67 ;
Tu = 63070.0 ;
Tl = 116.00 ;
Hu = 1110.00 ;
Hl = 768.57;
L = 1200.0 ;
Kw = 11732.14 ;
##
#########################

#########################
##
to simulate CPU time

page 439

Macro "launchCodeFlowrateKeyDataBase.C" CHAPTER XIV. USE-CASES IN C++

##
normal 1 :
min 10000000 : 1.160u 0.000s 0:01.16 100.0%
max 100000000 : 11.600u 0.010s 0:11.61 100.0%
##
nLoop = 1;
##
#########################

end = 6;

This file defines the eight variables rω , r, Tu, Tl , Hu, Hl , L, Kω needed to perform the execution of the command
flowrate -k.

The output file, _output_flowrate_withRow_.dat when created, is a "values in rows with an header" type. It
looks like:

#COLUMN_NAMES: yhat | d

6.757218e+01 4.092561e+03

yhat and d have to be defined as output variables in the macro.

XIV.4.4.2 Macro Uranie

{
// Create a TDataServer
TDataServer * tds = new TDataServer();
// Load the data base in the DataServer
tds->fileDataRead("flowrateUniformDesign.dat");

// The reference input file
TString sIn = TString("flowrate_input_with_keys.in");

// Set the reference input file and the key for each input attributes
tds->getAttribute("rw")->setFileKey(sIn, "Rw");
tds->getAttribute("r")->setFileKey(sIn, "R");
tds->getAttribute("tu")->setFileKey(sIn, "Tu");
tds->getAttribute("tl")->setFileKey(sIn, "Tl");
tds->getAttribute("hu")->setFileKey(sIn, "Hu");
tds->getAttribute("hl")->setFileKey(sIn, "Hl");
tds->getAttribute("l")->setFileKey(sIn, "L");
tds->getAttribute("kw")->setFileKey(sIn, "Kw");

// The output file of the code
TOutputFileRow *fout = new TOutputFileRow("_output_flowrate_withRow_.dat");
// The attribute in the output file
fout->addAttribute(new TAttribute("yhat"));

// Instanciation de mon code
TCode *mycode = new TCode(tds, "flowrate -s -k");
// on ajoute le fichier de sortie du code
mycode->addOutputFile(fout);

// Lancement du code
TLauncher *lanceur = new TLauncher(tds, mycode);
lanceur->setSave();
lanceur->setClean();
//lanceur->setWorkingDirectory(gSystem->Getenv("PWD") + TString("/tmpLanceurUranie/ ←↩

flowrate"));

page 440

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeFlowrateKeyDataBase.C"

lanceur->setVarDraw("yhat:rw","","");
lanceur->run();

// Graph
TCanvas *Canvas = new TCanvas("c1", "Graph for the Macro launchCodeFlowrateKeyDataBase" ←↩

,5,64,1270,667);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();
pad->Divide(2,4);

pad->cd(1); tds->draw("yhat:rw");
pad->cd(2); tds->draw("yhat:r");
pad->cd(3); tds->draw("yhat:tu");
pad->cd(4); tds->draw("yhat:tl");
pad->cd(5); tds->draw("yhat:hu");
pad->cd(6); tds->draw("yhat:hl");
pad->cd(7); tds->draw("yhat:l");
pad->cd(8); tds->draw("yhat:kw");

}

The database is loaded from a data file flowrateUniformDesign.dat:

tds->fileDataRead("flowrateUniformDesign.dat");

Then, properties are set for each input variable. For example for the first variable, it is created as a TAttribute
named "rw": this TAttribute is then linked to the input file with:

tds->getAttribute("rw")->setFileKey(TString("flowrate_input_with_keys.in"), "Rw");

which will be understood by Uranie as the fact the rw variable has to be read in the input file with "key=value" format
with the key Rw.

We use the output file with "values in rows" type _output_flowrate_withRow_.dat which will be instantiated
as a TOutputFileRow.

TOutputFileRow *fout = new TOutputFileRow("_output_flowrate_withRow_.dat");

The variables yhat and d can be linked to this TOutputFileRow output file. But here, only yhat will be considered
by Uranie as variable of interest.

fout->addAttribute("yhat");

We set the code as being the flowrate execution with "-k" option.

TCode *mycode = new TCode(tds, "flowrate -k");

which indicates that flowrate code has to find the input file with "key=value" type.

Then the launcher is initialised with a TDataServer and the code is executed:

TLauncher *lanceur = new TLauncher(tds, mycode);

The launcher will execute the flowrate -k command for each of the 32 patterns with the run method:

lanceur->run();

page 441

Macro "launchCodeFlowrateKeySampling.C" CHAPTER XIV. USE-CASES IN C++

XIV.4.4.3 Graph

Figure XIV.20: Graph of the macro "launchCodeFlowrateKeyDataBase.C"

XIV.4.5 Macro "launchCodeFlowrateKeySampling.C"

XIV.4.5.1 Objective

The objective of the macro is to evaluate the flowrate external code on a design-of-experiments with the input
file "flowrate_input_with_keys.in" with "key=value" type and the output file "_output_flowrate_
withRow_.dat" with "values in rows" type. This flowrate code is described in Section IV.1.2.3.1.1.

The used input file flowrate_input_with_keys.in is with "key=value" type:

#
#
INPUT FILE with KEYS for the "FLOWREATE" code
\date 2008-04-22 12:53:35
#

date = 123456 ;

#########################
##
exclude points
##
chu = 1050;
chl = 770;
cr = 1100;
##
#########################

#########################
##
parameters : 8

page 442

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeFlowrateKeySampling.C"

##
Rw = 0.0500 ;
R = 33366.67 ;
Tu = 63070.0 ;
Tl = 116.00 ;
Hu = 1110.00 ;
Hl = 768.57;
L = 1200.0 ;
Kw = 11732.14 ;
##
#########################

#########################
##
to simulate CPU time
##
normal 1 :
min 10000000 : 1.160u 0.000s 0:01.16 100.0%
max 100000000 : 11.600u 0.010s 0:11.61 100.0%
##
nLoop = 1;
##
#########################

end = 6;

This file defines the eight variables rω , r, Tu, Tl , Hu, Hl , L, Kω needed to perform the execution of the command
flowrate -k.

The output file, _output_flowrate_withRow_.dat is with "values in rows" type. It looks like:

#COLUMN_NAMES: yhat | d

6.757218e+01 4.092561e+03

yhat and d have to be defined as output variables in the macro.

XIV.4.5.2 Macro Uranie

void launchCodeFlowrateKeySampling(Int_t nS = 100)
{
// Define the DataServer
TDataServer *tds = new TDataServer("tdsFlowrate", "Design of experiments for Flowrate");

// Add the study attributes (min, max and nominal values)
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

// The reference input file
TString sIn = TString("flowrate_input_with_keys.in");

// Set the reference input file and the key for each input attributes
tds->getAttribute("rw")->setFileKey(sIn, "Rw");

page 443

Macro "launchCodeFlowrateKeySampling.C" CHAPTER XIV. USE-CASES IN C++

tds->getAttribute("r")->setFileKey(sIn, "R");
tds->getAttribute("tu")->setFileKey(sIn, "Tu");
tds->getAttribute("tl")->setFileKey(sIn, "Tl");
tds->getAttribute("hu")->setFileKey(sIn, "Hu");
tds->getAttribute("hl")->setFileKey(sIn, "Hl");
tds->getAttribute("l")->setFileKey(sIn, "L");
tds->getAttribute("kw")->setFileKey(sIn, "Kw");

// Generate the Design of Experiments
TSampling *sampling = new TSampling(tds, "lhs", nS);
sampling->generateSample();

// The output file of the code
TOutputFileRow *fout = new TOutputFileRow("_output_flowrate_withRow_.dat");
// The attribute in the output file
fout->addAttribute(new TAttribute("yhat"));

// Instanciation de mon code
TCode *mycode = new TCode(tds, "flowrate -s -k");
// on ajoute le fichier de sortie du code
mycode->addOutputFile(fout);

// Lancement du code
TLauncher *lanceur = new TLauncher(tds, mycode);
lanceur->setSave();
lanceur->setClean();
//lanceur->setWorkingDirectory(gSystem->Getenv("PWD") + TString("/tmpLanceurUranie/ ←↩

flowrate"));
lanceur->setVarDraw("yhat:rw","","");

lanceur->run();

tds->exportData("_flowrate_sampler_launcher_.dat");

// Visualisation
TCanvas *Canvas = new TCanvas("c1", "Graph for the Macro launchCodeFlowrateFlag" ←↩

,5,64,1270,667);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();
gStyle->SetPalette(1);
pad->Divide(2, 2);
pad->cd(1); tds->draw("yhat:rw");

pad->cd(3); tds->draw("yhat");
pad->cd(2); tds->draw("yhat:rw","","colz");

pad->cd(4);
// The parallel plot
tds->draw("rw:r:tu:tl:hu:hl:l:kw:yhat","","para");
TParallelCoord* para = (TParallelCoord*)gPad->GetListOfPrimitives()->FindObject(" ←↩

ParaCoord");

// The output attribute
TParallelCoordVar* axis = (TParallelCoordVar*)para->GetVarList()->FindObject("yhat");
axis->AddRange(new TParallelCoordRange(axis,15.0,80.0));
para->AddSelection("blue");
para->GetCurrentSelection()->SetLineColor(kBlue);

}

The laws of distribution are set for each input variable. For example for the Rw variable, the macro creates an uniform
distribution between 0.05 and 0.15 associated to a TAttribute named "rw":

page 444

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeFlowrateKeySampling.C"

tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));

Then, the TAttribute is linked to the input file with:

tds->getAttribute("rw")->setFileKey(TString("flowrate_input_with_keys.in"), "@Rw@");

which will be understood by Uranie as the fact the rw variable has to be read in the input file with "key=value" format
with the key Rw.

A design-of-experiments is then built with 100 samplings using the LHS method:

TSampling *sampling = new TSampling(tds, "lhs", 100);
sampling->generateSample();

We want the output file to be with values in rows. So the output file _output_flowrate_withRow_.dat is set
as a TOutputFileRow:

TOutputFileRow *fout = new TOutputFileRow("_output_flowrate_withRow_.dat");

The variable yhat and d could be linked to this TOutputFileRow output file. But here, only yhat will be considered
as variable of interest by Uranie:

fout->addAttribute("yhat");

We set the code as being the flowrate execution with "-k" option:

TCode *mycode = new TCode(tds, "flowrate -k");

in xhich the "-k" option indicates that flowrate has to find input files with "key=value" format.

Then the launcher is initialised with a TDataServer and the code is executed:

TLauncher *lanceur = new TLauncher(tds, mycode);

The launcher will execute the flowrate -k command for each of the 100 patterns with the run method:

tlch->run();

page 445

Macro "launchCodeFlowrateXMLSampling.C" CHAPTER XIV. USE-CASES IN C++

XIV.4.5.3 Graph

Figure XIV.21: Graph of the macro "launchCodeFlowrateKeySampling.C"

XIV.4.6 Macro "launchCodeFlowrateXMLSampling.C"

XIV.4.6.1 Objective

The objective of the macro is to evaluate the flowrate external code on a design-of-experiments with the input file
"flowrate_input_with_xml.in" with XML format and the output file "_output_flowrate_withXML_
.dat" also with XML format. This flowrate code is described in Section IV.1.2.3.1.1.

The used input file flowrate_input_with_xml.in is with XML type:

<?xml version="1.0"?>
<problem>

<description name="flowrate" title="UseCase flowrate with XML input file" version="1.0" ←↩
date="2011-07-22 12:55:17">

<tool name="uranie" version="0.3"/>
</description>

<steady_state name="sch">
<wall_friction rw="0.0500" r="33366.67"/>
<tinit>0.0</tinit>
<tmax>1000000</tmax>
<dt_step_nb_max>1500</dt_step_nb_max>
<parameter>
<tonode>mesher</tonode><toport>dt_hu</toport>
<value><double>1110.00</double></value>

</parameter>
<parameter>
<tonode>mesher</tonode><toport>dt_hl</toport>
<value><double>768.57</double></value>

</parameter>
<parameter>
<tonode>mesher</tonode><toport>dt_hd</toport>
<value><int>12345</int></value>

</parameter>

page 446

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeFlowrateXMLSampling.C"

<facsec>1000000.</facsec>
<kW value="11732.14"/>
<informations>

<parameter name="Tu">
<Uniform_Field>1</Uniform_Field>
<value><double>63070.0</double></value>

</parameter>
<parameter name="Tl">
<Uniform_Field>1</Uniform_Field>
<value><double>116.00</double></value>

</parameter>
<parameter name="L" precision="1200.0"/>

</informations>

<convergence>
<criterion>relative_max_du_dt</criterion>
<precision>1.e-6</precision>

</convergence>

<stop_criterium ch_abscissa_hu="1050" ch_ordinate_hl="770" c_radius="1100" nLoop="1"/>

<solver name="Newton3">
<max_iter_matrix>1</max_iter_matrix>
<max_iter_implicit>1</max_iter_implicit>
<date>5654321</date>
<implicit_convergence_threshold>1.e-6</implicit_convergence_threshold>
<implicit_assembly>10</implicit_assembly>
<linear_solver name="BiCGS">
<preconditioner>ILU</preconditioner>
<implicit_solve_threshold>1.e-5</implicit_solve_threshold>

</linear_solver>
</solver>

</steady_state>
</problem>

This file defines the eight variables rω , r, Tu, Tl , Hu, Hl , L, Kω needed to perform the execution of the command
flowrate -x.

The output file, _output_flowrate_withXML_.dat is with XML type. It looks like:

<?xml version="1.0"?>
<steady_state name="flowrate">
<parameter>
<tonode>mesher</tonode>
<toport>dt_hl</toport>
<value>

<double>2.618019e+01</double>
</value>

</parameter>
<distance value="3.602045e+03"/>

</steady_state>

yhat and d have to be defined as output variables in the macro.

XIV.4.6.2 Macro Uranie

void launchCodeFlowrateXMLSampling(Int_t nS = 100){
// Define the DataServer
TDataServer *tds = new TDataServer("tdsFlowrate", "Design of experiments for Flowrate");

page 447

Macro "launchCodeFlowrateXMLSampling.C" CHAPTER XIV. USE-CASES IN C++

// Add the study attributes (min, max and nominal values)
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

// The reference input file
TString sIn = TString("flowrate_input_with_xml.in");

tds->getAttribute("rw")->setFileKey(sIn, "wall_friction/@rw", "%e", TAttributeFileKey:: ←↩
kXMLAttribute);

tds->getAttribute("r")->setFileKey(sIn, "wall_friction/@r", "%e", TAttributeFileKey:: ←↩
kXMLAttribute);

tds->getAttribute("tu")->setFileKey(sIn, "parameter[@name=’Tu’]/value/double", "%e", ←↩
TAttributeFileKey::kXMLField);

tds->getAttribute("tl")->setFileKey(sIn, "parameter[@name=’Tl’]/value/double", "%e", ←↩
TAttributeFileKey::kXMLField);

tds->getAttribute("hu")->setFileKey(sIn, "parameter[tonode=’mesher’ and toport=’dt_hu’]/ ←↩
value/double", "%e", TAttributeFileKey::kXMLField);

tds->getAttribute("hl")->setFileKey(sIn, "parameter[tonode=’mesher’ and toport=’dt_hl’]/ ←↩
value/double", "%e", TAttributeFileKey::kXMLField);

tds->getAttribute("l")->setFileKey(sIn, "parameter[@name=’L’]/@precision", "%e", ←↩
TAttributeFileKey::kXMLAttribute);

tds->getAttribute("kw")->setFileKey(sIn, "kW/@value", "%e", TAttributeFileKey:: ←↩
kXMLAttribute);

// Generate the Design of Experiments
TSampling *sampling = new TSampling(tds, "lhs", nS);
sampling->generateSample();

// The output file of the code
TOutputFileXML *fout = new TOutputFileXML("_output_flowrate_withXML_.dat");
// The attribute in the output file
fout->addAttribute(new TAttribute("yhat"), "/steady_state[@name=’flowrate’]/parameter/ ←↩

value/double", TAttributeFileKey::kXMLField);

// Instanciation de mon code
TCode *mycode = new TCode(tds, "flowrate -s -x");
// on ajoute le fichier de sortie du code
mycode->addOutputFile(fout);

// Lancement du code
TLauncher *lanceur = new TLauncher(tds, mycode);
lanceur->setSave();
lanceur->setClean();
lanceur->setVarDraw("yhat:rw","","");

lanceur->run();

tds->exportData("_flowrate_sampler_launcher_.dat");

// Visualisation
TCanvas *Canvas = new TCanvas("c1", "Graph for the Macro launchCodeFlowrateOATMinMax" ←↩

,5,64,1270,667);

page 448

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeFlowrateXMLSampling.C"

TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();
gStyle->SetPalette(1);
pad->Divide(2, 2);
pad->cd(1); tds->draw("yhat:rw");

pad->cd(3); tds->draw("yhat");
pad->cd(2); tds->draw("yhat:rw","","colz");

pad->cd(4);
// The parallel plot
tds->draw("rw:r:tu:tl:hu:hl:l:kw:yhat","","para");
TParallelCoord* para = (TParallelCoord*)gPad->GetListOfPrimitives()->FindObject(" ←↩

ParaCoord");

// The output attribute
TParallelCoordVar* axis = (TParallelCoordVar*)para->GetVarList()->FindObject("yhat");
axis->AddRange(new TParallelCoordRange(axis,15.0,80.0));
para->AddSelection("blue");
para->GetCurrentSelection()->SetLineColor(kBlue);

}

The laws of distribution are set for each input variable. For example for the Rw variable, the macro creates an uniform
distribution between bounds 0.05 and 0.15 associated to a TAttribute named "rw":

tds->addAttribute(new TUniformDistribution("rw", 0.05,0.15));

Then, the TAttribute is linked to the input file with:

tds->getAttribute("rw")->setFileKey("flowrate_input_with_xml.in", "frottement_paroi/@rw","% ←↩
e", TAttributeFileKey::kXMLAttribute);

which will be understood by Uranie as the fact the rw variable has to be read in the input file with XML format as an
XML attribute (kXMLAttribute) with the path frottement_paroi/@rw. In the same way, others TAttributes
are added, some with XML fields:

tds->getAttribute("tu")->setFileKey(sIn, "parameter[@name=’Tu’]/value/double", "%e", ←↩
TAttributeFileKey::kXMLField);

A design-of-experiments is then built with 100 samplings using the LHS method.

TSampling *sampling = new TSampling(tds, "lhs", 100);
sampling->generateSample();

We want the output file to be with XML format. So the output file _output_flowrate_withXML_.dat is set as
a TOutputFileXML.

TOutputFileXML *fout = new TOutputFileXML("_output_flowrate_withXML_.dat");

The variable yhat and d could be linked to this TOutputFileRow output file. But here, only yhat will be considered
as variable of interest by Uranie, by passing Uranie the new attribute, its XML path and type:

fout->addAttribute(new TAttribute("yhat"), "/steady_state[@name=’flowrate’]/parameter/value ←↩
/double", URANIE::DataServer::TAttributeFileKey::kXMLField);

We set the code as being the flowrate execution with "-x" option to deal with XML inputs.

TCode *mycode = new TCode(tds, "flowrate -x");

page 449

Macro "launchCodeFlowrateKeySamplingKey.C" CHAPTER XIV. USE-CASES IN C++

which indicates that flowrate has to find input files with XML format.

Then the launcher is initialised with a TDataServer and the code is executed:

TLauncher *lanceur = new TLauncher(tds, mycode);

The launcher will execute the flowrate -k command for each of the 100 patterns with the run method:

tlch->run();

XIV.4.6.3 Graph

Figure XIV.22: Graph of the macro "launchCodeFlowrateXMLSampling.C"

XIV.4.7 Macro "launchCodeFlowrateKeySamplingKey.C"

XIV.4.7.1 Objective

The objective of the macro is to evaluate the flowrate external code on a design-of-experiments where input file
"flowrate_input_with_keys.in" is with type "key=value" and the output file "_output_flowrate_
withKey_.dat" is also of the "key=value" type. This code is described in Section IV.1.2.3.1.1.

The used input file flowrate_input_with_keys.in has "key=value" format:

#
#
INPUT FILE with KEYS for the "FLOWREATE" code
\date 2008-04-22 12:53:35
#

date = 123456 ;

#########################
##

page 450

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeFlowrateKeySamplingKey.C"

exclude points
##
chu = 1050;
chl = 770;
cr = 1100;
##
#########################

#########################
##
parameters : 8
##
Rw = 0.0500 ;
R = 33366.67 ;
Tu = 63070.0 ;
Tl = 116.00 ;
Hu = 1110.00 ;
Hl = 768.57;
L = 1200.0 ;
Kw = 11732.14 ;
##
#########################

#########################
##
to simulate CPU time
##
normal 1 :
min 10000000 : 1.160u 0.000s 0:01.16 100.0%
max 100000000 : 11.600u 0.010s 0:11.61 100.0%
##
nLoop = 1;
##
#########################

end = 6;

It defines the eight variables rω , r, Tu, Tl , Hu, Hl , L, Kω and performs the execution of the command flowrate -k.

The output file _output_flowrate_withKey_.dat is with "key=value" type. It looks like:

yhat = 6.757218e+01;
d = 4.092561e+03;

yhat and d are defined as output variables in the macro.

XIV.4.7.2 Macro Uranie

void launchCodeFlowrateKeySamplingKey(Int_t nS = 100)
{

// Define the DataServer
TDataServer *tds = new TDataServer("tdsFlowrate", "Design of experiments for Flowrate");

// Add the study attributes (min, max and nominal values)
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));

page 451

Macro "launchCodeFlowrateKeySamplingKey.C" CHAPTER XIV. USE-CASES IN C++

tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

// The reference input file
TString sIn = TString("flowrate_input_with_keys.in");

// Set the reference input file and the key for each input attributes
tds->getAttribute("rw")->setFileKey(sIn, "Rw");
tds->getAttribute("r")->setFileKey(sIn, "R");
tds->getAttribute("tu")->setFileKey(sIn, "Tu");
tds->getAttribute("tl")->setFileKey(sIn, "Tl");
tds->getAttribute("hu")->setFileKey(sIn, "Hu");
tds->getAttribute("hl")->setFileKey(sIn, "Hl");
tds->getAttribute("l")->setFileKey(sIn, "L");
tds->getAttribute("kw")->setFileKey(sIn, "Kw");

// Generate the Design of Experiments
TSampling *sampling = new TSampling(tds, "lhs", nS);
sampling->generateSample();

// The output file of the code
TOutputFileKey *fout = new TOutputFileKey("_output_flowrate_withKey_.dat");
// The attribute in the output file
fout->addAttribute(new TAttribute("yhat"));
fout->addAttribute(new TAttribute("d"));

// Instanciation de mon code
TCode *mycode = new TCode(tds, "flowrate -s -k");
// on ajoute le fichier de sortie du code
mycode->addOutputFile(fout);

// Lancement du code
TLauncher *lanceur = new TLauncher(tds, mycode);
lanceur->setSave();
lanceur->setClean();
//lanceur->setWorkingDirectory(gSystem->Getenv("PWD") + TString("/tmpLanceurUranie/ ←↩

flowrate"));
lanceur->setVarDraw("yhat:rw","","");

lanceur->run();

// tds->exportData("_flowrate_sampler_launcher_.dat");
tds->startViewer();

// Visualisation
TCanvas *Canvas = new TCanvas("c1", "Graph for the Macro launchCodeFlowrateOATMinMax" ←↩

,5,64,1270,667);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();
gStyle->SetPalette(1);
pad->Divide(2, 2);
pad->cd(1); tds->draw("yhat:rw");

pad->cd(3); tds->draw("yhat");
pad->cd(2); tds->draw("yhat:rw","","colz");

pad->cd(4);
// The parallel plot
tds->draw("rw:r:tu:tl:hu:hl:l:kw:yhat","","para");
TParallelCoord* para = (TParallelCoord*)gPad->GetListOfPrimitives()->FindObject(" ←↩

ParaCoord");

page 452

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeFlowrateKeySamplingKey.C"

// The output attribute
TParallelCoordVar* axis = (TParallelCoordVar*)para->GetVarList()->FindObject("yhat");
axis->AddRange(new TParallelCoordRange(axis,15.0,20.0));
para->AddSelection("blue");
para->GetCurrentSelection()->SetLineColor(kBlue);

axis->AddRange(new TParallelCoordRange(axis,155.0,160.0));
para->AddSelection("blue");
para->GetCurrentSelection()->SetLineColor(kBlue);

}

The laws of distributions are set for each input variable. For example for the rw variable, the macro creates an uniform
distribution between bounds 0.05 and 0.15 associated to a TAttribute named "rw" (note that the set value in
flowrate_input_with_keys.in for Rw, 0.05, is between bounds. It is important to check this property when
creating the distribution):

tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));

Then, the TAttribute is linked to the input file with:

tds->getAttribute("rw")->setFileKey(TString("flowrate_input_with_keys.in"), "Rw");

which will be understood by Uranie as the fact the rw variable has to be read in an input file with "key=value" format
with the key Rw.

A design-of-experiments is then built with 100 samplings using the LHS method.

TSampling *sampling = new TSampling(tds, "lhs", 100);
sampling->generateSample();

The output file with "key=value" type of format _output_flowrate_withKey_.dat is instantiated as a TOutputFileKey.

TOutputFileKey *fout = new TOutputFileKey("_output_flowrate_withKey_.dat");

The two output variables yhat and d are then linked to this TOutputFileKey output file.

fout->addAttribute(new TAttribute("d"));
fout->addAttribute(new TAttribute("yhat"));

We set the code as being the flowrate execution with "-k"option:

TCode *mycode = new TCode(tds, "flowrate -k");

in which the "-k" option indicates that flowrate code has to find "key=value" input files.

The launcher is initialised:

TLauncher *tlch = new TLauncher(tds, mycode);

The launcher will execute the flowrate -k command for each of the 100 patterns and launched with the run method:

tlch->run();

page 453

Macro "launchCodeFlowrateKeyRecreateSampling.C" CHAPTER XIV. USE-CASES IN C++

XIV.4.7.3 Graph

Figure XIV.23: Graph of the macro "launchCodeFlowrateKeySamplingKey.C"

XIV.4.8 Macro "launchCodeFlowrateKeyRecreateSampling.C"

XIV.4.8.1 Objective

The objective of the macro is to evaluate the flowrate external code on a design-of-experiments where the input file
"flowrate_input_with_keys.in" which is produced by Uranie on the fly is with type "key=value" and the
output file "_output_flowrate_withKey_.dat" with type "key=value". This flowrate code is described in
Section IV.1.2.3.1.1.

The used input file flowrate_input_with_keys.in has "key=value" format and will be produced on the fly by
the code:

Rw = 1.480238e-01 ;
R = 3.644187e+03 ;
Tu = 7.840305e+04 ;
Tl = 8.467102e+01 ;
Hu = 1.008708e+03 ;
Hl = 7.667991e+02 ;
L = 1.174857e+03 ;
Kw = 1.097634e+04 ;

This file defines the eight variables rω , r, Tu, Tl , Hu, Hl , L, Kω needed to perform the execution of the command
flowrate -k.

The output file _output_flowrate_withRow_.dat is with "values in rows" type. It looks like:

#COLUMN_NAMES: yhat | d

6.757218e+01 4.092561e+03

yhat and d are defined as output variables in the macro. But here, only yhat is considered as variable of interest by
Uranie.

page 454

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeFlowrateKeyRecreateSampling.C"

XIV.4.8.2 Macro Uranie

void launchCodeFlowrateKeyRecreateSampling(Int_t nS = 100)
{

// Define the DataServer
TDataServer *tds = new TDataServer("tdsFlowrate", "Design of experiments for Flowrate");

// Add the study attributes (min, max and nominal values)
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

// The reference input file
TString sIn = TString("flowrate_input_with_keys.in");

// Set the reference input file and the key for each input attributes
tds->getAttribute("rw")->setFileKey(sIn, "Rw","",TAttributeFileKey::kNewKey);
tds->getAttribute("r")->setFileKey(sIn, "R","",TAttributeFileKey::kNewKey);
tds->getAttribute("tu")->setFileKey(sIn, "Tu","",TAttributeFileKey::kNewKey);
tds->getAttribute("tl")->setFileKey(sIn, "Tl","",TAttributeFileKey::kNewKey);
tds->getAttribute("hu")->setFileKey(sIn, "Hu","",TAttributeFileKey::kNewKey);
tds->getAttribute("hl")->setFileKey(sIn, "Hl","",TAttributeFileKey::kNewKey);
tds->getAttribute("l")->setFileKey(sIn, "L","",TAttributeFileKey::kNewKey);
tds->getAttribute("kw")->setFileKey(sIn, "Kw","",TAttributeFileKey::kNewKey);

// Generate the Design of Experiments
TSampling *sampling = new TSampling(tds, "lhs", nS);
sampling->generateSample();

// The output file of the code
TOutputFileKey *fout = new TOutputFileKey("_output_flowrate_withKey_.dat");
// The attribute in the output file
fout->addAttribute(new TAttribute("yhat"));

// Instanciation de mon code
TCode *mycode = new TCode(tds, "flowrate -s -k");
// on ajoute le fichier de sortie du code
mycode->addOutputFile(fout);

// Lancement du code
TLauncher *lanceur = new TLauncher(tds, mycode);
lanceur->setSave();
lanceur->setClean();
//lanceur->setWorkingDirectory(gSystem->Getenv("PWD") + TString("/tmpLanceurUranie/ ←↩

flowrate"));
lanceur->setVarDraw("yhat:rw","","");

lanceur->run();

tds->exportData("_flowrate_sampler_launcher_.dat");

// Visualisation
TCanvas *Canvas = new TCanvas("c1", "Graph for the Macro ←↩

launchCodeFlowrateKeyRecreateSampling",5,64,1270,667);

page 455

Macro "launchCodeFlowrateKeyRecreateSampling.C" CHAPTER XIV. USE-CASES IN C++

TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();
gStyle->SetPalette(1);
pad->Divide(2, 2);
pad->cd(1); tds->draw("yhat:rw");

pad->cd(3); tds->draw("yhat");
pad->cd(2); tds->draw("yhat:rw","","colz");

pad->cd(4);
// The parallel plot
tds->draw("rw:r:tu:tl:hu:hl:l:kw:yhat","","para");
TParallelCoord* para = (TParallelCoord*)gPad->GetListOfPrimitives()->FindObject(" ←↩

ParaCoord");

// The output attribute
TParallelCoordVar* axis = (TParallelCoordVar*)para->GetVarList()->FindObject("yhat");
axis->AddRange(new TParallelCoordRange(axis,15.0,80.0));
para->AddSelection("blue");
para->GetCurrentSelection()->SetLineColor(kBlue);

}

In the first part of this macro, properties are set for each input variable. For example for the Rw variable, the macro
creates an uniform distribution between bounds 0.05 and 0.15 associated to a TAttribute named "rw":

tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));

Then, the TAttribute is linked to the input file with:

tds->getAttribute("rw")->setFileKey(TString("flowrate_input_keys.in"), "Rw","", ←↩
TAttributeFileKey::kNewKey);

which will be understood by Uranie as the fact the rw variable has to be read in the input file with "key=value" format
with the key Rw. The property TAttributeFileKey::kNewKey means that the input file is of "key=value" type
and has to be created on the fly for each sampling locations.

A design-of-experiments is then built with 100 samplings using the LHS method.

TSampling *sampling = new TSampling(tds, "lhs", 100);
sampling->generateSample();

The output file with "values in rows" type _output_flowrate_withRow_.dat is instantiated set as a TOutputFileRow.

TOutputFileRow *fout = new TOutputFileRow("_output_flowrate_withRow_.dat");

The variable yhat and d could be linked to this TOutputFileRow output file. But here, only yhat will be considered
by Uranie as variable of interest.

fout->addAttribute("yhat");

We set the code as being the flowrate execution with "-k" option.

TCode *mycode = new TCode(tds, "flowrate -k");

which indicates that flowrate code has to find "key=value" input files.

Then the launcher is initialised with a TDataServer and the code is executed:

TLauncher *tlch = new TLauncher(tds, mycode);

The launcher will execute the flowrate -k command for each of the 100 patterns with the run method:

tlch->run();

page 456

CHAPTER XIV. USE-CASES IN C++Macro "launchCodeFlowrateKeyRecreateSamplingOutputDataServer.C"

XIV.4.8.3 Graph

Figure XIV.24: Graph of the macro "launchCodeFlowrateKeyRecreateSampling.C"

XIV.4.9 Macro "launchCodeFlowrateKeyRecreateSamplingOutputDataServer.C"

XIV.4.9.1 Objective

The objective of the macro is to evaluate the flowrate external code on a design-of-experiments where the input file
"flowrate_input_with_keys.in" which will be produced by Uranie on the fly is with type "key=value" and the
output file "_output_flowrate_withRow_.dat" is with type "DataServer". This flowrate code is described
in Section IV.1.2.3.1.1.

The input file flowrate_input_with_keys.in has "key=value" format and will be produced on the fly by the
code:

#
#
INPUT FILE with KEYS for the "FLOWREATE" code
\date 2008-04-22 12:53:35
#

date = 123456 ;

#########################
##
exclude points
##
chu = 1050;
chl = 770;
cr = 1100;
##
#########################

#########################

page 457

Macro "launchCodeFlowrateKeyRecreateSamplingOutputDataServer.C"CHAPTER XIV. USE-CASES IN C++

##
parameters : 8
##
Rw = 0.0500 ;
R = 33366.67 ;
Tu = 63070.0 ;
Tl = 116.00 ;
Hu = 1110.00 ;
Hl = 768.57;
L = 1200.0 ;
Kw = 11732.14 ;
##
#########################

#########################
##
to simulate CPU time
##
normal 1 :
min 10000000 : 1.160u 0.000s 0:01.16 100.0%
max 100000000 : 11.600u 0.010s 0:11.61 100.0%
##
nLoop = 1;
##
#########################

end = 6;

This file defines the eight variables rω , r, Tu, Tl , Hu, Hl , L, Kω needed to perform the execution of the command
flowrate -k.

The output file _output_flowrate_withRow_.dat is with "DataServer" type. It looks like:

#COLUMN_NAMES: yhat | d

6.757218e+01 4.092561e+03

yhat and d are defined as output variables in the macro. But here, only yhat is considered as variable of interest by
Uranie.

XIV.4.9.2 Macro Uranie

void launchCodeFlowrateKeyRecreateSamplingOutputDataServer(Int_t nS = 100)
{

// Define the DataServer
TDataServer *tds = new TDataServer("tdsFlowrate", "Design of experiments for Flowrate");

// Add the study attributes (min, max and nominal values)
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

page 458

CHAPTER XIV. USE-CASES IN C++Macro "launchCodeFlowrateKeyRecreateSamplingOutputDataServer.C"

// The reference input file
TString sIn = TString("flowrate_input_with_keys.in");

// Set the reference input file and the key for each input attributes
tds->getAttribute("rw")->setFileKey(sIn, "Rw","",TAttributeFileKey::kNewKey);
tds->getAttribute("r")->setFileKey(sIn, "R","",TAttributeFileKey::kNewKey);
tds->getAttribute("tu")->setFileKey(sIn, "Tu","",TAttributeFileKey::kNewKey);
tds->getAttribute("tl")->setFileKey(sIn, "Tl","",TAttributeFileKey::kNewKey);
tds->getAttribute("hu")->setFileKey(sIn, "Hu","",TAttributeFileKey::kNewKey);
tds->getAttribute("hl")->setFileKey(sIn, "Hl","",TAttributeFileKey::kNewKey);
tds->getAttribute("l")->setFileKey(sIn, "L","",TAttributeFileKey::kNewKey);
tds->getAttribute("kw")->setFileKey(sIn, "Kw","",TAttributeFileKey::kNewKey);

// Generate the design of experiments
TSampling *sampling = new TSampling(tds, "lhs", nS);
sampling->generateSample();

// The output file of the code
TOutputFileDataServer *fout = new TOutputFileDataServer("_output_flowrate_withRow_.dat");
// The attribute in the output file
fout->addAttribute("yhat"); // fout->addAttribute(new TAttribute("y"));

// Create a TCode object from a TDS and the command line
TCode *mycode = new TCode(tds, "flowrate -s -k");
// Add the output file
mycode->addOutputFile(fout);

// Create a launcher of code
TLauncher *lanceur = new TLauncher(tds, mycode);
lanceur->setSave();
lanceur->setClean();
//lanceur->setWorkingDirectory(gSystem->Getenv("PWD") + TString("/tmpLanceurUranie/ ←↩

flowrate"));

lanceur->setVarDraw("yhat:rw","","");

lanceur->run();

tds->exportData("_flowrate_sampler_launcher_.dat");
// Visualisation
TCanvas *Canvas = new TCanvas("c1", "Graph for the Macro ←↩

launchCodeFlowrateKeyRecreateSamplingOutputDataServer",565,62,560,619);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();
gStyle->SetPalette(1);
pad->Divide(1, 3);

// Scatterplot y versus rw
pad->cd(1); tds->draw("yhat:rw");

// Histogramm of the output attribute
pad->cd(2); tds->draw("yhat");

// The parallel plot
pad->cd(3);
tds->draw("rw:r:tu:tl:hu:hl:l:kw:yhat","","para");
TParallelCoord* para = (TParallelCoord*)gPad->GetListOfPrimitives()->FindObject(" ←↩

ParaCoord");

// The output attribute
TParallelCoordVar* axis = (TParallelCoordVar*)para->GetVarList()->FindObject("yhat");

page 459

Macro "launchCodeFlowrateKeyRecreateSamplingOutputDataServer.C"CHAPTER XIV. USE-CASES IN C++

axis->AddRange(new TParallelCoordRange(axis,15.0,20.0));
para->AddSelection("blue");
para->GetCurrentSelection()->SetLineColor(kBlue);

axis->AddRange(new TParallelCoordRange(axis,155.0,160.0));
para->AddSelection("blue");
para->GetCurrentSelection()->SetLineColor(kBlue);

}

The laws of distributions are set for each input variable. For example for the rw variable, the macro creates an uniform
distribution between bounds 0.05 and 0.15 associated to a TAttribute named "rw":

tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));

Then, the TAttribute is linked to the input file with:

tds->getAttribute("rw")->setFileKey(TString("flowrate_input_with_rows.in"), "Rw","", ←↩
TAttributeFileKey::kNewKey);

which will be understood by Uranie as the fact the rw variable has to be read in an input file with "key=value" format.
The property TAttributeFileKey::kNewKeymeans the input file has to be created on the fly for each sampling
created.

A design-of-experiments is then built with 100 samplings using the LHS method.

TSampling *sampling = new TSampling(tds, "lhs", 100);
sampling->generateSample();

The output file with "DataServer" type _output_flowrate_withRow_.dat is instantiated as a TOutputFileDataServer.
This TOutputFileDataServer file is of the same format that a TDataServer can load.

TOutputFileDataServer *fout = new TOutputFileDataServer("_output_flowrate_withRow_.dat");

The variable yhat and d are then linked to this TOutputFileDataServer output file. But here, only yhat will be
considered by Uranie as a variable of interest.

fout->addAttribute("yhat");

We set the code as being the flowrate execution with "-k" option.

TCode *mycode = new TCode(tds, "flowrate -k");

which indicates that flowrate code has to find "key=value" input files.

Then the launcher is initialised with a TDataServer and the code is executed:

TLauncher *lanceur = new TLauncher(tds, mycode);

The launcher will execute the flowrate -k command for each of the 100 patterns with the run method.

lanceur->run();

page 460

CHAPTER XIV. USE-CASES IN C++Macro "launchCodeFlowrateRowRecreateSamplingOutputDataServer.C"

XIV.4.9.3 Graph

Figure XIV.25: Graph of the macro "launchCodeFlowrateKeyRecreateSamplingOutputDataServer.C"

XIV.4.10 Macro "launchCodeFlowrateRowRecreateSamplingOutputDataServer.C"

XIV.4.10.1 Objective

The objective of the macro is to evaluate the flowrate external code on a design-of-experiments where the input file
"flowrate_input_with_values_rows.in" will be produced on the fly by Uranie is with "values in rows"
type and the output file "_output_flowrate_withRow_.dat" with "DataServer" type. This flowrate code is
described in Section IV.1.2.3.1.1.

The input file flowrate_input_with_values_rows.in is with "values in rows" format and will be produced
on the fly by the code:

0.0500 33366.67 63070.0 116.00 1110.00 768.57 1200.0 11732.14

page 461

Macro "launchCodeFlowrateRowRecreateSamplingOutputDataServer.C"CHAPTER XIV. USE-CASES IN C++

This file defines the eight variables rω , r, Tu, Tl , Hu, Hl , L, Kω needed to perform the execution of the command
flowrate -r.

The output file _output_flowrate_withRow_.dat is of "DataServer" type. It looks like:

#COLUMN_NAMES: yhat | d

6.757218e+01 4.092561e+03

yhat and d are defined as output variables in the macro.

XIV.4.10.2 Macro Uranie

void launchCodeFlowrateRowRecreateSamplingOutputDataServer(Int_t nS = 100)
{

// Define the DataServer
TDataServer *tds = new TDataServer("tdsFlowrate", "Design of experiments for Flowrate");

// Add the study attributes (min, max and nominal values)
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

// The input file
TString sFileName = TString("flowrate_input_with_values_rows.in");

// Set the input file with "key = value" format CREATED ON FLY with row for each input ←↩
attributes

tds->getAttribute("rw")->setFileKey(sFileName, "Rw","",TAttributeFileKey::kNewRow);
tds->getAttribute("r")->setFileKey(sFileName, "R","",TAttributeFileKey::kNewRow);
tds->getAttribute("tu")->setFileKey(sFileName, "Tu","",TAttributeFileKey::kNewRow);
tds->getAttribute("tl")->setFileKey(sFileName, "Tl","",TAttributeFileKey::kNewRow);
tds->getAttribute("hu")->setFileKey(sFileName, "Hu","",TAttributeFileKey::kNewRow);
tds->getAttribute("hl")->setFileKey(sFileName, "Hl","",TAttributeFileKey::kNewRow);
tds->getAttribute("l")->setFileKey(sFileName, "L","",TAttributeFileKey::kNewRow);
tds->getAttribute("kw")->setFileKey(sFileName, "Kw","",TAttributeFileKey::kNewRow);

// Generate a Design of experiments (DoE) from the TDataServer
TSampling *sampling = new TSampling(tds, "lhs", nS);
sampling->generateSample();

// The output file of the code based on the same format that a TDataServer can load (# ←↩
COLUMN_NAMES: yhat | d)

TOutputFileDataServer *fout = new TOutputFileDataServer("_output_flowrate_withRow_.dat");
// The attributes in the output file
fout->addAttribute("d"); // fout->addAttribute(new TAttribute("d"));
fout->addAttribute("yhat"); // fout->addAttribute(new TAttribute("yhat"));

// Create a TCode object with the TDS (attribute and input files) and the command to ←↩
execute

TCode *mycode = new TCode(tds, "flowrate -s -r");
// Add the output file
mycode->addOutputFile(fout);

page 462

CHAPTER XIV. USE-CASES IN C++Macro "launchCodeFlowrateRowRecreateSamplingOutputDataServer.C"

// Launcher of the code on the Design of experiments (DoE) in the TDS
TLauncher *tlch = new TLauncher(tds, mycode);
tlch->setSave();
tlch->setClean();
//tlch->setWorkingDirectory(gSystem->Getenv("PWD") + TString("/tmpLanceurUranie/flowrate ←↩

"));
tlch->setVarDraw("yhat:rw","","");

// Evaluate the DoE
tlch->run();

// tds->exportData("_flowrate_sampler_launcher_.dat");

// Visualisation
TCanvas *Canvas = new TCanvas("c1", "Graph for the Macro ←↩

launchCodeFlowrateRowRecreateSamplingOutputDataServer.C",565,62,560,619);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();
gStyle->SetPalette(1);
pad->Divide(1, 3);
pad->cd(1); tds->draw("yhat:rw");

pad->cd(2);
// Histogramm of the output attribute
tds->draw("yhat");

pad->cd(3);
// The parallel plot
tds->draw("rw:r:tu:tl:hu:hl:l:kw:yhat","","para");
TParallelCoord* para = (TParallelCoord*)gPad->GetListOfPrimitives()->FindObject(" ←↩

ParaCoord");

// The output attribute
TParallelCoordVar* axis = (TParallelCoordVar*)para->GetVarList()->FindObject("yhat");
axis->AddRange(new TParallelCoordRange(axis,15.0,20.0));
para->AddSelection("blue");

para->GetCurrentSelection()->SetLineColor(kRed);
axis->AddRange(new TParallelCoordRange(axis,155.0,160.0));

}

The laws of distribution are set for each input variable. For example for the rw variable, the macro creates an uniform
distribution between bounds 0.05 and 0.15 associated to a TAttribute named "rw":

tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));

Then, the TAttribute is linked to the input file with:

tds->getAttribute("rw")->setFileKey(TString("flowrate_input_with_rows.in"), "Rw","", ←↩
TAttributeFileKey::kNewRow);

which will be understood by Uranie as the fact the rw variable has to be read in an input file with "values in rows"
format. The property TAttributeFileKey::kNewRow means the input file has to be created for each sampling
created.

A design-of-experiments is then built with 100 samplings using the LHS method.

TSampling *sampling = new TSampling(tds, "lhs", 100);
sampling->generateSample();

page 463

Macro "launchCodeFlowrateRowRecreateSamplingOutputDataServer.C"CHAPTER XIV. USE-CASES IN C++

The output file with "DataServer" type _output_flowrate_withRow_.dat is instantiated as a TOutputFileDataServer.
This TOutputFileDataServer file is of the same format that a TDataServer can load.

TOutputFileDataServer *fout = new TOutputFileDataServer("_output_flowrate_withRow_.dat");

The variable yhat and d are then linked to this TOutputFileDataServer output file.

fout->addAttribute("d");
fout->addAttribute("yhat");

We set the code as being the flowrate execution with "-r" option:

TCode *mycode = new TCode(tds, "flowrate -r");

in which the "-r" option indicates that flowrate code has to find "values in rows" input files.

Then the launcher is initialised with a TDataServer and the code is executed:

TLauncher *tlch = new TLauncher(tds, mycode);

The launcher will execute the flowrate -r command for each of the 100 patterns with the run method.

tlch->run();

page 464

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeFlowrateFlagSampling.C"

XIV.4.10.3 Graph

Figure XIV.26: Graph of the macro "launchCodeFlowrateRowRecreateSamplingOutputDataServer.C"

XIV.4.11 Macro "launchCodeFlowrateFlagSampling.C"

XIV.4.11.1 Objective

The objective of the macro is to evaluate the flowrate external code on the design-of-experiments where the input file
"flowrate_input_with_flags.in" has flags" replaced with usable values and the output file "_output_
flowrate_withRow_.dat" with "values in rows" type. This code flowrate is described in Section IV.1.2.3.1.1.

The creation of an input file containing some "flags" is motivated by the will to make evolve variables in an input file
with no particular structure:

#
INPUT FILE with FLAG for the "FLOWREATE" code
\date 2008-04-22 12:55:17
#

new Implicit_Steady_State sch {
frottement_paroi { 0.071623 19712.541454 } // values of Rw and R

page 465

Macro "launchCodeFlowrateFlagSampling.C" CHAPTER XIV. USE-CASES IN C++

tinit 0.0
tmax 1000000.
nb_pas_dt_max 1500
dt_min 1051.972855 // value of Hu
dt_max 805.249178 // value of Hl
facsec 1000000.
kW 11401.611060 // value of Kw
information_Tu Champ_Uniforme 1 85927.853162 // value of Tu
information_Tl Champ_Uniforme 1 85.803614 // value of Tl
information_L {

precision 1162.689830 // value of L
}
convergence {

criterion relative_max_du_dt
precision 1.e-6

}

stop_criterium {
ch_abcsissa_hu 1050
ch_ordinate_hl 770
c_radius 1100

}

Solveur Newton3 {
max_iter_matrice 1
max_iter_implicite 1
date 5654321
seuil_convg_implicite 1.e-6
assemblage_implicite 10
solveur_lineaire BiCGS

preconditionneur ILU
seuil_resol_implicite 1.e-5

}
}

These values are then replaced by "flags" bounded with special characters.

The input file flowrate_input_with_flags.in that contains "flags" is built this way:

#
INPUT FILE with FLAG for the "FLOWREATE" code
\date 2008-04-22 12:55:17
#

new Implicit_Steady_State sch {
frottement_paroi { @Rw@ @R@ }
tinit 0.0
tmax 1000000.
nb_pas_dt_max 1500
dt_min @Hu@
dt_max @Hl@
facsec 1000000.
kW @Kw@
information_Tu Champ_Uniforme 1 @Tu@
information_Tl Champ_Uniforme 1 @Tl@
information_L {

precision @L@
}
convergence {

criterion relative_max_du_dt
precision @Rw@

}

page 466

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeFlowrateFlagSampling.C"

stop_criterium {
ch_abcsissa_hu 1050
ch_ordinate_hl 770
c_radius 1100

}

Solveur Newton3 {
max_iter_matrice 1
max_iter_implicite 1
date 5654321
seuil_convg_implicite 1.e-6
assemblage_implicite 10
solveur_lineaire BiCGS

preconditionneur ILU
seuil_resol_implicite 1.e-5

}
}

This file defines the eight variables rω , r, Tu, Tl , Hu, Hl , L, Kω needed to perform the execution of the command
flowrate -f.

The output file _output_flowrate_withRow_.dat is of "values in rows" type. It looks like:

#COLUMN_NAMES: yhat | d

6.757218e+01 4.092561e+03

yhat and d are defined as output variables in the macro. But here, only yhat is considered as variable of interest by
Uranie.

XIV.4.11.2 Macro Uranie

void launchCodeFlowrateFlagSampling(Int_t nS = 400)
{

// Define the DataServer
TDataServer *tds = new TDataServer("tdsFlowrate", "Design of experiments for Flowrate");

// Add the study attributes (min, max and nominal values)
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

// The reference input file
TString sIn = TString("flowrate_input_with_flags.in");

// Set the reference input file and the key for each input attributes
tds->getAttribute("rw")->setFileFlag(sIn, "@Rw@");
tds->getAttribute("r")->setFileFlag(sIn, "@R@");
tds->getAttribute("tu")->setFileFlag(sIn, "@Tu@");
tds->getAttribute("tl")->setFileFlag(sIn, "@Tl@");
tds->getAttribute("hu")->setFileFlag(sIn, "@Hu@");
tds->getAttribute("hl")->setFileFlag(sIn, "@Hl@");

page 467

Macro "launchCodeFlowrateFlagSampling.C" CHAPTER XIV. USE-CASES IN C++

tds->getAttribute("l")->setFileFlag(sIn, "@L@");
tds->getAttribute("kw")->setFileFlag(sIn, "@Kw@");

// Generate the Design of Experiments
TSampling *sampling = new TSampling(tds, "lhs", nS);
sampling->generateSample();

// The output file of the code
TOutputFileRow *fout = new TOutputFileRow("_output_flowrate_withRow_.dat");
// The attribute in the output file
fout->addAttribute(new TAttribute("yhat"));

// Instanciation de mon code
TCode *mycode = new TCode(tds, "flowrate -s -f");
// on ajoute le fichier de sortie du code
mycode->addOutputFile(fout);

// Lancement du code
TLauncher *lanceur = new TLauncher(tds, mycode);
lanceur->setSave();
// lanceur->setClean();
//lanceur->setWorkingDirectory(gSystem->Getenv("PWD") + TString("/tmpLanceurUranie/ ←↩

flowrate"));
lanceur->setVarDraw("yhat:rw","","");

lanceur->run();

tds->exportData("_flowrate_sampler_launcher_.dat");

// Visualisation
TCanvas *Canvas = new TCanvas("c1", "Graph for the Macro launchCodeFlowrateFlag" ←↩

,5,64,1270,667);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();
gStyle->SetPalette(1);
pad->Divide(2, 2);
pad->cd(1); tds->draw("yhat:rw");

pad->cd(3); tds->draw("yhat");
pad->cd(2); tds->draw("yhat:rw","","colz");

pad->cd(4);
// The parallel plot
tds->draw("rw:r:tu:tl:hu:hl:l:kw:yhat","","para");
TParallelCoord* para = (TParallelCoord*)gPad->GetListOfPrimitives()->FindObject(" ←↩

ParaCoord");

// The output attribute
TParallelCoordVar* axis = (TParallelCoordVar*)para->GetVarList()->FindObject("yhat");
axis->AddRange(new TParallelCoordRange(axis,100.0,160.0));
para->AddSelection("blue");
para->GetCurrentSelection()->SetLineColor(kBlue);

}

The laws of distribution are set for each input variable. For example for the rw variable, the macro creates an uniform
distribution between bounds 0.05 and 0.15 associated to a TAttribute named "rw":

page 468

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeFlowrateFlagSampling.C"

tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));

Then, the TAttribute is linked to the input file with:

tds->getAttribute("rw")->setFileFlag(TString("flowrate_input_with_flags.in"), "@Rw@");

which will be understood by Uranie as the fact the rw variable has to be read in an input file with "flags".

A design-of-experiments is then built with 100 samplings using the LHS method.

TSampling *sampling = new TSampling(tds, "lhs", 100);
sampling->generateSample();

The output file with "values in rows" type _output_flowrate_withRow_.dat is instantiated as a TOutputFileRow.

TOutputFileRow *fout = new TOutputFileRow("_output_flowrate_withRow_.dat");

The variable yhat and d are then linked to this TOutputFileRow output file. But here, only yhat will be considered
as variable of interest by Uranie.

fout->addAttribute("yhat");

We set the code as being the flowrate execution with "-f" option.

TCode *mycode = new TCode(tds, "flowrate -f");

which indicates that flowrate code has to find input files with "flags". Then the launcher is initialised with a TDataServer
and the code is executed:

TLauncher *tlch = new TLauncher(tds, mycode);

The launcher will execute the flowrate -f command for each of the 100 patterns with the run method:

tlch->run();

XIV.4.11.3 Graph

Figure XIV.27: Graph of the macro "launchCodeFlowrateFlagSampling.C"

page 469

Macro "launchCodeFlowrateFlagSamplingKey.C" CHAPTER XIV. USE-CASES IN C++

XIV.4.12 Macro "launchCodeFlowrateFlagSamplingKey.C"

XIV.4.12.1 Objective

The objective of the macro is to evaluate the flowrate external code on a design-of-experiments where the input file
"flowrate_input_with_flags.in" has "flags" and the output file "_output_flowrate_withKey_
.dat" is with type "key=value". This code is described in Section IV.1.2.3.1.1.

The creation of an input file containing some "flags" is motivated by the will to make evolve variables in an input file
with no particular structure:

#
INPUT FILE with FLAG for the "FLOWREATE" code
\date 2008-04-22 12:55:17
#

new Implicit_Steady_State sch {
frottement_paroi { 0.071623 19712.541454 } // values of Rw and R
tinit 0.0
tmax 1000000.
nb_pas_dt_max 1500
dt_min 1051.972855 // value of Hu
dt_max 805.249178 // value of Hl
facsec 1000000.
kW 11401.611060 // value of Kw
information_Tu Champ_Uniforme 1 85927.853162 // value of Tu
information_Tl Champ_Uniforme 1 85.803614 // value of Tl
information_L {

precision 1162.689830 // value of L
}
convergence {

criterion relative_max_du_dt
precision 1.e-6

}

stop_criterium {
ch_abcsissa_hu 1050
ch_ordinate_hl 770
c_radius 1100

}

Solveur Newton3 {
max_iter_matrice 1
max_iter_implicite 1
date 5654321
seuil_convg_implicite 1.e-6
assemblage_implicite 10
solveur_lineaire BiCGS

preconditionneur ILU
seuil_resol_implicite 1.e-5

}
}

These values are then replaced by "flags" bounded with special characters.

The input file flowrate_input_with_flags.in containing "flags" is built this way:

#
INPUT FILE with FLAG for the "FLOWREATE" code
\date 2008-04-22 12:55:17
#

page 470

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeFlowrateFlagSamplingKey.C"

new Implicit_Steady_State sch {
frottement_paroi { @Rw@ @R@ }
tinit 0.0
tmax 1000000.
nb_pas_dt_max 1500
dt_min @Hu@
dt_max @Hl@
facsec 1000000.
kW @Kw@
information_Tu Champ_Uniforme 1 @Tu@
information_Tl Champ_Uniforme 1 @Tl@
information_L {

precision @L@
}
convergence {

criterion relative_max_du_dt
precision @Rw@

}

stop_criterium {
ch_abcsissa_hu 1050
ch_ordinate_hl 770
c_radius 1100

}

Solveur Newton3 {
max_iter_matrice 1
max_iter_implicite 1
date 5654321
seuil_convg_implicite 1.e-6
assemblage_implicite 10
solveur_lineaire BiCGS

preconditionneur ILU
seuil_resol_implicite 1.e-5

}
}

It defines the eight variables rω , r, Tu, Tl , Hu, Hl , L, Kω and performs the execution of the command flowrate -f.

The output file _output_flowrate_withKey_.dat is with "key=value" type. It looks like:

yhat = 6.757218e+01;
d = 4.092561e+03;

yhat and d are defined as output variables in the macro.

XIV.4.12.2 Macro Uranie

void launchCodeFlowrateFlagSamplingKey(Int_t nS = 100)
{

// Define the DataServer
TDataServer *tds = new TDataServer("tdsFlowrate", "Design of experiments for Flowrate");

// Add the study attributes (min, max and nominal values)
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));

page 471

Macro "launchCodeFlowrateFlagSamplingKey.C" CHAPTER XIV. USE-CASES IN C++

tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

// The reference input file
TString sIn = TString("flowrate_input_with_flags.in");

// Set the reference input file and the key for each input attributes
tds->getAttribute("rw")->setFileKey(sIn, "@Rw@","%f",TAttributeFileKey::kFlag);
tds->getAttribute("r")->setFileKey(sIn, "@R@","%f",TAttributeFileKey::kFlag);
tds->getAttribute("tu")->setFileKey(sIn, "@Tu@","%f",TAttributeFileKey::kFlag);
tds->getAttribute("tl")->setFileKey(sIn, "@Tl@","%f",TAttributeFileKey::kFlag);
tds->getAttribute("hu")->setFileKey(sIn, "@Hu@","%f",TAttributeFileKey::kFlag);
tds->getAttribute("hl")->setFileKey(sIn, "@Hl@","%f",TAttributeFileKey::kFlag);
tds->getAttribute("l")->setFileKey(sIn, "@L@","%f",TAttributeFileKey::kFlag);
tds->getAttribute("kw")->setFileKey(sIn, "@Kw@","%f",TAttributeFileKey::kFlag);

// Generate the Design of Experiments
TSampling *sampling = new TSampling(tds, "lhs", nS);
sampling->generateSample();

// The output file of the code
TOutputFileKey *fout = new TOutputFileKey("_output_flowrate_withKey_.dat");
// The attribute in the output file
fout->addAttribute(new TAttribute("yhat"));
fout->addAttribute(new TAttribute("d"));

// Instanciation de mon code
TCode *mycode = new TCode(tds, "flowrate -s -f ");
// on ajoute le fichier de sortie du code
mycode->addOutputFile(fout);

// Lancement du code
TLauncher *lanceur = new TLauncher(tds, mycode);
lanceur->setSave();
lanceur->setClean();
//lanceur->setWorkingDirectory(gSystem->Getenv("PWD") + TString("/tmpLanceurUranie/ ←↩

flowrate"));
lanceur->setVarDraw("yhat:rw","","");

lanceur->run();

tds->exportData("_flowrate_sampler_launcher_oat_.dat");

// Visualisation
TCanvas *Canvas = new TCanvas("c1", "Graph for the Macro launchCodeFlowrateFlag" ←↩

,5,64,1270,667);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();
gStyle->SetPalette(1);
pad->Divide(2, 2);
pad->cd(1); tds->draw("yhat:rw");

pad->cd(3); tds->draw("yhat");
pad->cd(2); tds->draw("yhat:rw","","colz");

pad->cd(4);
// The parallel plot
tds->draw("rw:r:tu:tl:hu:hl:l:kw:yhat","","para");

page 472

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeFlowrateFlagSamplingKey.C"

TParallelCoord* para = (TParallelCoord*)gPad->GetListOfPrimitives()->FindObject(" ←↩
ParaCoord");

// The output attribute
TParallelCoordVar* axis = (TParallelCoordVar*)para->GetVarList()->FindObject("yhat");
axis->AddRange(new TParallelCoordRange(axis,18.0,20.0));
para->AddSelection("blue");
para->GetCurrentSelection()->SetLineColor(kBlue);

axis->AddRange(new TParallelCoordRange(axis,155.0,160.0));
para->AddSelection("blue");
para->GetCurrentSelection()->SetLineColor(kRed);

}

The distribution laws are set for each input variable. For example for the rw variable, the macro creates an uniform
distribution between bounds 0.05 and 0.15 associated to a TAttribute named "rw":

tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));

Then, the TAttribute is linked to the input file with:

tds->getAttribute("rw")->setFileFlag(sFileName, "@Rw@");

which is the same thing as writing:

tds->getAttribute("rw")->setFileKey("flowrate_input_with_flags.in", @Rw@,"%e", ←↩
TAttributeFileKey::kFlag);

which will be understood by Uranie as the fact the rw variable has to be read in an input file with flag format. The code
will then, for each generated sampling, replace the flag @Rw@ in the input file by the corresponding value.

A design-of-experiments is then built with 100 samplings using the LHS method:

TSampling *sampling = new TSampling(tds, "lhs", 100);
sampling->generateSample();

The output file with "key=value" format _output_flowrate_withKey_.dat is instantiated as a TOutputFileKey.

TOutputFileKey *fout = new TOutputFileKey("_output_flowrate_withKey_.dat");

The two output variables yhat and d are then linked to this TOutputFileKey output file:

fout->addAttribute(new TAttribute("d"));
fout->addAttribute(new TAttribute("yhat"));

We set the code as being the flowrate execution with "-f" option:

TCode *mycode = new TCode(tds, "flowrate -f");

in which the "-f" option indicates that flowrate code has to find input files with "flags".

Then the launcher is initialised with a TDataServer and the code is executed:

TLauncher *tlch = new TLauncher(tds, mycode);
tlch->run();

The launcher will execute the flowrate -f command for each of the 100 patterns with the run method.

page 473

Macro "launchCodeFlowrateKeyFlagSampling.C" CHAPTER XIV. USE-CASES IN C++

XIV.4.12.3 Graph

Figure XIV.28: Graph of the macro "launchCodeFlowrateFlagSamplingKey.C"

XIV.4.13 Macro "launchCodeFlowrateKeyFlagSampling.C"

XIV.4.13.1 Objective

The objective of the macro is to evaluate the flowrate external code on a design-of-experiments where the values of
attributes will be replaced in two input files, the first, "flowrate_input_with_keys.in" with "key=value" type,
the second, "flowrate_input_with_flags.in" with "flags" and the output file "_output_flowrate_
withRow_.dat" with "values in rows" type. This flowrate code is described in Section IV.1.2.3.1.1.

The first input file flowrate_input_with_keys.in is "key=value" format:

#
#
INPUT FILE with KEYS for the "FLOWREATE" code
\date 2008-04-22 12:53:35
#

date = 123456 ;

#########################
##
exclude points
##
chu = 1050;
chl = 770;
cr = 1100;
##
#########################

#########################
##
parameters : 8

page 474

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeFlowrateKeyFlagSampling.C"

##
Rw = 0.0500 ;
R = 33366.67 ;
Tu = 63070.0 ;
Tl = 116.00 ;
Hu = 1110.00 ;
Hl = 768.57;
L = 1200.0 ;
Kw = 11732.14 ;
##
#########################

#########################
##
to simulate CPU time
##
normal 1 :
min 10000000 : 1.160u 0.000s 0:01.16 100.0%
max 100000000 : 11.600u 0.010s 0:11.61 100.0%
##
nLoop = 1;
##
#########################

end = 6;

The creation of an input file containing some "flags" is motivated by the will to make evolve variables in an input file
with no particular structure:

#
INPUT FILE with FLAG for the "FLOWREATE" code
\date 2008-04-22 12:55:17
#

new Implicit_Steady_State sch {
frottement_paroi { 0.071623 19712.541454 } // values of Rw and R
tinit 0.0
tmax 1000000.
nb_pas_dt_max 1500
dt_min 1051.972855 // value of Hu
dt_max 805.249178 // value of Hl
facsec 1000000.
kW 11401.611060 // value of Kw
information_Tu Champ_Uniforme 1 85927.853162 // value of Tu
information_Tl Champ_Uniforme 1 85.803614 // value of Tl
information_L {

precision 1162.689830 // value of L
}
convergence {

criterion relative_max_du_dt
precision 1.e-6

}

stop_criterium {
ch_abcsissa_hu 1050
ch_ordinate_hl 770
c_radius 1100

}

Solveur Newton3 {
max_iter_matrice 1

page 475

Macro "launchCodeFlowrateKeyFlagSampling.C" CHAPTER XIV. USE-CASES IN C++

max_iter_implicite 1
date 5654321
seuil_convg_implicite 1.e-6
assemblage_implicite 10
solveur_lineaire BiCGS

preconditionneur ILU
seuil_resol_implicite 1.e-5

}
}

These values are then replaced by "flags" bounded with special characters.

The second input file flowrate_input_with_flags.in containing "flags" is built this way:

#
INPUT FILE with FLAG for the "FLOWREATE" code
\date 2008-04-22 12:55:17
#

new Implicit_Steady_State sch {
frottement_paroi { @Rw@ @R@ }
tinit 0.0
tmax 1000000.
nb_pas_dt_max 1500
dt_min @Hu@
dt_max @Hl@
facsec 1000000.
kW @Kw@
information_Tu Champ_Uniforme 1 @Tu@
information_Tl Champ_Uniforme 1 @Tl@
information_L {

precision @L@
}
convergence {

criterion relative_max_du_dt
precision @Rw@

}

stop_criterium {
ch_abcsissa_hu 1050
ch_ordinate_hl 770
c_radius 1100

}

Solveur Newton3 {
max_iter_matrice 1
max_iter_implicite 1
date 5654321
seuil_convg_implicite 1.e-6
assemblage_implicite 10
solveur_lineaire BiCGS

preconditionneur ILU
seuil_resol_implicite 1.e-5

}
}

These files define the eight variables rω , r, Tu, Tl , Hu, Hl , L, Kω needed to perform the execution of the command
flowrate -k and the command flowrate -f.

The output file _output_flowrate_withRow_.dat is of "values in rows" type. It looks like:

#COLUMN_NAMES: yhat | d

page 476

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeFlowrateKeyFlagSampling.C"

6.757218e+01 4.092561e+03

yhat and d are defined as output variables in the macro.

XIV.4.13.2 Macro Uranie

void launchCodeFlowrateKeyFlagSampling(Int_t nS = 100)
{

// Define the DataServer
TDataServer *tds = new TDataServer("tdsFlowrate", "Design of experiments for Flowrate");

// Add the study attributes (min, max and nominal values)
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

// The reference input file with key
TString sInKey = TString("flowrate_input_with_keys.in");

// Set the reference input file and the key for each input attributes
tds->getAttribute("rw")->setFileKey(sInKey, "Rw");
tds->getAttribute("r")->setFileKey(sInKey, "R");
tds->getAttribute("tu")->setFileKey(sInKey, "Tu");
tds->getAttribute("tl")->setFileKey(sInKey, "Tl");
tds->getAttribute("hu")->setFileKey(sInKey, "Hu");
tds->getAttribute("hl")->setFileKey(sInKey, "Hl");
tds->getAttribute("l")->setFileKey(sInKey, "L");
tds->getAttribute("kw")->setFileKey(sInKey, "Kw");

// The reference input file with flag
TString sInFlag = TString("flowrate_input_with_flags.in");
tds->getAttribute("rw")->setFileFlag(sInFlag, "@Rw@");
tds->getAttribute("r")->setFileFlag(sInFlag, "@R@");
tds->getAttribute("tu")->setFileFlag(sInFlag, "@Tu@");
tds->getAttribute("tl")->setFileFlag(sInFlag, "@Tl@");
tds->getAttribute("hu")->setFileFlag(sInFlag, "@Hu@");
tds->getAttribute("hl")->setFileFlag(sInFlag, "@Hl@");
tds->getAttribute("l")->setFileFlag(sInFlag, "@L@");
tds->getAttribute("kw")->setFileFlag(sInFlag, "@Kw@");

// Generate the Design of Experiments
TSampling *sampling = new TSampling(tds, "lhs", nS);
sampling->generateSample();

// The output file of the code
TOutputFileRow *fout = new TOutputFileRow("_output_flowrate_withRow_.dat");
// The attribute in the output file
fout->addAttribute(new TAttribute("yhat"));

// Instanciation de mon code
TCode *mycode = new TCode(tds, "flowrate -s -k");
// on ajoute le fichier de sortie du code
mycode->addOutputFile(fout);

page 477

Macro "launchCodeFlowrateKeyFlagSampling.C" CHAPTER XIV. USE-CASES IN C++

// Lancement du code
TLauncher *lanceur = new TLauncher(tds, mycode);
lanceur->setSave();
lanceur->setClean();
//lanceur->setWorkingDirectory(gSystem->Getenv("PWD") + TString("/tmpLanceurUranie/ ←↩

flowrate"));
lanceur->setVarDraw("yhat:rw","","");

lanceur->run();

// tds->scan("*");
tds->exportData("_flowrate_sampler_launcher_.dat");

// Visualisation
TCanvas *Canvas = new TCanvas("c1", "Graph for the Macro launchCodeFlowrateFlag" ←↩

,5,64,1270,667);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();
gStyle->SetPalette(1);
pad->Divide(2, 2);
pad->cd(1); tds->draw("yhat:rw");

pad->cd(3); tds->draw("yhat");
pad->cd(2); tds->draw("yhat:rw","","colz");

pad->cd(4);
// The parallel plot
tds->draw("rw:r:tu:tl:hu:hl:l:kw:yhat","","para");
TParallelCoord* para = (TParallelCoord*)gPad->GetListOfPrimitives()->FindObject(" ←↩

ParaCoord");

// The output attribute
TParallelCoordVar* axis = (TParallelCoordVar*)para->GetVarList()->FindObject("yhat");
axis->AddRange(new TParallelCoordRange(axis,15.0,80.0));
para->AddSelection("blue");
para->GetCurrentSelection()->SetLineColor(kBlue);

}

The laws of distribution are set for each input variable. For example for the rw variable, the macro creates an uniform
distribution between bounds 0.05 and 0.15 associated to a TAttribute named "rw":

tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));

Then, the TAttribute is linked to the first input file with:

tds->getAttribute("rw")->setFileKey(TString("flowrate_input_with_keys.in"), "Rw");

which will be understood by Uranie as the fact the rw variable has to be read in an input file with "key=value" format.
If the user wants to get values of variables in an input file with "flags", he can redefine the link towards the "flag" file
directly:

tds->getAttribute("rw")->setFileFlag(TString("flowrate_input_with_flags.in"), "@Rw@");

So the code will look for input files with "flags".

A design-of-experiments is then built with 100 samplings using the LHS method:

page 478

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeFlowrateKeywithFlagSampling.C"

TSampling *sampling = new TSampling(tds, "lhs", 100);
sampling->generateSample();

The output file with "values in rows" type _output_flowrate_withRow_.dat is instantiated as a TOutputFileRow.

TOutputFileRow *fout = new TOutputFileRow("_output_flowrate_withRow_.dat");

The variables yhat and d could then be linked to this TOutputFileRow output file. But here, only yhat will be
considered as a variable of interest by Uranie.

fout->addAttribute("yhat");

We set the code as being the flowrate execution with "-f" option but user can also use the "-k" option.

TCode *mycode = new TCode(tds, "flowrate -f");

which indicates that flowrate code has to find input files with "flags". With option "-k", flowrate has to find file with
"key=value" format.

Then the launcher is initialised with a TDataServer and the code is executed:

TLauncher *tlch = new TLauncher(tds, mycode);

The launcher will execute the flowrate -f command for each of the 100 patterns with the run method:

tlch->run();

XIV.4.13.3 Graph

Figure XIV.29: Graph of the macro "launchCodeFlowrateKeyFlagSampling.C"

XIV.4.14 Macro "launchCodeFlowrateKeywithFlagSampling.C"

XIV.4.14.1 Objective

The objective of the macro is to evaluate the flowrate external code on a design-of-experiments where the input file
"flowrate_input_with_keys.in" is with "key=value" type and defines the variables usable by the code ; a

page 479

Macro "launchCodeFlowrateKeywithFlagSampling.C" CHAPTER XIV. USE-CASES IN C++

second input file "flowrate_input_with_flags.in" will moved by Uranie in the working directory but it will
not be modified. The output file "_output_flowrate_withRow_.dat" is with "values in rows" type. This code
is described in Section IV.1.2.3.1.1.

The first input file flowrate_input_with_keys.in has "key=value" format:

#
#
INPUT FILE with KEYS for the "FLOWREATE" code
\date 2008-04-22 12:53:35
#

date = 123456 ;

#########################
##
exclude points
##
chu = 1050;
chl = 770;
cr = 1100;
##
#########################

#########################
##
parameters : 8
##
Rw = 0.0500 ;
R = 33366.67 ;
Tu = 63070.0 ;
Tl = 116.00 ;
Hu = 1110.00 ;
Hl = 768.57;
L = 1200.0 ;
Kw = 11732.14 ;
##
#########################

#########################
##
to simulate CPU time
##
normal 1 :
min 10000000 : 1.160u 0.000s 0:01.16 100.0%
max 100000000 : 11.600u 0.010s 0:11.61 100.0%
##
nLoop = 1;
##
#########################

end = 6;

If we suppose that one wants to add an input file with "flag" format flowrate_input_with_flags.in.

#
INPUT FILE with FLAG for the "FLOWREATE" code
\date 2008-04-22 12:55:17
#

page 480

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeFlowrateKeywithFlagSampling.C"

new Implicit_Steady_State sch {
frottement_paroi { @Rw@ @R@ }
tinit 0.0
tmax 1000000.
nb_pas_dt_max 1500
dt_min @Hu@
dt_max @Hl@
facsec 1000000.
kW @Kw@
information_Tu Champ_Uniforme 1 @Tu@
information_Tl Champ_Uniforme 1 @Tl@
information_L {

precision @L@
}
convergence {

criterion relative_max_du_dt
precision @Rw@

}

stop_criterium {
ch_abcsissa_hu 1050
ch_ordinate_hl 770
c_radius 1100

}

Solveur Newton3 {
max_iter_matrice 1
max_iter_implicite 1
date 5654321
seuil_convg_implicite 1.e-6
assemblage_implicite 10
solveur_lineaire BiCGS

preconditionneur ILU
seuil_resol_implicite 1.e-5

}
}

The input file flowrate_input_with_keys.in defines the eight variables rω , r, Tu, Tl , Hu, Hl , L, Kω needed
to perform the execution of the command flowrate -k.

The output file _output_flowrate_withRow_.dat is with "values in rows" type. It looks like:

#COLUMN_NAMES: yhat | d

6.757218e+01 4.092561e+03

yhat and d have to be defined as output variables in the macro. But in this one, only yhat will be considered.

XIV.4.14.2 Macro Uranie

void launchCodeFlowrateKeywithFlagSampling(Int_t nS = 100)
{

// Define the DataServer
TDataServer *tds = new TDataServer("tdsFlowrate", "Design of experiments for Flowrate");

// Add the study attributes (min, max and nominal values)
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));

page 481

Macro "launchCodeFlowrateKeywithFlagSampling.C" CHAPTER XIV. USE-CASES IN C++

tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

// The reference input file with key
TString sInKey = TString("flowrate_input_with_keys.in");

// Set the reference input file and the key for each input attributes
tds->getAttribute("rw")->setFileKey(sInKey, "Rw");
tds->getAttribute("r")->setFileKey(sInKey, "R");
tds->getAttribute("tu")->setFileKey(sInKey, "Tu");
tds->getAttribute("tl")->setFileKey(sInKey, "Tl");
tds->getAttribute("hu")->setFileKey(sInKey, "Hu");
tds->getAttribute("hl")->setFileKey(sInKey, "Hl");
tds->getAttribute("l")->setFileKey(sInKey, "L");
tds->getAttribute("kw")->setFileKey(sInKey, "Kw");

// Generate the Design of Experiments
TSampling *sampling = new TSampling(tds, "lhs", nS);
sampling->generateSample();

// The output file of the code
TOutputFileRow *fout = new TOutputFileRow("_output_flowrate_withRow_.dat");
// The attribute in the output file
fout->addAttribute(new TAttribute("yhat"));

// Instanciation de mon code
TCode *mycode = new TCode(tds, "flowrate -s -k");
// on ajoute le fichier de sortie du code
mycode->setReferenceDirectory(gSystem->pwd());
mycode->addInputFile("flowrate_input_with_flags.in");

mycode->addOutputFile(fout);

// Lancement du code
TLauncher *lanceur = new TLauncher(tds, mycode);
//lanceur->setWorkingDirectory(gSystem->Getenv("PWD") + TString("/tmpLanceurUranie/ ←↩

flowrate"));
lanceur->setVarDraw("yhat:rw","","");

lanceur->run();

// Visualisation
TCanvas *Canvas = new TCanvas("c1", "Graph for the Macro launchCodeFlowrateOATMinMax" ←↩

,5,64,1270,667);
gStyle->SetPalette(1);
tds->draw("yhat:rw");

tds->startViewer();
}

The laws of distribution are set for each input variable. For example for the rw variable, the macro creates an uniform
distribution between bounds 0.05 and 0.15 associated to a TAttribute named "rw":

tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));

page 482

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeFlowrateKeywithFlagSampling.C"

Then, the TAttribute is linked to the input file with:

tds->getAttribute("rw")->setFileKey(TString("flowrate_input_with_keys.in"), "Rw");

which will be understood by Uranie as the fact the rw variable has to be read in an input file with "key=value" format.

A design-of-experiments is then built with 100 samplings using the LHS method.

TSampling *sampling = new TSampling(tds, "lhs", 100);
sampling->generateSample();

The output file with "values in rows" type _output_flowrate_withKey_.dat is set as a TOutputFileRow.

TOutputFileRow *fout = new TOutputFileRow("_output_flowrate_withRow_.dat");

The variable yhat is then linked to this TOutputFileRow output file.

fout->addAttribute(new TAttribute("yhat"));

We set the code as being the flowrate execution with "-k" option:

TCode *mycode = new TCode(tds, "flowrate -k");

in which the "-k" option indicates that flowrate code has to find "key=value" input files.

We suppose the user wants to add another input file to the code. He specifies where is the new input file:

mycode->setReferenceDirectory(gSystem->pwd());

and then he adds the new input file (here it’s an input file with "flag" format) which will be copied each time in the
working directory.

mycode->addInputFile("flowrate_input_with_flags.in");

Then the launcher is initialised with a TDataServer and the code is executed and launched with the run method

TLauncher *lanceur = new TLauncher(tds, mycode);
lanceur->run();

XIV.4.14.3 Graph

Figure XIV.30: Graph of the macro "launchCodeFlowrateKeywithFlagSampling.C"

page 483

Macro "launchCodeFlowrateKeyFailure.C" CHAPTER XIV. USE-CASES IN C++

XIV.4.15 Macro "launchCodeFlowrateKeyFailure.C"

XIV.4.15.1 Objective

The objective of the macro is to evaluate the external code flowrate with failures on a design-of-experiments where input
file "flowrate_input_with_keys.in" is with "key=value" type and the output file "_output_flowrate_
withRow_.dat" with type "values in rows". This flowrate code is described in Section IV.1.2.3.1.1.

The input file flowrate_input_with_keys.in is with "key=value":

#
#
INPUT FILE with KEYS for the "FLOWREATE" code
\date 2008-04-22 12:53:35
#

date = 123456 ;

#########################
##
exclude points
##
chu = 1050;
chl = 770;
cr = 1100;
##
#########################

#########################
##
parameters : 8
##
Rw = 0.0500 ;
R = 33366.67 ;
Tu = 63070.0 ;
Tl = 116.00 ;
Hu = 1110.00 ;
Hl = 768.57;
L = 1200.0 ;
Kw = 11732.14 ;
##
#########################

#########################
##
to simulate CPU time
##
normal 1 :
min 10000000 : 1.160u 0.000s 0:01.16 100.0%
max 100000000 : 11.600u 0.010s 0:11.61 100.0%
##
nLoop = 1;
##
#########################

end = 6;

page 484

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeFlowrateKeyFailure.C"

This file defines the eight variables rω , r, Tu, Tl , Hu, Hl , L, Kω and also the three additional variables chu, chl and cr
needed to perform the execution of the command flowrate -kf.

The output file _output_flowrate_withRow_.dat is of "values in rows" type. It looks like:

#COLUMN_NAMES: yhat | d

6.757218e+01 4.092561e+03

yhat and d are defined as output variables in the macro.

XIV.4.15.2 Macro Uranie

{

Int_t nS = 400;
// Define the DataServer
TDataServer *tds = new TDataServer("tdsflowrate", "DataBase flowrate");
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

// The reference input file
TString sIn = gSystem->pwd() + TString("/");
sIn += TString("flowrate_input_with_keys.in");
tds->getAttribute("rw")->setFileKey(sIn, "Rw");
tds->getAttribute("r")->setFileKey(sIn, "R");
tds->getAttribute("tu")->setFileKey(sIn, "Tu");
tds->getAttribute("tl")->setFileKey(sIn, "Tl");
tds->getAttribute("hu")->setFileKey(sIn, "Hu");
tds->getAttribute("hl")->setFileKey(sIn, "Hl");
tds->getAttribute("l")->setFileKey(sIn, "L");
tds->getAttribute("kw")->setFileKey(sIn, "Kw");

// Generate the sample
TSampling *sampling = new TSampling(tds, "lhs", nS);
sampling->generateSample();

// The output file of the code
TOutputFileRow *fout = new TOutputFileRow("_output_flowrate_withRow_.dat");
// The attribute in the output file
TAttribute * tyhat = new TAttribute("yhat");
tyhat->setDefaultValue(-200.0);
fout->addAttribute(tyhat);

// Create a TCode object
TCode *mycode = new TCode(tds, "flowrate -s -kf");
// Add the output file where to find the output attributes
// mycode->addInputFile(new TInputFile(sIn));
mycode->addOutputFile(fout);

// Create a TLauncher object from a TDataServer and a TCode objects
TLauncher *lanceur = new TLauncher(tds, mycode);
lanceur->setSave();
// lanceur->setClean();

page 485

Macro "launchCodeFlowrateKeyFailure.C" CHAPTER XIV. USE-CASES IN C++

lanceur->setVarDraw("hu:hl","yhat>0","");
// lanceur->setWorkingDirectory(gSystem->Getenv("PWD") + TString("/tmpLanceurUranie/ ←↩

flowrate"));

lanceur->run();

// Visualisation
TCanvas *Canvas = new TCanvas("c1", "Graph for the Macro launchCodeFlowratestop" ←↩

,5,64,1270,667);
tds->draw("hu:hl","yhat>0");

tds->exportData("_flowrate_sampler_launcher_.dat");
}

The laws of distribution are set for each input variable. For example for the rw variable, the macro creates an uniform
distribution between bounds 0.05 and 0.15 associated to a TAttribute named "rw":

tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));

Then, the TAttribute is linked to the input file with:

tds->getAttribute("rw")->setFileKey(TString("flowrate_input_with_keys.in"), "Rw");

which will be understood by Uranie as the fact the rw variable has to be read in an input file with "key=value" format.

A design-of-experiments is then built with 300 samplings using the LHS method.

TSampling *sampling = new TSampling(tds, "lhs", 300);
sampling->generateSample();

The output file with "values in rows" _output_flowrate_withRow_.dat is instantiated as a TOutputFileRow.

TOutputFileRow *fout = new TOutputFileRow("_output_flowrate_withRow_.dat");

The variable yhat and d are then linked to this TOutputFileRow output file. But here, only yhat will be considered
as variable of interest by Uranie.

fout->addAttribute("yhat");

We set the code as being the flowrate execution with "-kf" option.

TCode *mycode = new TCode(tds, "flowrate -v -kf");

which indicates that flowrate code has to find input files with "key=value" format. Furthermore, the additional variables
chu, chl and cr allow to check if flowrate is in failure or not. If it is in failure, the output file will not be produced.

Then the launcher is initialised with a TDataServer and the code is executed.

TLauncher *lanceur = new TLauncher(tds, mycode);

The launcher will execute the flowrate -kf command for each of the 300 patterns with the run method.

lanceur->run();

page 486

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeFlowrateFlagFailure.C"

XIV.4.15.3 Graph

Figure XIV.31: Graph of the macro "launchCodeFlowrateKeyFailure.C"

XIV.4.15.4 Console

The macro simulates 100 failures of flowrate.

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

<URANIE::INFO>
<URANIE::INFO> TLauncher "0x562bd21827e0" TCode "codetdsflowrate" with TDataServer " ←↩

tdsflowrate"
<URANIE::INFO> ** Save : Yes
<URANIE::INFO> ** WorkingDirectory[${RUNNINGDIR}/URANIE]
<URANIE::INFO> ** Proc : 1
<URANIE::INFO>
<URANIE::INFO> time elapsed 1.97 sec
<URANIE::INFO> Failure : 92/400 --- 23%

XIV.4.16 Macro "launchCodeFlowrateFlagFailure.C"

XIV.4.16.1 Objective

The objective of the macro is to evaluate the external code flowrate with failures on a design-of-experiments where input
file "flowrate_input_with_flags.in" has"flags" and the output file "_output_flowrate_withRow_
.dat" with type "values in rows". This flowrate code is described in Section IV.1.2.3.1.1.

The creation of an input file containing some "flags" is motivated by the will to make evolve variables in an input file
with no particular structure:

#
INPUT FILE with FLAG for the "FLOWREATE" code
\date 2008-04-22 12:55:17
#

page 487

Macro "launchCodeFlowrateFlagFailure.C" CHAPTER XIV. USE-CASES IN C++

new Implicit_Steady_State sch {
frottement_paroi { 0.071623 19712.541454 } // values of Rw and R
tinit 0.0
tmax 1000000.
nb_pas_dt_max 1500
dt_min 1051.972855 // value of Hu
dt_max 805.249178 // value of Hl
facsec 1000000.
kW 11401.611060 // value of Kw
information_Tu Champ_Uniforme 1 85927.853162 // value of Tu
information_Tl Champ_Uniforme 1 85.803614 // value of Tl
information_L {

precision 1162.689830 // value of L
}
convergence {

criterion relative_max_du_dt
precision 1.e-6

}

stop_criterium {
ch_abcsissa_hu 1050
ch_ordinate_hl 770
c_radius 1100

}

Solveur Newton3 {
max_iter_matrice 1
max_iter_implicite 1
date 5654321
seuil_convg_implicite 1.e-6
assemblage_implicite 10
solveur_lineaire BiCGS

preconditionneur ILU
seuil_resol_implicite 1.e-5

}
}

These values are then replaced by "flags" bounded with special characters.

The input file flowrate_input_with_flags.in containing "flags" is built this way:

#
INPUT FILE with FLAG for the "FLOWREATE" code
\date 2008-04-22 12:55:17
#

new Implicit_Steady_State sch {
frottement_paroi { @Rw@ @R@ }
tinit 0.0
tmax 1000000.
nb_pas_dt_max 1500
dt_min @Hu@
dt_max @Hl@
facsec 1000000.
kW @Kw@
information_Tu Champ_Uniforme 1 @Tu@
information_Tl Champ_Uniforme 1 @Tl@
information_L {

precision @L@
}
convergence {

page 488

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeFlowrateFlagFailure.C"

criterion relative_max_du_dt
precision @Rw@

}

stop_criterium {
ch_abcsissa_hu 1050
ch_ordinate_hl 770
c_radius 1100

}

Solveur Newton3 {
max_iter_matrice 1
max_iter_implicite 1
date 5654321
seuil_convg_implicite 1.e-6
assemblage_implicite 10
solveur_lineaire BiCGS

preconditionneur ILU
seuil_resol_implicite 1.e-5

}
}

This file defines the eight variables rω , r, Tu, Tl , Hu, Hl , L, Kω and also the three additional variables chu, chl and cr
needed to perform the execution of the command flowrate -kf.

The output file _output_flowrate_withRow_.dat is of "values in rows" type. It looks like:

#COLUMN_NAMES: yhat | d

6.757218e+01 4.092561e+03

yhat and d are defined as output variables in the macro.

XIV.4.16.2 Macro Uranie

{

Int_t nS = 300;
// Define the DataServer
TDataServer *tds = new TDataServer("tdsflowrate", "DataBase flowrate");
// Add the eight attributes of the study with uniform law
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

// The input file
TString sFileName = TString("flowrate_input_with_flags.in");

// Set the input file with flag format and the flag for each input attributes
tds->getAttribute("rw")->setFileFlag(sFileName, "@Rw@");
tds->getAttribute("r")->setFileFlag(sFileName, "@R@");
tds->getAttribute("tu")->setFileFlag(sFileName, "@Tu@");
tds->getAttribute("tl")->setFileFlag(sFileName, "@Tl@");
tds->getAttribute("hu")->setFileFlag(sFileName, "@Hu@");
tds->getAttribute("hl")->setFileFlag(sFileName, "@Hl@");

page 489

Macro "launchCodeFlowrateFlagFailure.C" CHAPTER XIV. USE-CASES IN C++

tds->getAttribute("l")->setFileFlag(sFileName, "@L@");
tds->getAttribute("kw")->setFileFlag(sFileName, "@Kw@");

// Generate the sample
TSampling *sampling = new TSampling(tds, "lhs", 400);
sampling->generateSample();

// The output file of the code where values are stored in row
TOutputFileRow *fout = new TOutputFileRow("_output_flowrate_withRow_.dat");
// The attribute in the output file
TAttribute * tyhat = new TAttribute("yhat");
tyhat->setDefaultValue(-200.0);
fout->addAttribute(tyhat);

// Create a TCode object
TCode *mycode = new TCode(tds, "flowrate -s -ff");
// Add the output file where to find the output attributes
mycode->addOutputFile(fout);

// Create a TLauncher object from a TDataServer and a TCode objects
TLauncher *tlch = new TLauncher(tds, mycode);
tlch->setSave();
// tlch->setClean();
tlch->setVarDraw("hu:hl","yhat>0","");
// tlch->setWorkingDirectory(gSystem->Getenv("PWD") + TString("/tmpLanceurUranie/flowrate ←↩

"));

tlch->run();

// Visualisation
TCanvas *Canvas = new TCanvas("c1", "Graph for the Macro launchCodeFlowrateFlagFailure" ←↩

,5,64,1270,667);
tds->draw("hu:hl","yhat>0","");

tds->exportData("_flowrate_sampler_launcher_.dat");
}

The laws of distribution are set for each input variable. For example for the rw variable, the macro creates an uniform
distribution between bounds 0.05 and 0.15 associated to a TAttribute named "rw":

tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));

Then, the TAttribute is linked to the input file with:

tds->getAttribute("rw")->setFileFlag(TString("flowrate_input_with_flags.in"),"@Rw@");

which will be understood by Uranie as the fact the rw variable has to be read in an input file with "flags".

A design-of-experiments is then built with 300 samplings using the LHS method.

TSampling *sampling = new TSampling(tds, "lhs", 300);
sampling->generateSample();

The output file with "values in rows" type _output_flowrate_withRow_.dat is instantiated as a TOutputFileRow.

TOutputFileRow *fout = new TOutputFileRow("_output_flowrate_withRow_.dat");

The variable yhat and d are then linked to this TOutputFileRow output file. But here, only yhat will be considered
as a variable of interest by Uranie.

page 490

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeFlowrateFlagFailure.C"

fout->addAttribute("yhat");

We set the code as being the flowrate execution with "-ff" option.

TCode *mycode = new TCode(tds, "flowrate -ff");

which indicates that flowrate code has to find input files with "flags" format. Furthermore, the additional variables chu,
chl and cr allow to check if flowrate is in failure or not. If it is in failure, the output file will not be produced.

Then the launcher is initialised with a TDataServer and the code is executed.

TLauncher *tlch = new TLauncher(tds, mycode);

The launcher will execute the flowrate -ff command for each of the 300 patterns with the run method.

tlch->run();

XIV.4.16.3 Graph

Figure XIV.32: Graph of the macro "launchCodeFlowrateFlagFailure.C"

XIV.4.16.4 Console

The macro simulates 100 failures for flowrate.

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

<URANIE::INFO>
<URANIE::INFO> TLauncher "0x62e15d956660" TCode "codetdsflowrate" with TDataServer " ←↩

tdsflowrate"
<URANIE::INFO> ** Save : Yes
<URANIE::INFO> ** WorkingDirectory[${RUNNINGDIR}/URANIE]
<URANIE::INFO> ** Proc : 1
<URANIE::INFO>
<URANIE::INFO> time elapsed 2.09 sec
<URANIE::INFO> Failure : 100/400 --- 25%

page 491

Macro "launchCodeFlowrateKeyOATMinMax.C" CHAPTER XIV. USE-CASES IN C++

XIV.4.17 Macro "launchCodeFlowrateKeyOATMinMax.C"

XIV.4.17.1 Objective

The objective of the macro is to evaluate the flowrate external code on a design-of-experiments generated by the
function PlanOATMinMax where input file "flowrate_input_with_keys.in" is with "key=value" format
and the output file "_output_flowrate_withRow_.dat" is with "values in rows" type. This code is described
in Section IV.1.2.1. The function PlanOATMinMax consists in constructing a design around the nominal value for
each attribute, except for one attribute whose value is set to one of its boundaries(minimum and then maximum). Doing
this for the 8 input attributes and the central design, in which each attribute takes its nominal value leads to a seventeen
patterns design.

The input file for this code is flowrate_input_with_keys.in of key = value type. It looks like:

#
#
INPUT FILE with KEYS for the "FLOWREATE" code
\date 2008-04-22 12:53:35
#

date = 123456 ;

#########################
##
exclude points
##
chu = 1050;
chl = 770;
cr = 1100;
##
#########################

#########################
##
parameters : 8
##
Rw = 0.0500 ;
R = 33366.67 ;
Tu = 63070.0 ;
Tl = 116.00 ;
Hu = 1110.00 ;
Hl = 768.57;
L = 1200.0 ;
Kw = 11732.14 ;
##
#########################

#########################
##
to simulate CPU time
##
normal 1 :
min 10000000 : 1.160u 0.000s 0:01.16 100.0%
max 100000000 : 11.600u 0.010s 0:11.61 100.0%
##
nLoop = 1;
##

page 492

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeFlowrateKeyOATMinMax.C"

#########################

end = 6;

These files define the eight variables rω , r, Tu, Tl , Hu, Hl , L, Kω needed to perform the execution of the command
flowrate -k.

The output file _output_flowrate_withRow_.dat is of "values in rows" type. It looks like:

#COLUMN_NAMES: yhat | d

6.757218e+01 4.092561e+03

yhat and d are defined as output variables in the macro.

XIV.4.17.2 Macro Uranie

void PlanOATMinMax(TDataServer *tds)
{
// Create the data tuple
tds->createTuple();

Int_t natt = tds->getNAttributes();
// The number of attributes is incremented by one for the iterator
const Int_t nn = natt+1;

// Allocate the data vector to fill the tuple
Double_t value[nn];

// Init the iterator. It is always the first value.
value[0] = 0;
// Init the data vector with the nominal/mean values of attributes
for(Int_t i=0;i<natt;i++)
value[1+i] = tds->getAttribute(i)->getMean();

// Fill the nominal/mean values
tds->getTuple()->Fill(value);

// Loop on each attributes
for(Int_t i=0;i<natt;i++) {
// Case of min values
value[1+i] = tds->getAttribute(i)->getLowerBound();
value[0] += 1.0;
tds->getTuple()->Fill(value);
// Case of the max value
value[1+i] = tds->getAttribute(i)->getUpperBound();
value[0] += 1.0;
tds->getTuple()->Fill(value);
// Reset the nominal/mean value
value[1+i] = tds->getAttribute(i)->getMean();

}
}

void launchCodeFlowrateKeyOATMinMax()
{

// Define the DataServer
TDataServer *tds = new TDataServer("tdsOATMinMaxFlowrate", "OATMinMax Design of ←↩

experiments for Flowrate");

page 493

Macro "launchCodeFlowrateKeyOATMinMax.C" CHAPTER XIV. USE-CASES IN C++

// Add the study attributes (min, max and nominal values)
tds->addAttribute(new TAttribute("rw", 0.05, 0.15));
tds->getAttribute("rw")->setMean(0.10);

tds->addAttribute(new TAttribute("r", 100.0, 50000.0));
tds->getAttribute("r")->setMean(25050.);

tds->addAttribute(new TAttribute("tu", 63070.0, 115600.0));
tds->getAttribute("tu")->setMean(89335.);

tds->addAttribute(new TAttribute("tl", 63.1, 116.0));
tds->getAttribute("tl")->setMean(89.55);

tds->addAttribute(new TAttribute("hu", 990.0, 1110.0));
tds->getAttribute("hu")->setMean(1050.);

tds->addAttribute(new TAttribute("hl", 700.0, 820.0));
tds->getAttribute("hl")->setMean(760.);

tds->addAttribute(new TAttribute("l", 1120.0, 1680.0));
tds->getAttribute("l")->setMean(1400.);

tds->addAttribute(new TAttribute("kw", 9855.0, 12045.0));
tds->getAttribute("kw")->setMean(10950.);

// The reference input file
TString sIn = gSystem->pwd();
sIn += TString("/flowrate_input_with_keys.in");

// Set the reference input file and the key for each input attributes
tds->getAttribute("rw")->setFileKey(sIn, "Rw");
tds->getAttribute("r")->setFileKey(sIn, "R");
tds->getAttribute("tu")->setFileKey(sIn, "Tu");
tds->getAttribute("tl")->setFileKey(sIn, "Tl");
tds->getAttribute("hu")->setFileKey(sIn, "Hu");
tds->getAttribute("hl")->setFileKey(sIn, "Hl");
tds->getAttribute("l")->setFileKey(sIn, "L");
tds->getAttribute("kw")->setFileKey(sIn, "Kw");

// Construit le plan OAT par avec les bornes (Min, Max) and the nominal values
PlanOATMinMax(tds);

// Scan the data (17 = 1 + 2*8 patterns)
tds->Scan("*","","colsize=5 col=3:4::6::4:3:4:");

// Save the Design of experiments in an ASCII file
tds->exportData("_flowrate_sampler_oat_.dat");

// The output file of the code
TOutputFileRow *fout = new TOutputFileRow("_output_flowrate_withRow_.dat");
// The attribute in the output file
fout->addAttribute(new TAttribute("yhat"));

// Instanciation de mon code
TCode *mycode = new TCode(tds, "flowrate -s -k");
// mycode->addInputFile(new TInputFile(sIn));
// on ajoute le fichier de sortie du code
mycode->addOutputFile(fout);

// Lancement du code
TLauncher *lanceur = new TLauncher(tds, mycode);
lanceur->setSave();

page 494

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeFlowrateKeyOATMinMax.C"

lanceur->setClean();
//lanceur->setWorkingDirectory(gSystem->Getenv("PWD") + TString("/tmpLanceurUranie/ ←↩

flowrate"));
lanceur->setVarDraw("yhat:rw","","");

lanceur->run();

tds->exportData("_flowrate_sampler_launcher_oat_.dat");

// Visualisation
TCanvas *Canvas = new TCanvas("c1", "Graph for the Macro launchCodeFlowrateOATMinMax" ←↩

,5,64,1270,667);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();
gStyle->SetPalette(1);
pad->Divide(2, 2);
pad->cd(1); tds->draw("yhat:rw");

pad->cd(3); tds->draw("yhat");
pad->cd(2); tds->draw("yhat:rw","","colz");

pad->cd(4);
// The parallel plot
tds->draw("rw:r:tu:tl:hu:hl:l:kw:yhat","","para");
TParallelCoord* para = (TParallelCoord*)gPad->GetListOfPrimitives()->FindObject(" ←↩

ParaCoord");

// The output attribute
TParallelCoordVar* axis = (TParallelCoordVar*)para->GetVarList()->FindObject("yhat");
axis->AddRange(new TParallelCoordRange(axis,15.0,20.0));
para->AddSelection("blue");
para->GetCurrentSelection()->SetLineColor(kBlue);

axis->AddRange(new TParallelCoordRange(axis,155.0,160.0));
para->AddSelection("blue");
para->GetCurrentSelection()->SetLineColor(kBlue);

}

PlanOATMinMax function builds the design-of-experiments from a TDataServer: for the first design and for each
attribute of the TDataServer, values of attributes are initialised with their means.

for(Int_t i=0 ; i<tds->getNAttributes(); i++)
value[1+i] = tds->getAttribute(i)->getMean();

These data are put in the TDataServer,

tds->getTuple()->Fill(value)

this is how the central point is constructed. Two designs are then built for every attribute: one with the value of the
attribute initialised to its lower boundary while other attributes are still initialised to their means:

value[1+i] = tds->getAttribute(i)->getLowerBound();
tds->getTuple()->Fill(value);

and the other where the value of the attribute is initialised to its upper boundary while other attributes are still initialised
to their means:

value[1+i] = tds->getAttribute(i)->getUpperBound();
tds->getTuple()->Fill(value);

page 495

Macro "launchCodeFlowrateKeyOATMinMax.C" CHAPTER XIV. USE-CASES IN C++

In the first part of the function launchCodeFlowrateKeyOATMinMax, properties are set for each input variable.
For example for the rw variable, the macro creates a TAttribute named "rw" bounded by 0.05 and 0.15:

tds->addAttribute(new TAttribute("rw", 0.05, 0.15));

A initial mean value value is then set for this TAttribute, so as to inform the PlanOATMinMax function.

tds->getAttribute("rw")->setMean(0.10);

Then, the TAttribute is linked to the first input file with:

tds->getAttribute("rw")->setFileKey(TString("flowrate_input_with_keys.in"), "Rw");

which will be understood by Uranie as the fact the rw variable has to be read in an input file with "key=value" format.

Then the design-of-experiments is generated by the PlanOATMinMax function.

PlanOATMinMax(tds);

The output file with values in rows _output_flowrate_withRow_.dat is instantiated as a TOutputFileRow.

TOutputFileRow *fout = new TOutputFileRow("_output_flowrate_withRow_.dat");

The variable yhat and d are then linked to this TOutputFileRow output file. But here, only yhat will be considered
by Uranie as a variable of interest.

fout->addAttribute("yhat");

We set the code as being the flowrate execution with "-k" option:

TCode *mycode = new TCode(tds, "flowrate -k");

in which the "-k" option indicates that flowrate code has to find input files with "key=value" format.

Then the launcher is initialised with a TDataServer and the code is executed

TLauncher *tlch = new TLauncher(tds, mycode);

The launcher will execute the flowrate -k command for each of the seventeen patterns with the run method.

tlch->run();

page 496

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeFlowrateFlagOATMinMax.C"

XIV.4.17.3 Graph

Figure XIV.33: Graph of the macro "launchCodeFlowrateKeyOATMinMax.C"

XIV.4.17.4 Console

The macro succeeded with no failure, using the following design-of-experiments;

Processing launchCodeFlowrateKeyOATMinMax.C...

**
* Row * tds * rw.r * r.r * tu.tu * tl.tl * hu.h * hl. * l.l * kw.kw *
**
* 0 * 0 * 0.1 * 25050 * 89335 * 89.55 * 1050 * 760 * 1400 * 10950 *
* 1 * 1 * 0.05 * 25050 * 89335 * 89.55 * 1050 * 760 * 1400 * 10950 *
* 2 * 2 * 0.15 * 25050 * 89335 * 89.55 * 1050 * 760 * 1400 * 10950 *
* 3 * 3 * 0.1 * 100 * 89335 * 89.55 * 1050 * 760 * 1400 * 10950 *
* 4 * 4 * 0.1 * 50000 * 89335 * 89.55 * 1050 * 760 * 1400 * 10950 *
* 5 * 5 * 0.1 * 25050 * 63070 * 89.55 * 1050 * 760 * 1400 * 10950 *
* 6 * 6 * 0.1 * 25050 * 115600 * 89.55 * 1050 * 760 * 1400 * 10950 *
* 7 * 7 * 0.1 * 25050 * 89335 * 63.1 * 1050 * 760 * 1400 * 10950 *
* 8 * 8 * 0.1 * 25050 * 89335 * 116 * 1050 * 760 * 1400 * 10950 *
* 9 * 9 * 0.1 * 25050 * 89335 * 89.55 * 990 * 760 * 1400 * 10950 *
* 10 * 10 * 0.1 * 25050 * 89335 * 89.55 * 1110 * 760 * 1400 * 10950 *
* 11 * 11 * 0.1 * 25050 * 89335 * 89.55 * 1050 * 700 * 1400 * 10950 *
* 12 * 12 * 0.1 * 25050 * 89335 * 89.55 * 1050 * 820 * 1400 * 10950 *
* 13 * 13 * 0.1 * 25050 * 89335 * 89.55 * 1050 * 760 * 1120 * 10950 *
* 14 * 14 * 0.1 * 25050 * 89335 * 89.55 * 1050 * 760 * 1680 * 10950 *
* 15 * 15 * 0.1 * 25050 * 89335 * 89.55 * 1050 * 760 * 1400 * 9855 *
* 16 * 16 * 0.1 * 25050 * 89335 * 89.55 * 1050 * 760 * 1400 * 12045 *
**

XIV.4.18 Macro "launchCodeFlowrateFlagOATMinMax.C"

XIV.4.18.1 Objective

The objective of the macro is to evaluate the flowrate external code on a design-of-experiments generated by the func-
tion PlanOATMinMax where input file "flowrate_input_with_flags.in" contains "flags" and the output

page 497

Macro "launchCodeFlowrateFlagOATMinMax.C" CHAPTER XIV. USE-CASES IN C++

file "_output_flowrate_withRow_.dat" is with "values in rows" type. This code is described in section (Sec-
tion IV.1.2.1). The function PlanOATMinMax consists in constructing a design around the nominal value for each
attribute, except for one attribute whose value is set to one of its boundaries(minimum and then maximum). Doing this
for the 8 input attributes and the central design, in which each attribute takes its nominal value leads to a seventeen
patterns design.

The input file for this code is flowrate_input_with_flags.in with "flags" type. It looks like:

#
INPUT FILE with FLAG for the "FLOWREATE" code
\date 2008-04-22 12:55:17
#

new Implicit_Steady_State sch {
frottement_paroi { @Rw@ @R@ }
tinit 0.0
tmax 1000000.
nb_pas_dt_max 1500
dt_min @Hu@
dt_max @Hl@
facsec 1000000.
kW @Kw@
information_Tu Champ_Uniforme 1 @Tu@
information_Tl Champ_Uniforme 1 @Tl@
information_L {

precision @L@
}
convergence {

criterion relative_max_du_dt
precision @Rw@

}

stop_criterium {
ch_abcsissa_hu 1050
ch_ordinate_hl 770
c_radius 1100

}

Solveur Newton3 {
max_iter_matrice 1
max_iter_implicite 1
date 5654321
seuil_convg_implicite 1.e-6
assemblage_implicite 10
solveur_lineaire BiCGS

preconditionneur ILU
seuil_resol_implicite 1.e-5

}
}

These files define the eight variables rω , r, Tu, Tl , Hu, Hl , L, Kω needed to perform the execution of the command
flowrate -f.

The output file, _output_flowrate_withRow_.dat when created, is of "values in rows" type. It looks like:

#COLUMN_NAMES: yhat | d

6.757218e+01 4.092561e+03

yhat and d have to be defined as output variables in the macro.

page 498

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeFlowrateFlagOATMinMax.C"

XIV.4.18.2 Macro Uranie

void PlanOATMinMax(TDataServer *tds)
{
// Create the data tuple
tds->createTuple();

Int_t natt = tds->getNAttributes();
// The number of attributes is incremented by one for the iterator
const Int_t nn = natt+1;

// Allocate the data vector to fill the tuple
Double_t value[nn];

// Init the iterator. It is always the first value.
value[0] = 0;
// Init the data vector with the nominal/mean values of attributes
for(Int_t i=0;i<natt;i++)
value[1+i] = tds->getAttribute(i)->getMean();

// Fill the nominal/mean values : nominal pattern
tds->getTuple()->Fill(value);

// Loop on each attributes
for(Int_t i=0;i<natt;i++) {
// Case of min values
value[1+i] = tds->getAttribute(i)->getLowerBound();
value[0] += 1.0;
// Fill the min value value for xi attribute and nominal values for other attributes
tds->getTuple()->Fill(value);
// Case of the max value
value[1+i] = tds->getAttribute(i)->getUpperBound();
value[0] += 1.0;
// Fill the max value value for xi attribute and nominal values for other attributes
tds->getTuple()->Fill(value);
// Reset the nominal/mean value
value[1+i] = tds->getAttribute(i)->getMean();

}
}

void launchCodeFlowrateFlagOATMinMax()
{
// Define the DataServer
TDataServer *tds = new TDataServer("tdsOATMinMaxFlowrateFlag", "OATMinMax Design of ←↩

experiments for Flowrate");

// Add the eight attributes of the study with min, max and nominal values
tds->addAttribute(new TAttribute("rw", 0.05, 0.15));
tds->getAttribute("rw")->setMean(0.10);

tds->addAttribute(new TAttribute("r", 100.0, 50000.0));
tds->getAttribute("r")->setMean(25050.);

tds->addAttribute(new TAttribute("tu", 63070.0, 115600.0));
tds->getAttribute("tu")->setMean(89335.);

tds->addAttribute(new TAttribute("tl", 63.1, 116.0));
tds->getAttribute("tl")->setMean(89.55);

tds->addAttribute(new TAttribute("hu", 990.0, 1110.0));
tds->getAttribute("hu")->setMean(1050.);

page 499

Macro "launchCodeFlowrateFlagOATMinMax.C" CHAPTER XIV. USE-CASES IN C++

tds->addAttribute(new TAttribute("hl", 700.0, 820.0));
tds->getAttribute("hl")->setMean(760.);

tds->addAttribute(new TAttribute("l", 1120.0, 1680.0));
tds->getAttribute("l")->setMean(1400.);

tds->addAttribute(new TAttribute("kw", 9855.0, 12045.0));
tds->getAttribute("kw")->setMean(10950.);

// The input file
TString sFileName = TString("flowrate_input_with_flags.in");

// Set the input file with flag format and the flag for each input attributes
tds->getAttribute("rw")->setFileFlag(sFileName, "@Rw@");
tds->getAttribute("r")->setFileFlag(sFileName, "@R@");
tds->getAttribute("tu")->setFileFlag(sFileName, "@Tu@");
tds->getAttribute("tl")->setFileFlag(sFileName, "@Tl@");
tds->getAttribute("hu")->setFileFlag(sFileName, "@Hu@");
tds->getAttribute("hl")->setFileFlag(sFileName, "@Hl@");
tds->getAttribute("l")->setFileFlag(sFileName, "@L@");
tds->getAttribute("kw")->setFileFlag(sFileName, "@Kw@");

// Build the Design of Experiments (DoE)
PlanOATMinMax(tds);

// Scan the data (17 = 1 + 2*8 patterns)
tds->Scan("*","","colsize=5 col=3:4::6::4:3:4:");

// Save the Design of experiments in an ASCII file
tds->exportData("_flowrate_sampler_oat_.dat");

// The output file of the code
TOutputFileRow *fout = new TOutputFileRow("_output_flowrate_withRow_.dat");
// The attribute in the output file
fout->addAttribute(new TAttribute("yhat"));

// Instanciation de mon code
TCode *mycode = new TCode(tds, "flowrate -s -f");
//mycode->setLog();
// on ajoute le fichier de sortie du code
mycode->addOutputFile(fout);

// Lancement du code
TLauncher *tlch = new TLauncher(tds, mycode);
tlch->setSave();
tlch->setClean();
tlch->setDrawProgressBar(kFALSE);
tlch->setVarDraw("yhat:rw","","");

tlch->run();

tds->exportData("_flowrate_sampler_launcher_oat_.dat");

// Visualisation
TCanvas *Canvas = new TCanvas("c1", "Graph for the Macro launchCodeFlowrateFlagOATMinMax ←↩

",5,64,1270,667);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();
gStyle->SetPalette(1);
pad->Divide(2, 2);
pad->cd(1);

page 500

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeFlowrateFlagOATMinMax.C"

tds->draw("yhat:rw");

pad->cd(3); tds->draw("yhat");
pad->cd(2); tds->draw("yhat:rw","","colz");

pad->cd(4);
// The parallel plot
tds->draw("rw:r:tu:tl:hu:hl:l:kw:yhat","","para");
TParallelCoord* para = (TParallelCoord*)gPad->GetListOfPrimitives()->FindObject(" ←↩

ParaCoord");

// The output attribute
TParallelCoordVar* axis = (TParallelCoordVar*)para->GetVarList()->FindObject("yhat");
axis->AddRange(new TParallelCoordRange(axis,15.0,20.0));
para->AddSelection("blue");
para->GetCurrentSelection()->SetLineColor(kBlue);

axis->AddRange(new TParallelCoordRange(axis,155.0,160.0));
para->AddSelection("blue");

para->GetCurrentSelection()->SetLineColor(kBlue);

}

PlanOATMinMax function builds the design-of-experiments from a TDataServer: for the first design and for each
attribute of the TDataServer, values of attributes are initialised with their means.

for(Int_t i=0 ; i<natt ; i++)
value[1+i] = tds->getAttribute(i)->getMean();

These data are put in the TDataServer,

tds->getTuple()->Fill(value)

this is how the central point is constructed. Two designs are then built for every attribute: one with the value of the
attribute initialised to its lower boundary while other attributes are still initialised to their means:

value[1+i] = tds->getAttribute(i)->getLowerBound();
tds->getTuple()->Fill(value);

and the other where the value of the attribute is initialised to its upper boundary while other attributes are still initialised
to their means:

value[1+i] = tds->getAttribute(i)->getUpperBound();
tds->getTuple()->Fill(value);

In the first part of the function launchCodeFlowrateFlagOATMinMax, properties are set for each input variable.
For example for the Rw variable, the macro creates a TAttribute named "rw" bounded by 0.05 and 0.15:

tds->addAttribute(new TAttribute("rw", 0.05, 0.15));

An initial mean value is then set for this TAttribute, so as to inform the PlanOATMinMax function.

tds->getAttribute("rw")->setMean(0.10);

Then, the TAttribute is linked to the input file with:

tds->getAttribute("rw")->setFileFlag(TString("flowrate_input_with_flags.in"), "@Rw@");

which is the same thing as writing:

page 501

Macro "launchCodeFlowrateFlagOATMinMax.C" CHAPTER XIV. USE-CASES IN C++

tds->getAttribute("rw")->setFileKey(TString("flowrate_input_with_flags.in"), "@Rw@","", ←↩
TAttributeFileKey::kFlag);

which will be understood by Uranie as the fact the rw variable has to be read in an input file with "flags" format.

Then the design-of-experiments is generated by the PlanOATMinMax function.

PlanOATMinMax(tds);

We want the output file to be with values in rows. So the output file _output_flowrate_withRow_.dat is set
as a TOutputFileRow.

TOutputFileRow *fout = new TOutputFileRow("_output_flowrate_withRow_.dat");

The variable yhat and d could then be linked to this TOutputFileRow output file. But here, only yhat will be
considered.

fout->addAttribute("yhat");

We set the code as being the flowrate execution with "-f" option:

TCode *mycode = new TCode(tds, "flowrate -f");

in which the "-f" option indicates that flowrate code has to find input files with "flags" format.

The launcher will execute the flowrate -f command for each of the seventeen patterns. One sampling corresponds to
one input file created by the launcher.

Then the launcher is initialised and launched with the run method

TLauncher *tlch = new TLauncher(tds, mycode);
tlch->run();

XIV.4.18.3 Graph

Figure XIV.34: Graph of the macro "launchCodeFlowrateFlagOATMinMax.C"

XIV.4.18.4 Console

The macro succeeded with no failure, using the following design-of-experiments:

page 502

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeLevelEOutputColumn.C"

Processing launchCodeFlowrateFlagOATMinMax.C...

**
* Row * tds * rw.r * r.r * tu.tu * tl.tl * hu.h * hl. * l.l * kw.kw *
**
* 0 * 0 * 0.1 * 25050 * 89335 * 89.55 * 1050 * 760 * 1400 * 10950 *
* 1 * 1 * 0.05 * 25050 * 89335 * 89.55 * 1050 * 760 * 1400 * 10950 *
* 2 * 2 * 0.15 * 25050 * 89335 * 89.55 * 1050 * 760 * 1400 * 10950 *
* 3 * 3 * 0.1 * 100 * 89335 * 89.55 * 1050 * 760 * 1400 * 10950 *
* 4 * 4 * 0.1 * 50000 * 89335 * 89.55 * 1050 * 760 * 1400 * 10950 *
* 5 * 5 * 0.1 * 25050 * 63070 * 89.55 * 1050 * 760 * 1400 * 10950 *
* 6 * 6 * 0.1 * 25050 * 115600 * 89.55 * 1050 * 760 * 1400 * 10950 *
* 7 * 7 * 0.1 * 25050 * 89335 * 63.1 * 1050 * 760 * 1400 * 10950 *
* 8 * 8 * 0.1 * 25050 * 89335 * 116 * 1050 * 760 * 1400 * 10950 *
* 9 * 9 * 0.1 * 25050 * 89335 * 89.55 * 990 * 760 * 1400 * 10950 *
* 10 * 10 * 0.1 * 25050 * 89335 * 89.55 * 1110 * 760 * 1400 * 10950 *
* 11 * 11 * 0.1 * 25050 * 89335 * 89.55 * 1050 * 700 * 1400 * 10950 *
* 12 * 12 * 0.1 * 25050 * 89335 * 89.55 * 1050 * 820 * 1400 * 10950 *
* 13 * 13 * 0.1 * 25050 * 89335 * 89.55 * 1050 * 760 * 1120 * 10950 *
* 14 * 14 * 0.1 * 25050 * 89335 * 89.55 * 1050 * 760 * 1680 * 10950 *
* 15 * 15 * 0.1 * 25050 * 89335 * 89.55 * 1050 * 760 * 1400 * 9855 *
* 16 * 16 * 0.1 * 25050 * 89335 * 89.55 * 1050 * 760 * 1400 * 12045 *
**

XIV.4.19 Macro "launchCodeLevelEOutputColumn.C"

Warning
The levele command will be install on your machine only if a Fortran compiler has been found

XIV.4.19.1 Objective

The objective of this macro is to launch a code that will produce several numerical values for at least one attribute,
when only once computation is performed. To do so, the levele use-case code will be used. It is a code that com-
putes the dose emitted by radioactive sources, as a function of time, given a set of twelve input parameters. It pro-
vides three possible output formats, the one under consideration being here the Column one, corresponding to the
TOutputFileColumn class. Here is an example of the output:

20000.00 30000.00 40000.00 50000.00 60000.00 70000.00 ←↩
80000.00 90000.00 100000.0 200000.0 300000.0 ←↩

400000.0 500000.0 600000.0 700000.0 800000.0 900000.0 ←↩
1000000. 2000000. 3000000. 4000000. 5000000. ←↩

6000000. 7000000. 8000000. 9000000.
0.9223239E-37 0.4206201E-32 0.5129892E-29 0.9733449E-27 0.6020410E-25 0.1766700E-23 ←↩

0.3050058E-22 0.3543269E-21 0.3028644E-20 0.1192590E-14 0.6677703E-12 0.2881550E ←↩
-10 0.3190472E-09 0.1532743E-08 0.4212096E-08 0.7793285E-08 0.1077026E-07 ←↩
0.1192316E-07 0.1117317E-09 -0.9543977E-12 0.1073334E-19 0.2311560E-19 0.3043276E ←↩
-19 0.3529515E-19 0.4011028E-19 0.4548453E-19

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 ←↩
0.1401298E-44 0.1261169E-42 0.9172900E-41 0.1422271E-29 0.4459172E-24 ←↩

0.8303329E-21 0.1017911E-18 0.2349300E-17 0.1774175E-16 0.6073529E-16 0.1159985E ←↩
-15 0.1421619E-15 0.1248398E-19 0.9108749E-24 0.1152050E-39 0.5343305E-39 ←↩
0.9261532E-39 0.1245747E-38 0.1608835E-38 0.2068842E-38

page 503

Macro "launchCodeLevelEOutputColumn.C" CHAPTER XIV. USE-CASES IN C++

XIV.4.19.2 Macro Uranie

{
// OS abstraction
string which_levele =
string(gSystem->GetBuildArch()) == "win64" ? "where levele" : "which levele";

//Exit if levele not found
if(gSystem->Exec(which_levele.c_str()))
exit(-1);

//Create DataServer and add input attributes
TDataServer *tds1 = new TDataServer("tds1", "levelE usecase");
tds1->addAttribute(new TUniformDistribution("t",100,1000));
tds1->addAttribute(new TLogUniformDistribution("kl",0.001,0.01));
tds1->addAttribute(new TLogUniformDistribution("kc",0.000001,0.00001));
tds1->addAttribute(new TLogUniformDistribution("v1",0.001,0.1));
tds1->addAttribute(new TUniformDistribution("l1",100,500));
tds1->addAttribute(new TUniformDistribution("r1",1,5));
tds1->addAttribute(new TUniformDistribution("rc1",3,30));
tds1->addAttribute(new TLogUniformDistribution("v2",0.01,0.1));
tds1->addAttribute(new TUniformDistribution("l2",50,200));
tds1->addAttribute(new TUniformDistribution("r2",1,5));
tds1->addAttribute(new TUniformDistribution("rc2",3,30));
tds1->addAttribute(new TLogUniformDistribution("w",100000,10000000));

//Tell the code where to find attribute value in input file
TString sJDD = "levelE_input_with_values_rows.in";
tds1->getAttribute("t")->setFileKey(sJDD, "", "%e",TAttributeFileKey::kNewRow);
tds1->getAttribute("kl")->setFileKey(sJDD,"", "%e",TAttributeFileKey::kNewRow);
tds1->getAttribute("kc")->setFileKey(sJDD, "", "%e",TAttributeFileKey::kNewRow);
tds1->getAttribute("v1")->setFileKey(sJDD, "", "%e",TAttributeFileKey::kNewRow);
tds1->getAttribute("l1")->setFileKey(sJDD, "", "%e",TAttributeFileKey::kNewRow);
tds1->getAttribute("r1")->setFileKey(sJDD, "", "%e",TAttributeFileKey::kNewRow);
tds1->getAttribute("rc1")->setFileKey(sJDD, "", "%e",TAttributeFileKey::kNewRow);
tds1->getAttribute("v2")->setFileKey(sJDD, "", "%e",TAttributeFileKey::kNewRow);
tds1->getAttribute("l2")->setFileKey(sJDD, "", "%e",TAttributeFileKey::kNewRow);
tds1->getAttribute("r2")->setFileKey(sJDD, "", "%e",TAttributeFileKey::kNewRow);
tds1->getAttribute("rc2")->setFileKey(sJDD, "", "%e",TAttributeFileKey::kNewRow);
tds1->getAttribute("w")->setFileKey(sJDD, "", "%e",TAttributeFileKey::kNewRow);

// Create DOE
Int_t ns = 100;
TSampling *samp = new TSampling(tds1, "lhs", ns);
samp->generateSample();

//How to read ouput files
TOutputFileColumn *_fout = new URANIE::Launcher::TOutputFileColumn(" ←↩

_output_levelE_withColumn_.dat");
_fout->addAttribute(new TAttribute("tps",TAttribute::kVector));
_fout->addAttribute(new TAttribute("y",TAttribute::kVector));
_fout->addAttribute(new TAttribute("z",TAttribute::kVector));

//Creation of TCode
TCode *tc1 = new URANIE::Launcher::TCode(tds1, "levele 2> /dev/null");
tc1->addOutputFile(_fout);

//Run the code
TLauncher *tl1 = new URANIE::Launcher::TLauncher(tds1, tc1);
tl1->run();

//Draw the results

page 504

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeLevelEOutputColumn.C"

TCanvas *Can = new TCanvas("Can","Can",1);
Can->SetGrid(); Can->SetLogx();

double mean[26], stand[26];
tds1->computeStatistic("y");
for(unsigned int i=0; i<26; i++)
{

mean[i] = tds1->getAttribute("y")->getMean(i);
stand[i] = tds1->getAttribute("y")->getStd(i);

}

double tps[26]={20000,30000,40000,50000,60000,70000,80000,90000,100000, ←↩
200000,300000,400000,500000,600000,700000,800000,900000, 1e+06,2e+06,3e+06,4e+06,5e ←↩
+06,6e+06,7e+06,8e+06,9e+06};

TGraphErrors *gr = new TGraphErrors(26,tps,mean,0,stand);
gr->Draw("A*");
gr->SetTitle("");
gr->GetXaxis()->SetTitle("Time"); gr->GetYaxis()->SetTitle("<y>");

}

The levele external code is located in the bin directory.

When looking at the code and comparing it to an usual launcher job, the organisation is completely transparent. The
only noticeable (and compulsory) thing to do is to change the default type of the attribute read at the end of the job.
This is done in this line:

_fout->addAttribute(new URANIE::DataServer::TAttribute("y", TAttribute::kVector));

where the output attribute is provided, changing its nature to a vector, thanks to the second argument of the TAttribute
constructor from the default (kReal) to the desired nature (kVector). Once this is done, this information is broadcast
internally to the code that knows how to deal with this type of attribute.

XIV.4.19.3 Graph

The results of the previous macro is shown in Figure XIV.35, that displays the average of the hundred dose curve, over
the time.

page 505

Macro "launchCodeLevelEOutputRow.C" CHAPTER XIV. USE-CASES IN C++

Figure XIV.35: Graph of the macro "launchCodeLevelEOutputColumn.C"

XIV.4.20 Macro "launchCodeLevelEOutputRow.C"

Warning
The levele command will be installed on your machine only if a Fortran compiler is found

XIV.4.20.1 Objective

The objective of this macro is to launch a code that will produce several numerical values for at least one attribute, when
only once computation is performed. To do so, the levele use-case code will be used. It is a code that compute the dose
emitted by radioactive sources, as a function of time, given a set of twelve inputs parameters. It provides three possible
output formats, the one under consideration being here the Row one, corresponding to the TOutputFileRow class.
Here is an example of the output:

#COLUMN_NAMES: tps | y | z

20000.00 0.9223239E-37 0.000000
30000.00 0.4206201E-32 0.000000
40000.00 0.5129892E-29 0.000000
50000.00 0.9733449E-27 0.000000
60000.00 0.6020410E-25 0.000000
70000.00 0.1766700E-23 0.000000
80000.00 0.3050058E-22 0.1401298E-44
90000.00 0.3543269E-21 0.1261169E-42
100000.0 0.3028644E-20 0.9172900E-41
200000.0 0.1192590E-14 0.1422271E-29
300000.0 0.6677703E-12 0.4459172E-24
400000.0 0.2881550E-10 0.8303329E-21
500000.0 0.3190472E-09 0.1017911E-18

page 506

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeLevelEOutputRow.C"

600000.0 0.1532743E-08 0.2349300E-17
700000.0 0.4212096E-08 0.1774175E-16
800000.0 0.7793285E-08 0.6073529E-16
900000.0 0.1077026E-07 0.1159985E-15
1000000. 0.1192316E-07 0.1421619E-15
2000000. 0.1117317E-09 0.1248398E-19
3000000. -0.9543977E-12 0.9108749E-24
4000000. 0.1073334E-19 0.1152050E-39
5000000. 0.2311560E-19 0.5343305E-39
6000000. 0.3043276E-19 0.9261532E-39
7000000. 0.3529515E-19 0.1245747E-38
8000000. 0.4011028E-19 0.1608835E-38
9000000. 0.4548453E-19 0.2068842E-38

XIV.4.20.2 Macro Uranie

{
// OS abstraction
string which_levele =
string(gSystem->GetBuildArch()) == "win64" ? "where levele" : "which levele";

//Exit if levele not found
if(gSystem->Exec(which_levele.c_str()))
exit(-1);

//Create DataServer and add input attributes
TDataServer *tds1 = new TDataServer("tds1", "levelE usecase");
tds1->addAttribute(new TUniformDistribution("t",100,1000));
tds1->addAttribute(new TLogUniformDistribution("kl",0.001,0.01));
tds1->addAttribute(new TLogUniformDistribution("kc",0.000001,0.00001));
tds1->addAttribute(new TLogUniformDistribution("v1",0.001,0.1));
tds1->addAttribute(new TUniformDistribution("l1",100,500));
tds1->addAttribute(new TUniformDistribution("r1",1,5));
tds1->addAttribute(new TUniformDistribution("rc1",3,30));
tds1->addAttribute(new TLogUniformDistribution("v2",0.01,0.1));
tds1->addAttribute(new TUniformDistribution("l2",50,200));
tds1->addAttribute(new TUniformDistribution("r2",1,5));
tds1->addAttribute(new TUniformDistribution("rc2",3,30));
tds1->addAttribute(new TLogUniformDistribution("w",100000,10000000));

//Tell the code where to find attribute value in input file
TString sJDD = "levelE_input_with_values_rows.in";
tds1->getAttribute("t")->setFileKey(sJDD, "", "%e",TAttributeFileKey::kNewRow);
tds1->getAttribute("kl")->setFileKey(sJDD,"", "%e",TAttributeFileKey::kNewRow);
tds1->getAttribute("kc")->setFileKey(sJDD, "", "%e",TAttributeFileKey::kNewRow);
tds1->getAttribute("v1")->setFileKey(sJDD, "", "%e",TAttributeFileKey::kNewRow);
tds1->getAttribute("l1")->setFileKey(sJDD, "", "%e",TAttributeFileKey::kNewRow);
tds1->getAttribute("r1")->setFileKey(sJDD, "", "%e",TAttributeFileKey::kNewRow);
tds1->getAttribute("rc1")->setFileKey(sJDD, "", "%e",TAttributeFileKey::kNewRow);
tds1->getAttribute("v2")->setFileKey(sJDD, "", "%e",TAttributeFileKey::kNewRow);
tds1->getAttribute("l2")->setFileKey(sJDD, "", "%e",TAttributeFileKey::kNewRow);
tds1->getAttribute("r2")->setFileKey(sJDD, "", "%e",TAttributeFileKey::kNewRow);
tds1->getAttribute("rc2")->setFileKey(sJDD, "", "%e",TAttributeFileKey::kNewRow);
tds1->getAttribute("w")->setFileKey(sJDD, "", "%e",TAttributeFileKey::kNewRow);

// Create DOE
Int_t ns = 100;
TSampling *samp = new TSampling(tds1, "lhs", ns);
samp->generateSample();

page 507

Macro "launchCodeLevelEOutputRow.C" CHAPTER XIV. USE-CASES IN C++

//How to read ouput files
TOutputFileRow *_fout = new URANIE::Launcher::TOutputFileRow("_output_levelE_withRow_.dat ←↩

");
_fout->addAttribute(new TAttribute("tps",TAttribute::kVector));
_fout->addAttribute(new TAttribute("y",TAttribute::kVector));
_fout->addAttribute(new TAttribute("z",TAttribute::kVector));

//Creation of TCode
TCode *tc1 = new URANIE::Launcher::TCode(tds1, "levele 2> /dev/null");
tc1->addOutputFile(_fout);

//Run the code
TLauncher *tl1 = new URANIE::Launcher::TLauncher(tds1, tc1);
tl1->run();

//Draw the results
TCanvas *Can = new TCanvas("Can","Can",1);
Can->SetGrid(); Can->SetLogx();

double mean[26], stand[26];
tds1->computeStatistic("y");
for(unsigned int i=0; i<26; i++)
{
mean[i] = tds1->getAttribute("y")->getMean(i);
stand[i] = tds1->getAttribute("y")->getStd(i);

}

double tps[26]={20000,30000,40000,50000,60000,70000,80000,90000,100000, ←↩
200000,300000,400000,500000,600000,700000,800000,900000, 1e+06,2e+06,3e+06,4e+06,5e ←↩
+06,6e+06,7e+06,8e+06,9e+06};

TGraphErrors *gr = new TGraphErrors(26,tps,mean,0,stand);
gr->Draw("A*");
gr->SetTitle("");
gr->GetXaxis()->SetTitle("Time"); gr->GetYaxis()->SetTitle("<y>");

}

The levele external code is located in the bin directory.

When looking at the code and comparing it to an usual launcher job, the organisation is completely transparent. The
only noticeable (and compulsory) thing to do is to change the default type of the attribute read at the end of the job.
This is done in this line:

_fout->addAttribute(new URANIE::DataServer::TAttribute("y", TAttribute::kVector));

where the output attribute is provided, changing its nature to a vector, thanks to the second argument of the TAttribute
constructor from the default (kReal) to the desired nature (kVector). Once this is done, this information is broadcast
internally to the code that knows how to deal with this type of attribute.

XIV.4.20.3 Graph

The results of the previous macro is shown in Figure XIV.36, that displays the average of the hundred dose curve, over
the time.

page 508

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeLevelEOutputKey.C"

Figure XIV.36: Graph of the macro "launchCodeLevelEOutputRow.C"

XIV.4.21 Macro "launchCodeLevelEOutputKey.C"

Warning
The levele command will be installed on your machine only if a Fortran compiler is found

XIV.4.21.1 Objective

The objective of this macro is to launch a code that will produce several numerical values for at least one attribute, when
only once computation is performed. To do so, the levele use-case code will be used. It is a code that compute the dose
emitted by radioactive sources, as a function of time, given a set of twelve inputs parameters. It provides three possible
output formats, the one under consideration being here the Key one, corresponding to the TOutputFileKey class.
Here is an example of the output:

time = 20000.00
y = 0.9223239E-37
z = 0.000000
time = 30000.00
y = 0.4206201E-32
z = 0.000000
time = 40000.00
y = 0.5129892E-29
z = 0.000000
time = 50000.00
y = 0.9733449E-27
z = 0.000000
time = 60000.00
y = 0.6020410E-25
z = 0.000000

page 509

Macro "launchCodeLevelEOutputKey.C" CHAPTER XIV. USE-CASES IN C++

time = 70000.00
y = 0.1766700E-23
z = 0.000000
time = 80000.00
y = 0.3050058E-22
z = 0.1401298E-44
time = 90000.00
y = 0.3543269E-21
z = 0.1261169E-42
time = 100000.0
y = 0.3028644E-20
z = 0.9172900E-41
time = 200000.0
y = 0.1192590E-14
z = 0.1422271E-29
time = 300000.0
y = 0.6677703E-12
z = 0.4459172E-24
time = 400000.0
y = 0.2881550E-10
z = 0.8303329E-21
time = 500000.0
y = 0.3190472E-09
z = 0.1017911E-18
time = 600000.0
y = 0.1532743E-08
z = 0.2349300E-17
time = 700000.0
y = 0.4212096E-08
z = 0.1774175E-16
time = 800000.0
y = 0.7793285E-08
z = 0.6073529E-16
time = 900000.0
y = 0.1077026E-07
z = 0.1159985E-15
time = 1000000.
y = 0.1192316E-07
z = 0.1421619E-15
time = 2000000.
y = 0.1117317E-09
z = 0.1248398E-19
time = 3000000.
y = -0.9543977E-12
z = 0.9108749E-24
time = 4000000.
y = 0.1073334E-19
z = 0.1152050E-39
time = 5000000.
y = 0.2311560E-19
z = 0.5343305E-39
time = 6000000.
y = 0.3043276E-19
z = 0.9261532E-39
time = 7000000.
y = 0.3529515E-19
z = 0.1245747E-38
time = 8000000.
y = 0.4011028E-19
z = 0.1608835E-38
time = 9000000.
y = 0.4548453E-19

page 510

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeLevelEOutputKey.C"

z = 0.2068842E-38

XIV.4.21.2 Macro Uranie

{
// OS abstraction
string which_levele =
string(gSystem->GetBuildArch()) == "win64" ? "where levele" : "which levele";

//Exit if levele not found
if(gSystem->Exec(which_levele.c_str()))
exit(-1);

//Create DataServer and add input attributes
TDataServer *tds1 = new TDataServer("tds1", "levelE usecase");
tds1->addAttribute(new TUniformDistribution("t",100,1000));
tds1->addAttribute(new TLogUniformDistribution("kl",0.001,0.01));
tds1->addAttribute(new TLogUniformDistribution("kc",0.000001,0.00001));
tds1->addAttribute(new TLogUniformDistribution("v1",0.001,0.1));
tds1->addAttribute(new TUniformDistribution("l1",100,500));
tds1->addAttribute(new TUniformDistribution("r1",1,5));
tds1->addAttribute(new TUniformDistribution("rc1",3,30));
tds1->addAttribute(new TLogUniformDistribution("v2",0.01,0.1));
tds1->addAttribute(new TUniformDistribution("l2",50,200));
tds1->addAttribute(new TUniformDistribution("r2",1,5));
tds1->addAttribute(new TUniformDistribution("rc2",3,30));
tds1->addAttribute(new TLogUniformDistribution("w",100000,10000000));

//Tell the code where to find attribute value in input file
TString sJDD = "levelE_input_with_values_rows.in";
tds1->getAttribute("t")->setFileKey(sJDD, "", "%e",TAttributeFileKey::kNewRow);
tds1->getAttribute("kl")->setFileKey(sJDD,"", "%e",TAttributeFileKey::kNewRow);
tds1->getAttribute("kc")->setFileKey(sJDD, "", "%e",TAttributeFileKey::kNewRow);
tds1->getAttribute("v1")->setFileKey(sJDD, "", "%e",TAttributeFileKey::kNewRow);
tds1->getAttribute("l1")->setFileKey(sJDD, "", "%e",TAttributeFileKey::kNewRow);
tds1->getAttribute("r1")->setFileKey(sJDD, "", "%e",TAttributeFileKey::kNewRow);
tds1->getAttribute("rc1")->setFileKey(sJDD, "", "%e",TAttributeFileKey::kNewRow);
tds1->getAttribute("v2")->setFileKey(sJDD, "", "%e",TAttributeFileKey::kNewRow);
tds1->getAttribute("l2")->setFileKey(sJDD, "", "%e",TAttributeFileKey::kNewRow);
tds1->getAttribute("r2")->setFileKey(sJDD, "", "%e",TAttributeFileKey::kNewRow);
tds1->getAttribute("rc2")->setFileKey(sJDD, "", "%e",TAttributeFileKey::kNewRow);
tds1->getAttribute("w")->setFileKey(sJDD, "", "%e",TAttributeFileKey::kNewRow);

// Create DOE
Int_t ns = 100;
TSampling *samp = new TSampling(tds1, "lhs", ns);
samp->generateSample();

//How to read ouput files
TOutputFileKey *_fout = new URANIE::Launcher::TOutputFileKey("_output_levelE_withKey_.dat ←↩

");
_fout->addAttribute(new TAttribute("tps",TAttribute::kVector));
_fout->addAttribute(new TAttribute("y",TAttribute::kVector));
_fout->addAttribute(new TAttribute("z",TAttribute::kVector));

//Creation of TCode
TCode *tc1 = new URANIE::Launcher::TCode(tds1, "levele 2> /dev/null");
tc1->addOutputFile(_fout);

//Run the code

page 511

Macro "launchCodeLevelEOutputKey.C" CHAPTER XIV. USE-CASES IN C++

TLauncher *tl1 = new URANIE::Launcher::TLauncher(tds1, tc1);
tl1->run();

//Draw the results
TCanvas *Can = new TCanvas("Can","Can",1);
Can->SetGrid(); Can->SetLogx();

double mean[26], stand[26];
tds1->computeStatistic("y");
for(unsigned int i=0; i<26; i++)
{
mean[i] = tds1->getAttribute("y")->getMean(i);
stand[i] = tds1->getAttribute("y")->getStd(i);

}

double tps[26]={20000,30000,40000,50000,60000,70000,80000,90000,100000, ←↩
200000,300000,400000,500000,600000,700000,800000,900000, 1e+06,2e+06,3e+06,4e+06,5e ←↩
+06,6e+06,7e+06,8e+06,9e+06};

TGraphErrors *gr = new TGraphErrors(26,tps,mean,0,stand);
gr->Draw("A*");
gr->SetTitle("");
gr->GetXaxis()->SetTitle("Time"); gr->GetYaxis()->SetTitle("<y>");

}

The levele external code is located in the bin directory.

When looking at the code and comparing it to an usual launcher job, the organisation is completely transparent. The
only noticeable (and compulsory) thing to do is to change the default type of the attribute read at the end of the job.
This is done in this line:

_fout->addAttribute(new URANIE::DataServer::TAttribute("y", TAttribute::kVector));

where the output attribute is provided, changing its nature to a vector, thanks to the second argument of the TAttribute
constructor from the default (kReal) to the desired nature (kVector). Once this is done, this information is broadcast
internally to the code that knows how to deal with this type of attribute.

XIV.4.21.3 Graph

The results of the previous macro is shown in Figure XIV.37, that displays the average of the hundred dose curve, over
the time.

page 512

CHAPTER XIV. USE-CASES IN C++ Input/Output with vector and string: introduction to macros with multitype

Figure XIV.37: Graph of the macro "launchCodeLevelEOutputKey.C"

XIV.4.22 Input/Output with vector and string: introduction to macros with multitype

In order to test the possibility of reading vectors and strings (for jobs that produce those kind of results) but also to
re-write them in files when they are requested by a code (as an input) the multitype code has been created. It is just
a dummy piece of code that generates outputs containing vectors and strings along with double-precision results, and
re-read them to use the information contained and produce a new flat result.

XIV.4.22.1 Producing outputs

Special flags have been added to the multitype code aiming to produce an output containing:

• 2 words: w1 and w2, at first and last position, drawn randomly from a list that goes from "zero" to "nine".

• 2 vectors: v1 and v2, at second and third position, filled with Nv1 and Nv2 , doubles that follow two different gaussian
drawings. These number Nv1 and Nv2 are drawn randomly between 1 and 15 and might then changed from one event
to another.

• 1 float, f1, at fourth position, drawn following a gaussian.

The code can produce different kind of output files depending on the way it is called:

• multitype -mtKey: produces 2 output files (_output_multitype_mt_Key_.dat and _output_multitype_
mt_Key_condensate_.dat) written in Key format

• multitype -mtRow: produces an output file (_output_multitype_mt_Row_.dat) written in Row format

• multitype -mtCol: produces an output file (_output_multitype_mt_Column_.dat) written in Col-
umn format

page 513

Macro "launchCodeMultiTypeKey.C" CHAPTER XIV. USE-CASES IN C++

• multitype -mtDS: produces an output file (_output_multitype_mt_DataServer_.dat) written in
DataServer format

• multitype -mtXML: produces an output file (_output_multitype_mt_.xml) written in XML format

The code uses an input file called "multitype_input.dat" containing a single double that corresponds to the
seed used to generate the outputs. This is the only attribute needed when this -mt option is used for multitype.

XIV.4.22.2 Reading inputs

Another special flag has been added to the multitype code aiming to analyse the output of the step described pre-
viously. The idea is to check that vectors and strings are read and replaced carefully as input for the new operation
which produces two double-precision outputs: thev1 and thev2. Their values is set to 987654321 by default and when
the code is run the idea is:

• to recover the word w1 and the vector v1.

• to get the number that corresponds to the words w1 ("two" == 2).

• to associate thev1 to the w1-Th value of the vector v1 if it exists (and set it to -123456789 otherwise).

This procedure being repeated for w2 and v2 as well.

The code can produce different kinds of output files, from different input files, depending on the way it is called:

• multitype -ReadmtKey: produces an output files (_output_multitype_readmt_Key_.dat) by read-
ing the input variable in _output_multitype_mt_Key_condensate_.dat).

• multitype -ReadmtRow: produces an output file (_output_multitype_readmt_Row_.dat) by read-
ing the input variable in _output_multitype_mt_Row_.dat).

• multitype -ReadmtCol: produces an output file (_output_multitype_readmt_Column_.dat) by
reading the input variable in _output_multitype_mt_Column_.dat).

• multitype -ReadmtDS: produces an output file (_output_multitype_readmt_DataServer_.dat)
by reading the input variable in _output_multitype_mt_DataServer_.dat).

• multitype -ReadmtXML: produces an output file (_output_multitype_readmt_.xml) by reading the
input variable in _output_multitype_mt_.xml).

XIV.4.23 Macro "launchCodeMultiTypeKey.C"

XIV.4.23.1 Objective

The objective of this macro is to test the case where vectors and strings are produced as outputs, using the code
described in Section XIV.4.22.1, with a Key format, obtained by doing:

multitype -mtKey

The resulting output file, named _output_multitype_mt_Key_.dat looks like:

page 514

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeMultiTypeKey.C"

w1 = nine
v1 = -0.512095
v1 = 0.039669
v1 = -1.3834
v1 = 1.37667
v1 = 0.220672
v1 = 0.633267
v1 = 1.37027
v1 = -0.765636
v2 = 14.1981
v2 = 14.0855
v2 = 10.7848
v2 = 9.45476
v2 = 9.17308
v2 = 6.60804
v2 = 10.0711
v2 = 14.1761
v2 = 10.318
v2 = 12.5095
v2 = 15.6614
v2 = 10.3452
v2 = 9.41101
v2 = 7.47887
f1 = 32.2723
w2 = eight

XIV.4.23.2 Macro Uranie

{
//Create dataserver with the seed attribute
TDataServer *tds = new TDataServer("foo","pouet");
tds->addAttribute(new TUniformDistribution("seed",0,100000));
tds->getAttribute("seed")->setFileKey("multitype_input.dat","", "%e",TAttributeFileKey:: ←↩

kNewRow);

//Create DOE
TSampling *tsam = new TSampling(tds,"lhs",100);
tsam->generateSample();

//Precise output and create Code
TOutputFileKey *out = new TOutputFileKey("_output_multitype_mt_Key_.dat");
out->addAttribute(new TAttribute("w1",TAttribute::kString));
out->addAttribute(new TAttribute("w2",TAttribute::kString));
out->addAttribute(new TAttribute("v1",TAttribute::kVector));
out->addAttribute(new TAttribute("v2",TAttribute::kVector));
out->addAttribute(new TAttribute("f1"));
TCode *myc = new URANIE::Launcher::TCode(tds, "multitype -mtKey");
myc->addOutputFile(out);

//Create TLauncher and run it
TLauncher *tlau = new URANIE::Launcher::TLauncher(tds, myc);
tlau->run();

//Produce control plot
TCanvas *Can = new TCanvas("Can","Can",10,10,1000,800);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw(); pad->cd();
tds->drawPairs("w1:v1:v2:f1:w2");

}

page 515

Macro "launchCodeMultiTypeKeyCondensate.C" CHAPTER XIV. USE-CASES IN C++

When looking at the code and comparing it to an usual launcher job, the organisation is completely transparent. A
dataserver is created with a simple input (the seed) drawn as an uniform distribution. The design-of-experiments is
generated and the TOutputFileKey is created and filled with new attributes. This is the important part, where
nature of the attributes are precised:

TOutputFileKey *out = new TOutputFileKey("_output_multitype_mt_Key_.dat");
out->addAttribute(new URANIE::DataServer::TAttribute("w1",TAttribute::kString));
out->addAttribute(new URANIE::DataServer::TAttribute("w2",TAttribute::kString));
out->addAttribute(new URANIE::DataServer::TAttribute("v1",TAttribute::kVector));
out->addAttribute(new URANIE::DataServer::TAttribute("v2",TAttribute::kVector));
out->addAttribute(new URANIE::DataServer::TAttribute("f1"));

The rest is very common and a pair plot is performed to check that the reading of the output went well (see following
plot).

XIV.4.23.3 Graph

Figure XIV.38: Graph of the macro "launchCodeMultiTypeKey.C"

XIV.4.24 Macro "launchCodeMultiTypeKeyCondensate.C"

XIV.4.24.1 Objective

The objective of this macro is to test the case where vectors and strings are produced as outputs, using the code
described in Section XIV.4.22.1, with a Key format, obtained by doing:

multitype -mtKey

The resulting output file, named _output_multitype_mt_Key_condensate_.dat looks like:

page 516

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeMultiTypeKeyCondensate.C"

w1 = nine
v1 = [-0.512095,0.039669,-1.3834,1.37667,0.220672,0.633267,1.37027,-0.765636]
v2 = [←↩

14.1981,14.0855,10.7848,9.45476,9.17308,6.60804,10.0711,14.1761,10.318,12.5095,15.6614,10.3452,9.41101,7.47887 ←↩
]

f1 = 32.2723
w2 = eight

It is a much more readable format than the previously defined one. Note that the vector-values are comma-separated
without blanks. This has been discussed in Section IV.3.1.1 and is compulsory because of the way the files (in the
Launcher module) are read.

XIV.4.24.2 Macro Uranie

{
//Create dataserver with the seed attribute
TDataServer *tds = new TDataServer("foo","pouet");
tds->addAttribute(new TUniformDistribution("seed",0,100000));
tds->getAttribute("seed")->setFileKey("multitype_input.dat","", "%e",TAttributeFileKey:: ←↩

kNewRow);

//Create DOE
TSampling *tsam = new TSampling(tds,"lhs",100);
tsam->generateSample();

//Precise output and create Code
TOutputFileKey *out = new TOutputFileKey("_output_multitype_mt_Key_condensate_.dat");
out->addAttribute(new TAttribute("w1",TAttribute::kString));
out->addAttribute(new TAttribute("w2",TAttribute::kString));
out->addAttribute(new TAttribute("v1",TAttribute::kVector));
out->addAttribute(new TAttribute("v2",TAttribute::kVector));
out->addAttribute(new TAttribute("f1"));
//Specify that the output will be separated by commas and that [and] have to be ←↩

considered as separator (== ignored)
out->setVectorProperties("[",",","]");

TCode *myc = new URANIE::Launcher::TCode(tds, "multitype -mtKey");
myc->addOutputFile(out);

//Create TLauncher and run it
TLauncher *tlau = new URANIE::Launcher::TLauncher(tds, myc);
tlau->run();

//Produce control plot
TCanvas *Can = new TCanvas("Can","Can",10,10,1000,800);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw(); pad->cd();
tds->drawPairs("w1:v1:v2:f1:w2");

}

When looking at the code and comparing it to an usual launcher job, the organisation is completely transparent. Actually
it is the exact same code as in Section XIV.4.24, up to this line:

//Specify that the output will be separated by commas and that [and] have to be ←↩
considered as separator (== ignored)

out->setVectorProperties("[",",","]");

page 517

Macro "launchCodeMultiTypeDataServer.C" CHAPTER XIV. USE-CASES IN C++

Thanks to this line, the output file parser will know that all vector values have to be read at once, and it will know how
to separate them. This is the line to modify in order to go from key format describe in Section XIV.4.24 to a condensate
one. The rest is very common and a pair plot is performed to check that the reading of the output went well (see
following plot).

XIV.4.24.3 Graph

Figure XIV.39: Graph of the macro "launchCodeMultiTypeKeyCondensate.C"

XIV.4.25 Macro "launchCodeMultiTypeDataServer.C"

XIV.4.25.1 Objective

The objective of this macro is to test the case where vectors and strings are produced as outputs, using the code
described in Section XIV.4.22.1, with a DataServer format, obtained by doing:

multitype -mtDS

The resulting output file, named _output_multitype_mt_DataServer_.dat looks like:

#COLUMN_NAMES: w1|v1|v2|f1|w2
#COLUMN_TYPES: S|V|V|D|S

nine -0.512095,0.039669,-1.3834,1.37667,0.220672,0.633267,1.37027,-0.765636 ←↩
14.1981,14.0855,10.7848,9.45476,9.17308,6.60804,10.0711,14.1761,10.318,12.5095,15.6614,10.3452,9.41101,7.47887 ←↩
32.2723 eight

page 518

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeMultiTypeDataServer.C"

XIV.4.25.2 Macro Uranie

{
//Create dataserver with the seed attribute
TDataServer *tds = new TDataServer("foo","pouet");
tds->addAttribute(new TUniformDistribution("seed",0,100000));
tds->getAttribute("seed")->setFileKey("multitype_input.dat","", "%e",TAttributeFileKey:: ←↩

kNewRow);

//Create DOE
TSampling *tsam = new TSampling(tds,"lhs",100);
tsam->generateSample();

//Precise output and create Code
TOutputFileDataServer *out = new TOutputFileDataServer("_output_multitype_mt_DataServer_. ←↩

dat");
out->addAttribute(new TAttribute("w1",TAttribute::kString));
out->addAttribute(new TAttribute("w2",TAttribute::kString));
out->addAttribute(new TAttribute("v1",TAttribute::kVector));
out->addAttribute(new TAttribute("v2",TAttribute::kVector));
out->addAttribute(new TAttribute("f1"));
TCode *myc = new URANIE::Launcher::TCode(tds, "multitype -mtDS");
myc->addOutputFile(out);

//Create TLauncher and run it
TLauncher *tlau = new URANIE::Launcher::TLauncher(tds, myc);
tlau->run();

//Produce control plot
TCanvas *Can = new TCanvas("Can","Can",10,10,1000,800);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw(); pad->cd();
tds->drawPairs("w1:v1:v2:f1:w2");

}

When looking at the code and comparing it to an usual launcher job, the organisation is completely transparent. A
dataserver is created with a simple input (the seed) drawn as an uniform distribution. The design-of-experiments is
generated and the TOutputFileDataServer is created and filled with new attributes. This is the important part,
where nature of the attributes are precised:

TOutputFileDataServer *out = new TOutputFileDataServer("_output_multitype_mt_DataServer_. ←↩
dat");

out->addAttribute(new URANIE::DataServer::TAttribute("w1",TAttribute::kString));
out->addAttribute(new URANIE::DataServer::TAttribute("w2",TAttribute::kString));
out->addAttribute(new URANIE::DataServer::TAttribute("v1",TAttribute::kVector));
out->addAttribute(new URANIE::DataServer::TAttribute("v2",TAttribute::kVector));
out->addAttribute(new URANIE::DataServer::TAttribute("f1"));

The rest is very common and a pair plot is performed to check that the reading of the output went well (see following
plot).

page 519

Macro "launchCodeMultiTypeColumn.C" CHAPTER XIV. USE-CASES IN C++

XIV.4.25.3 Graph

Figure XIV.40: Graph of the macro "launchCodeMultiTypeDataServer.C"

XIV.4.26 Macro "launchCodeMultiTypeColumn.C"

XIV.4.26.1 Objective

The objective of this macro is to test the case where vectors and strings are produced as outputs, using the code
described in Section XIV.4.22.1, with a Column format, obtained by doing:

multitype -mtCol

The resulting output file, named _output_multitype_mt_Column_.dat looks like:

nine
-0.512095 0.039669 -1.3834 1.37667 0.220672 0.633267 1.37027 -0.765636
14.1981 14.0855 10.7848 9.45476 9.17308 6.60804 10.0711 14.1761 10.318 12.5095 15.6614 ←↩

10.3452 9.41101 7.47887
32.2723
eight

XIV.4.26.2 Macro Uranie

{
//Create dataserver with the seed attribute
TDataServer *tds = new TDataServer("foo","pouet");
tds->addAttribute(new TUniformDistribution("seed",0,100000));

page 520

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeMultiTypeColumn.C"

tds->getAttribute("seed")->setFileKey("multitype_input.dat","", "%e",TAttributeFileKey:: ←↩
kNewRow);

//Create DOE
TSampling *tsam = new TSampling(tds,"lhs",100);
tsam->generateSample();

//Precise output and create Code
TOutputFileColumn *out = new TOutputFileColumn("_output_multitype_mt_Column_.dat");
out->addAttribute(new TAttribute("w1",TAttribute::kString),1);
out->addAttribute(new TAttribute("w2",TAttribute::kString),5);
out->addAttribute(new TAttribute("v1",TAttribute::kVector),2);
out->addAttribute(new TAttribute("v2",TAttribute::kVector),3);
out->addAttribute(new TAttribute("f1"),4);
TCode *myc = new URANIE::Launcher::TCode(tds, "multitype -mtCol");
myc->addOutputFile(out);

//Create TLauncher and run it
TLauncher *tlau = new URANIE::Launcher::TLauncher(tds, myc);
tlau->run();

//Produce control plot
TCanvas *Can = new TCanvas("Can","Can",10,10,1000,800);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw(); pad->cd();
tds->drawPairs("w1:v1:v2:f1:w2");

}

When looking at the code and comparing it to an usual launcher job, the organisation is completely transparent. A
dataserver is created with a simple input (the seed) drawn as an uniform distribution. The design-of-experiments is
generated and the TOutputFileColumn is created and filled with new attributes. This is the important part, where
nature of the attributes are precised:

TOutputFileColumn *out = new TOutputFileColumn("_output_multitype_mt_Column_.dat");
out->addAttribute(new URANIE::DataServer::TAttribute("w1",TAttribute::kString),1);
out->addAttribute(new URANIE::DataServer::TAttribute("w2",TAttribute::kString),5);
out->addAttribute(new URANIE::DataServer::TAttribute("v1",TAttribute::kVector),2);
out->addAttribute(new URANIE::DataServer::TAttribute("v2",TAttribute::kVector),3);
out->addAttribute(new URANIE::DataServer::TAttribute("f1"),4);

The rest is very common and a pair plot is performed to check that the reading of the output went well (see following
plot).

page 521

Macro "launchCodeMultiTypeRow.C" CHAPTER XIV. USE-CASES IN C++

XIV.4.26.3 Graph

Figure XIV.41: Graph of the macro "launchCodeMultiTypeColumn.C"

XIV.4.27 Macro "launchCodeMultiTypeRow.C"

XIV.4.27.1 Objective

The objective of this macro is to test the case where vectors and strings are produced as outputs, using the code
described in Section XIV.4.22.1, with a Row format, obtained by doing:

multitype -mtRow

When requesting a "row" type output, extra caution has to be taken: the usual separator between two fields are blank
and/or tabulation. With this formatting, an output can look like this:

1.234 4.321 5.653
5.321

With this kind of file, it is impossible to know which attributes own the element on the second line (in other words, if
it should have been, first, second or third column). The proposed solution is to change the separator between field,
using any specific sign, followed by a blank. This is done using ";" and it results in an output file, named _output_
multitype_mt_Row_.dat which looks like:

nine; -0.512095; 14.1981; 32.2723; eight
; 0.039669; 14.0855; ; ;
; -1.3834; 10.7848; ; ;
; 1.37667; 9.45476; ; ;
; 0.220672; 9.17308; ; ;
; 0.633267; 6.60804; ; ;

page 522

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeMultiTypeRow.C"

; 1.37027; 10.0711; ; ;
; -0.765636; 14.1761; ; ;
; ; 10.318; ; ;
; ; 12.5095; ; ;
; ; 15.6614; ; ;
; ; 10.3452; ; ;
; ; 9.41101; ; ;
; ; 7.47887; ; ;

XIV.4.27.2 Macro Uranie

{
//Create dataserver with the seed attribute
TDataServer *tds = new TDataServer("foo","pouet");
tds->addAttribute(new TUniformDistribution("seed",0,100000));
tds->getAttribute("seed")->setFileKey("multitype_input.dat","", "%e",TAttributeFileKey:: ←↩

kNewRow);

//Create DOE
TSampling *tsam = new TSampling(tds,"lhs",100);
tsam->generateSample();

//Precise output and create Code
TOutputFileRow *out = new TOutputFileRow("_output_multitype_mt_Row_.dat");
out->setFieldSeparatorCharacter(";");
out->addAttribute(new TAttribute("w1",TAttribute::kString));
out->addAttribute(new TAttribute("v1",TAttribute::kVector));
out->addAttribute(new TAttribute("v2",TAttribute::kVector));
out->addAttribute(new TAttribute("f1"));
out->addAttribute(new TAttribute("w2",TAttribute::kString));
TCode *myc = new URANIE::Launcher::TCode(tds, "multitype -mtRow");
myc->addOutputFile(out);

//Create TLauncher and run it
TLauncher *tlau = new URANIE::Launcher::TLauncher(tds, myc);
tlau->run();

//Produce control plot
TCanvas *Can = new TCanvas("Can","Can",10,10,1000,800);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw(); pad->cd();
tds->drawPairs("w1:v1:v2:f1:w2");

}

When looking at the code and comparing it to an usual launcher job, the organisation is completely transparent. A
dataserver is created with a simple input (the seed) drawn as an uniform distribution. The design-of-experiments is
generated and the TOutputFileRow is created and filled with new attributes. This is the important part, where
nature of the attributes are precised:

TOutputFileRow *out = new TOutputFileRow("_output_multitype_mt_Row_.dat");
out->setFieldSeparatorCharacter(";");
out->addAttribute(new URANIE::DataServer::TAttribute("w1",TAttribute::kString));
out->addAttribute(new URANIE::DataServer::TAttribute("v1",TAttribute::kVector));
out->addAttribute(new URANIE::DataServer::TAttribute("v2",TAttribute::kVector));
out->addAttribute(new URANIE::DataServer::TAttribute("f1"));
out->addAttribute(new URANIE::DataServer::TAttribute("w2",TAttribute::kString));

page 523

Macro "launchCodeMultiTypeXML.C" CHAPTER XIV. USE-CASES IN C++

The second line is important as it explains the TOutputFileRow object how to read the file to know that some fields
are empty. The rest is very common and a pair plot is performed to check that the reading of the output went well (see
following plot).

XIV.4.27.3 Graph

Figure XIV.42: Graph of the macro "launchCodeMultiTypeRow.C"

XIV.4.28 Macro "launchCodeMultiTypeXML.C"

XIV.4.28.1 Objective

The objective of this macro is to test the case where vectors and strings are produced as outputs, using the code
described in Section XIV.4.22.1, with a XML format, obtained by doing:

multitype -mtXML

The resulting output file is named _output_multitype_mt_.xml and looks like:

<?xml version="1.0" encoding="iso-8859-1"?>
<multitypeMT>
<w1 value="nine"/>
<v1 n="8">
<values>
-0.512095 0.039669 -1.3834 1.37667 0.220672 0.633267 1.37027 -0.765636

</values>
</v1>
<v2 n="14">
<values>

page 524

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeMultiTypeXML.C"

14.1981 14.0855 10.7848 9.45476 9.17308 6.60804 10.0711 14.1761 10.318 12.5095 15.6614 ←↩
10.3452 9.41101 7.47887

</values>
</v2>
<f1 value="32.2723"/>
<w2 value="eight"/>

</multitypeMT>

XIV.4.28.2 Macro Uranie

{
//Create dataserver with the seed attribute
TDataServer *tds = new TDataServer("foo","pouet");
tds->addAttribute(new TUniformDistribution("seed",0,100000));
tds->getAttribute("seed")->setFileKey("multitype_input.dat","", "%e",TAttributeFileKey:: ←↩

kNewRow);

//Create DOE
TSampling *tsam = new TSampling(tds,"lhs",100);
tsam->generateSample();

//Precise output and create Code
TOutputFileXML *out = new TOutputFileXML("_output_multitype_mt_.xml");
out->addAttribute(new TAttribute("w1",TAttribute::kString), "/multitypeMT/w1/@value", ←↩

TAttributeFileKey::kXMLAttribute);
out->addAttribute(new TAttribute("w2",TAttribute::kString), "/multitypeMT/w2/@value", ←↩

TAttributeFileKey::kXMLAttribute);
out->addAttribute(new TAttribute("v1",TAttribute::kVector), "/multitypeMT/v1/values", ←↩

TAttributeFileKey::kXMLField);
out->addAttribute(new TAttribute("v2",TAttribute::kVector), "/multitypeMT/v2/values", ←↩

TAttributeFileKey::kXMLField);
out->addAttribute(new TAttribute("f1"), "/multitypeMT/f1/@value", ←↩

TAttributeFileKey::kXMLAttribute);

TCode *myc = new URANIE::Launcher::TCode(tds, "multitype -mtXML");
myc->addOutputFile(out);

//Create TLauncher and run it
TLauncher *tlau = new URANIE::Launcher::TLauncher(tds, myc);
tlau->run();

//Produce control plot
TCanvas *Can = new TCanvas("Can","Can",10,10,1000,800);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw(); pad->cd();
tds->drawPairs("w1:v1:v2:f1:w2");

}

When looking at the code and comparing it to an usual launcher job, the organisation is completely transparent. A
dataserver is created with a simple input (the seed) drawn as an uniform distribution. The design-of-experiments is
generated and the TOutputFileXML is created and filled with new attributes. This is the important part, where
nature of the attributes are precised:

TOutputFileXML *out = new TOutputFileXML("_output_multitype_mt_.xml");
out->addAttribute(new TAttribute("w1",TAttribute::kString), "/multitypeMT/w1/@value", ←↩

TAttributeFileKey::kXMLAttribute);
out->addAttribute(new TAttribute("w2",TAttribute::kString), "/multitypeMT/w2/@value", ←↩

TAttributeFileKey::kXMLAttribute);

page 525

Macro "launchCodeReadMultiTypeKey.C" CHAPTER XIV. USE-CASES IN C++

out->addAttribute(new TAttribute("v1",TAttribute::kVector), "/multitypeMT/v1/values", ←↩
TAttributeFileKey::kXMLField);

out->addAttribute(new TAttribute("v2",TAttribute::kVector), "/multitypeMT/v2/values", ←↩
TAttributeFileKey::kXMLField);

out->addAttribute(new TAttribute("f1"), "/multitypeMT/f1/@value", ←↩
TAttributeFileKey::kXMLAttribute);

The second line is important as it explains the TOutputFileXML object how to read the file to know that some fields
are empty. The rest is very common and a pair plot is performed to check that the reading of the output went well (see
following plot).

XIV.4.28.3 Graph

Figure XIV.43: Graph of the macro "launchCodeMultiTypeXML.C"

XIV.4.29 Macro "launchCodeReadMultiTypeKey.C"

XIV.4.29.1 Objective

The objective of this macro is to test the case where vectors and strings are used as inputs, using the code described
in Section XIV.4.22.2, with a Key format, obtained by doing:

multitype -ReadmtKey

The input values will be read from a database which is produced with the multitype -mt code, as no sampling is
available yet to produce vectors and strings. The database file is readmultitype_sampling.dat which looks
like this:

page 526

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeReadMultiTypeKey.C"

#NAME: foo
#TITLE: TDS for flowrate
#DATE: Mon Oct 3 23:50:34 2016
#COLUMN_NAMES: v1| w1| v2| w2| f1| foo__n__iter__
#COLUMN_TYPES: V|S|V|S|D|D

-6.901933299378e-02,-1.292435959913e-01,4.558876683004e-01,5.638486368789e ←↩
-01,-4.767582766745e-02,7.102109543136e-03,2.819049677902e-01,-2.019788081790e ←↩
+00,-2.604401028584e+00,-1.617682380292e+00,2.894560949798e-02,-3.493905850261e-01 six ←↩
1.142449011404e+01,7.318948216271e+00,1.502260859231e+01,6.041193793062e ←↩
+00,6.729445145907e+00,1.128096968597e+01 zero 3.425632316777e+01 0.000000000000e+00

-6.923200061823e-01,-4.798721931875e-01,-1.329893204384e+00,1.292933726829e+00 zero ←↩
1.249911290435e+01,6.309239169117e+00,1.596653626442e+01,5.500878012739e ←↩
+00,1.322535550082e+01,7.070984389647e+00,1.708574150702e+00,1.265915339220e+01 two ←↩
4.295175025115e+01 1.000000000000e+00

5.773813268848e-01,-3.512405673973e-01,-6.870089014992e-01,1.273074555211e-01 nine ←↩
1.242682578759e+01,1.109680842701e+01,1.670410641828e+01,7.296321908492e ←↩
+00,8.732800753443e+00,1.262906549132e+01,8.882310687564e+00,1.104280818003e+01 five ←↩
5.591437936893e+01 2.000000000000e+00

5.518508915499e-01,2.438158138873e-01,1.111784497742e+00,-1.517566514667e+00,7.146879916125 ←↩
e-01,2.328439269321e+00,-1.251913839951e+00,8.876684186954e-01,-1.383023165632e ←↩
+00,-8.192089693621e-01,-1.079524713568e-01,6.595650273375e-01,-2.275345802432e ←↩
-03,1.304354557600e+00 nine 1.021975159505e+01,4.995433740783e+00,1.108628156181e ←↩
+01,1.041110604995e+01,1.111365770153e+01,6.365695806343e+00,6.374053973239e ←↩
+00,6.854423942510e+00,7.144262333164e+00 two 4.093776591421e+01 3.000000000000e+00

2.403942476958e-01,6.868091212609e-01,-1.561012830108e+00,1.937806684989e ←↩
+00,-1.465851888061e+00,5.367279844359e-02,-1.263005327899e+00,-1.132259472701e+00 two ←↩
7.382048319627e+00,5.874867917970e+00,1.158191378461e+01,1.073321314846e+01 six ←↩
6.980549752305e+01 4.000000000000e+00

2.220485143391e+00,-5.787212569267e-01,8.843648237689e-01,2.020662891124e+00,1.066403357312 ←↩
e+00,-5.817432767992e-01,3.063023900800e-01,-7.393588637933e-01 two 2.049656723853e ←↩
+00,9.679003878866e+00,7.338089623518e+00,1.235630702472e+01,1.509238505697e ←↩
+01,1.034077492413e+01,1.116077550501e+01,7.179221834787e+00,1.582041236432e ←↩
+01,9.204085091129e+00,4.707490792498e+00,1.618155764288e+01 five 3.507773555061e+01 ←↩
5.000000000000e+00

8.908373817765e-01,-2.446355046704e-01,-1.900125532005e+00 seven 1.351254851860e ←↩
+01,9.297087139459e+00,1.130966904782e+01,1.219245848701e+01,1.012996566249e ←↩
+01,7.150071600452e+00,1.097549218518e+01,1.443074761657e+01 five 4.464560504112e+01 ←↩
6.000000000000e+00

-2.514644600888e+00,1.633579305804e+00 one 1.229098312451e+01,1.013486836958e ←↩
+01,1.243386772880e+01,1.071783135260e+01,1.453735777922e+01,7.995593455015e ←↩
+00,9.753966962919e+00,5.924583770352e+00,6.187713988125e+00,1.061975242996e ←↩
+01,6.650425922126e+00 four 4.553396475968e+01 7.000000000000e+00

-1.347811599520e+00,-1.259450135534e+00,1.812553405758e+00 five 7.717018655412e ←↩
+00,1.053283796180e+01,7.404059210327e+00 eight 6.695868880279e+01 8.000000000000e+00

-1.258360863204e-01,-9.000566818602e-01,7.039146852797e-01,1.015917277706e ←↩
+00,-2.397650482929e-01 four 4.346717386417e+00,1.033024889324e+01,7.183787459050e ←↩
+00,8.742095837835e+00,1.277095440277e+01,8.685683828779e+00,9.321006265935e ←↩
+00,6.353438157123e+00,8.552570119034e+00 six 4.381313066586e+01 9.000000000000e+00

For every pattern, an input file is created with the Key condensate format, as the other key format is not practical (and
usable). This input file looks like this:

w1 = nine
v1 = [-0.512095,0.039669,-1.3834,1.37667,0.220672,0.633267,1.37027,-0.765636]
v2 = [←↩

14.1981,14.0855,10.7848,9.45476,9.17308,6.60804,10.0711,14.1761,10.318,12.5095,15.6614,10.3452,9.41101,7.47887 ←↩
]

f1 = 32.2723
w2 = eight

page 527

Macro "launchCodeReadMultiTypeKey.C" CHAPTER XIV. USE-CASES IN C++

The resulting output file, named _output_multitype_readmt_Key_.dat looks like:

thev1 = -0.2397650482929
thev2 = 9.321006265935

XIV.4.29.2 Macro Uranie

{
//Create dataserver with a database of 10 runs of the "multitype -mt" code
TDataServer *tds = new TDataServer("foo","pouet");
tds->fileDataRead("readmultitype_sampling.dat");

//Explain the name of the input file and the format chosen
tds->getAttribute("w1")->setFileKey("_output_multitype_mt_Key_condensate_.dat","", "%e", ←↩

TAttributeFileKey::kNewKey);
tds->getAttribute("v1")->setFileKey("_output_multitype_mt_Key_condensate_.dat","", "%e", ←↩

TAttributeFileKey::kNewKey);
tds->getAttribute("v2")->setFileKey("_output_multitype_mt_Key_condensate_.dat","", "%e", ←↩

TAttributeFileKey::kNewKey);
tds->getAttribute("f1")->setFileKey("_output_multitype_mt_Key_condensate_.dat","", "%e", ←↩

TAttributeFileKey::kNewKey);
tds->getAttribute("w2")->setFileKey("_output_multitype_mt_Key_condensate_.dat","", "%e", ←↩

TAttributeFileKey::kNewKey);

//Create the Class that will handle re-writting the input file
TString OutName="_output_multitype_mt_Key_condensate_.dat";
TInputFileRecreate *in = new TInputFileRecreate(gSystem->PrependPathName(gSystem->pwd(), ←↩

OutName));

// Add attribute in the correct (needed) order
in->addAttribute(tds->getAttribute("w1"));
in->addAttribute(tds->getAttribute("v1"));
in->addAttribute(tds->getAttribute("v2"));
in->addAttribute(tds->getAttribute("f1"));
in->addAttribute(tds->getAttribute("w2"));
in->setVectorProperties("[",",","]"); // Change the vector properties

// Create the output file interface and state that there will be 2 outputs
TOutputFileKey *out = new TOutputFileKey("_output_multitype_readmt_Key_.dat");
out->addAttribute(new TAttribute("thev1"));
out->addAttribute(new TAttribute("thev2"));

// Create the corresponding interface to code
TCode *tc1 = new TCode(tds, "multitype -ReadmtKey");
tc1->addInputFile(in);
tc1->addOutputFile(out);

// Create the launcher and run the code
TLauncher *tl1 = new TLauncher(tds, tc1);
tl1->run();

tds->Scan("thev1:thev2");

}

When looking at the code and comparing it to an usual launcher job, the organisation is completely transparent. A
dataserver is created by reading an input file readmultitype_sampling.dat in which 10 events are stored.
The main difference arises from the way the input file is created: it is done explicitly because the order in which the
attributes are stored in the database file are not the one needed by the code in the input file (this case is discussed in

page 528

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeReadMultiTypeDataServer.C"

Section IV.3.1.1). The name of the file given in the construction has to be absolute, as the TCode object will check this
in order to know whether the input file should be created.

//Create the Class that will handle re-writing the input file
TInputFileRecreate *in = new TInputFileRecreate(Form("%s/ ←↩

_output_multitype_mt_Key_condensate_.dat",gSystem->pwd()));

// Add attribute in the correct (needed) order
in->addAttribute(tds->getAttribute("w1"));
in->addAttribute(tds->getAttribute("v1"));
in->addAttribute(tds->getAttribute("v2"));
in->addAttribute(tds->getAttribute("f1"));
in->addAttribute(tds->getAttribute("w2"));
in->setVectorProperties("[",",","]"); // Change the vector properties

Moreover, an extra line is added to specify that the Key format is a condensate one, so that Uranie knows how to deal
with vectors and strings specific case (only vectors here). The rest is very common and a screenshot of the result
displayed in console is provided in the following subsection.

XIV.4.29.3 Console

Processing launchCodeReadMultiTypeKey.C...

* Row * thev1 * thev2 *

* 0 * 0.2819049 * 11.424490 *
* 1 * -0.692320 * 15.966536 *
* 2 * -12345678 * 12.629065 *
* 3 * -0.819208 * 11.086281 *
* 4 * -1.561012 * -12345678 *
* 5 * 0.8843648 * 10.340774 *
* 6 * -12345678 * 7.1500716 *
* 7 * 1.6335793 * 14.537357 *
* 8 * -12345678 * -12345678 *
* 9 * -0.239765 * 9.3210062 *

XIV.4.30 Macro "launchCodeReadMultiTypeDataServer.C"

XIV.4.30.1 Objective

The objective of this macro is to test the case where vectors and strings are used as inputs, using the code described
in Section XIV.4.22.2, with a DataServer format, obtained by doing:

multitype -ReadmtDS

. The input values will be read from a database which is produced with the multitype -mt code, as no sampling
is available yet to produce vectors and strings. The database file is readmultitype_sampling.dat which is
shown in Section XIV.4.29.1. For every pattern, an input file will be created with the DataServer format. This input file
looks like this:

#COLUMN_NAMES: w1|v1|v2|f1|w2
#COLUMN_TYPES: S|V|V|D|S

nine -0.512095,0.039669,-1.3834,1.37667,0.220672,0.633267,1.37027,-0.765636 ←↩
14.1981,14.0855,10.7848,9.45476,9.17308,6.60804,10.0711,14.1761,10.318,12.5095,15.6614,10.3452,9.41101,7.47887 ←↩
32.2723 eight

page 529

Macro "launchCodeReadMultiTypeDataServer.C" CHAPTER XIV. USE-CASES IN C++

The resulting output file, named _output_multitype_readmt_DataServer_.dat looks like:

#COLUMN_NAMES: thev1|thev2
#COLUMN_TYPES: D|D

-0.2397650482929 9.321006265935

XIV.4.30.2 Macro Uranie

{
//Create dataserver with a database of 10 runs of the "multitype -mt" code
TDataServer *tds = new TDataServer("foo","pouet");
tds->fileDataRead("readmultitype_sampling.dat");

//Explain the name of the input file and the format chosen
tds->getAttribute("w1")->setFileKey("_output_multitype_mt_DataServer_.dat","", "%e", ←↩

TAttributeFileKey::kNewTDS);
tds->getAttribute("v1")->setFileKey("_output_multitype_mt_DataServer_.dat","", "%e", ←↩

TAttributeFileKey::kNewTDS);
tds->getAttribute("v2")->setFileKey("_output_multitype_mt_DataServer_.dat","", "%e", ←↩

TAttributeFileKey::kNewTDS);
tds->getAttribute("f1")->setFileKey("_output_multitype_mt_DataServer_.dat","", "%e", ←↩

TAttributeFileKey::kNewTDS);
tds->getAttribute("w2")->setFileKey("_output_multitype_mt_DataServer_.dat","", "%e", ←↩

TAttributeFileKey::kNewTDS);

//Create the Class that will handle re-writting the input file
TString OutName="_output_multitype_mt_DataServer_.dat";
TInputFileRecreate *in = new TInputFileRecreate(gSystem->PrependPathName(gSystem->pwd(), ←↩

OutName));

// Add attribute in the correct (needed) order
in->addAttribute(tds->getAttribute("w1"));
in->addAttribute(tds->getAttribute("v1"));
in->addAttribute(tds->getAttribute("v2"));
in->addAttribute(tds->getAttribute("f1"));
in->addAttribute(tds->getAttribute("w2"));

// Create the output file interface and state that there will be 2 outputs
TOutputFileDataServer *out = new TOutputFileDataServer(" ←↩

_output_multitype_readmt_DataServer_.dat");
out->addAttribute(new TAttribute("thev1"));
out->addAttribute(new TAttribute("thev2"));

// Create the corresponding interface to code
TCode *tc1 = new TCode(tds, "multitype -ReadmtDS");
tc1->addInputFile(in);
tc1->addOutputFile(out);

// Create the launcher and run the code
TLauncher *tl1 = new TLauncher(tds, tc1);
tl1->run();

tds->Scan("thev1:thev2");

}

When looking at the code and comparing it to an usual launcher job, the organisation is completely transparent. A
dataserver is created by reading an input file readmultitype_sampling.dat in which 10 events are stored.

page 530

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeReadMultiTypeColumn.C"

The main difference arises from the way the input file is created: it is done explicitly because the order in which the
attributes are stored in the database file are not the one needed by the code in the input file (this case is discussed in
Section IV.3.1.1). The name of the file given in the construction has to be absolute, as the TCode object will check this
in order to know whether the input file should be created.

//Create the Class that will handle re-writing the input file
TInputFileRecreate *in = new TInputFileRecreate(Form("%s/_output_multitype_mt_DataServer_. ←↩

dat",gSystem->pwd()));

// Add attribute in the correct (needed) order
in->addAttribute(tds->getAttribute("w1"));
in->addAttribute(tds->getAttribute("v1"));
in->addAttribute(tds->getAttribute("v2"));
in->addAttribute(tds->getAttribute("f1"));
in->addAttribute(tds->getAttribute("w2"));

The rest is very common and a screenshot of the result displayed in console is provided in the following subsections.

XIV.4.30.3 Console

Processing launchCodeReadMultiTypeDataServer.C...

* Row * thev1 * thev2 *

* 0 * 0.2819049 * 11.424490 *
* 1 * -0.692320 * 15.966536 *
* 2 * -12345678 * 12.629065 *
* 3 * -0.819208 * 11.086281 *
* 4 * -1.561012 * -12345678 *
* 5 * 0.8843648 * 10.340774 *
* 6 * -12345678 * 7.1500716 *
* 7 * 1.6335793 * 14.537357 *
* 8 * -12345678 * -12345678 *
* 9 * -0.239765 * 9.3210062 *

XIV.4.31 Macro "launchCodeReadMultiTypeColumn.C"

XIV.4.31.1 Objective

The objective of this macro is to test the case where vectors and strings are used as inputs, using the code described
in Section XIV.4.22.2, with a Column format, obtained by doing:

multitype -ReadmtCol

The input values will be read from a database which is produced with the multitype -mt code, as no sampling
is available yet to produce vectors and strings. The database file is readmultitype_sampling.dat which is
shown in Section XIV.4.29.1. For every pattern, an input file will be created with the Column format. This input file looks
like this:

nine
-0.512095 0.039669 -1.3834 1.37667 0.220672 0.633267 1.37027 -0.765636
14.1981 14.0855 10.7848 9.45476 9.17308 6.60804 10.0711 14.1761 10.318 12.5095 15.6614 ←↩

10.3452 9.41101 7.47887
32.2723
eight

page 531

Macro "launchCodeReadMultiTypeColumn.C" CHAPTER XIV. USE-CASES IN C++

The resulting output file, named _output_multitype_readmt_Column_.dat looks like:

-0.2397650482929
9.321006265935

XIV.4.31.2 Macro Uranie

{
//Create dataserver with a database of 10 runs of the "multitype -mt" code
TDataServer *tds = new TDataServer("foo","pouet");
tds->fileDataRead("readmultitype_sampling.dat");

//Explain the name of the input file and the format chosen
tds->getAttribute("w1")->setFileKey("_output_multitype_mt_Column_.dat","", "%e", ←↩

TAttributeFileKey::kNewColumn);
tds->getAttribute("v1")->setFileKey("_output_multitype_mt_Column_.dat","", "%e", ←↩

TAttributeFileKey::kNewColumn);
tds->getAttribute("v2")->setFileKey("_output_multitype_mt_Column_.dat","", "%e", ←↩

TAttributeFileKey::kNewColumn);
tds->getAttribute("f1")->setFileKey("_output_multitype_mt_Column_.dat","", "%e", ←↩

TAttributeFileKey::kNewColumn);
tds->getAttribute("w2")->setFileKey("_output_multitype_mt_Column_.dat","", "%e", ←↩

TAttributeFileKey::kNewColumn);

//Create the Class that will handle re-writting the input file
TString OutName="_output_multitype_mt_Column_.dat";
TInputFileRecreate *in = new TInputFileRecreate(gSystem->PrependPathName(gSystem->pwd(), ←↩

OutName));

// Add attribute in the correct (needed) order
in->addAttribute(tds->getAttribute("w1"));
in->addAttribute(tds->getAttribute("v1"));
in->addAttribute(tds->getAttribute("v2"));
in->addAttribute(tds->getAttribute("f1"));
in->addAttribute(tds->getAttribute("w2"));

// Create the output file interface and state that there will be 2 outputs
TOutputFileColumn *out = new TOutputFileColumn("_output_multitype_readmt_Column_.dat");
out->addAttribute(new TAttribute("thev1"));
out->addAttribute(new TAttribute("thev2"));

// Create the corresponding interface to code
TCode *tc1 = new TCode(tds, "multitype -ReadmtCol");
tc1->addInputFile(in);
tc1->addOutputFile(out);

// Create the launcher and run the code
TLauncher *tl1 = new TLauncher(tds, tc1);
tl1->run();

tds->Scan("thev1:thev2");

}

When looking at the code and comparing it to an usual launcher job, the organisation is completely transparent. A
dataserver is created by reading an input file readmultitype_sampling.dat in which 10 events are stored.
The main difference arises from the way the input file is created: it is done explicitly because the order in which the
attributes are stored in the database file are not the one needed by the code in the input file (this case is discussed in

page 532

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeReadMultiTypeRow.C"

Section IV.3.1.1). The name of the file given in the construction has to be absolute, as the TCode object will check this
in order to know whether the input file should be created.

//Create the Class that will handle re-writing the input file
TInputFileRecreate *in = new TInputFileRecreate(Form("%s/_output_multitype_mt_Column_.dat", ←↩

gSystem->pwd()));

// Add attribute in the correct (needed) order
in->addAttribute(tds->getAttribute("w1"));
in->addAttribute(tds->getAttribute("v1"));
in->addAttribute(tds->getAttribute("v2"));
in->addAttribute(tds->getAttribute("f1"));
in->addAttribute(tds->getAttribute("w2"));

The rest is very common and a screenshot of the result displayed in console is provided in the following subsection.

XIV.4.31.3 Console

Processing launchCodeReadMultiTypeColumn.C...

* Row * thev1 * thev2 *

* 0 * 0.2819049 * 11.424490 *
* 1 * -0.692320 * 15.966536 *
* 2 * -12345678 * 12.629065 *
* 3 * -0.819208 * 11.086281 *
* 4 * -1.561012 * -12345678 *
* 5 * 0.8843648 * 10.340774 *
* 6 * -12345678 * 7.1500716 *
* 7 * 1.6335793 * 14.537357 *
* 8 * -12345678 * -12345678 *
* 9 * -0.239765 * 9.3210062 *

XIV.4.32 Macro "launchCodeReadMultiTypeRow.C"

XIV.4.32.1 Objective

The objective of this macro is to test the case where vectors and strings are used as inputs, using the code described
in Section XIV.4.22.2, with a Row format, obtained by doing:

multitype -ReadmtRow

The input values will be read from a database which has been produced with the multitype -mt code, as no
sampling is available yet to produce vectors and strings. The database file is readmultitype_sampling.dat
which is shown in Section XIV.4.29.1. For every pattern, an input file will be created with the Row format. This input
file is very peculiar as the number of entries per attribute is not equal going from attribute to another (this format is not
recommended as discussed in the third item of Section IV.3.1.2.3). It will look like this:

nine; -0.512095; 14.1981; 32.2723; eight
; 0.039669; 14.0855; ; ;
; -1.3834; 10.7848; ; ;
; 1.37667; 9.45476; ; ;
; 0.220672; 9.17308; ; ;
; 0.633267; 6.60804; ; ;
; 1.37027; 10.0711; ; ;

page 533

Macro "launchCodeReadMultiTypeRow.C" CHAPTER XIV. USE-CASES IN C++

; -0.765636; 14.1761; ; ;
; ; 10.318; ; ;
; ; 12.5095; ; ;
; ; 15.6614; ; ;
; ; 10.3452; ; ;
; ; 9.41101; ; ;
; ; 7.47887; ; ;

The resulting output file, named _output_multitype_readmt_Row_.dat, looks like:

-0.2397650482929; 9.321006265935

XIV.4.32.2 Macro Uranie

{
//Create dataserver with a database of 10 runs of the "multitype -mt" code
TDataServer *tds = new TDataServer("foo","pouet");
tds->fileDataRead("readmultitype_sampling.dat");

//Explain the name of the input file and the format chosen
tds->getAttribute("w1")->setFileKey("_output_multitype_mt_Row_.dat","", "%e", ←↩

TAttributeFileKey::kNewRow);
tds->getAttribute("v1")->setFileKey("_output_multitype_mt_Row_.dat","", "%e", ←↩

TAttributeFileKey::kNewRow);
tds->getAttribute("v2")->setFileKey("_output_multitype_mt_Row_.dat","", "%e", ←↩

TAttributeFileKey::kNewRow);
tds->getAttribute("f1")->setFileKey("_output_multitype_mt_Row_.dat","", "%e", ←↩

TAttributeFileKey::kNewRow);
tds->getAttribute("w2")->setFileKey("_output_multitype_mt_Row_.dat","", "%e", ←↩

TAttributeFileKey::kNewRow);

//Create the Class that will handle re-writting the input file
TString OutName="_output_multitype_mt_Row_.dat";
TInputFileRecreate *in = new TInputFileRecreate(gSystem->PrependPathName(gSystem->pwd(), ←↩

OutName));

// Add attribute in the correct (needed) order
in->addAttribute(tds->getAttribute("w1"));
in->addAttribute(tds->getAttribute("v1"));
in->addAttribute(tds->getAttribute("v2"));
in->addAttribute(tds->getAttribute("f1"));
in->addAttribute(tds->getAttribute("w2"));
in->setFieldSeparatorCharacter("; "); // Change the separator

// Create the output file interface and state that there will be 2 outputs
TOutputFileRow *out = new TOutputFileRow("_output_multitype_readmt_Row_.dat");
out->addAttribute(new TAttribute("thev1"));
out->addAttribute(new TAttribute("thev2"));

// Create the corresponding interface to code
TCode *tc1 = new TCode(tds, "multitype -ReadmtRow");
tc1->addInputFile(in);
tc1->addOutputFile(out);

// Create the launcher and run the code
TLauncher *tl1 = new TLauncher(tds, tc1);
tl1->run();

tds->Scan("thev1:thev2");

page 534

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeReadMultiTypeRow.C"

}

When looking at the code and comparing it to an usual launcher job, the organisation is completely transparent. A
dataserver is created by reading an input file readmultitype_sampling.dat in which 10 events are stored.
The main difference arises from the way the input file is created: it is done explicitly because the order in which the
attributes are stored in the database file are not the one needed by the code in the input file (this case is discussed in
Section IV.3.1.1). The name of the file given in the construction has to be absolute, as the TCode object will check this
in order to know whether the input file should be created.

//Create the Class that will handle re-writing the input file
TInputFileRecreate *in = new TInputFileRecreate(Form("%s/_output_multitype_mt_Row_.dat", ←↩

gSystem->pwd()));

// Add attribute in the correct (needed) order
in->addAttribute(tds->getAttribute("w1"));
in->addAttribute(tds->getAttribute("v1"));
in->addAttribute(tds->getAttribute("v2"));
in->addAttribute(tds->getAttribute("f1"));
in->addAttribute(tds->getAttribute("w2"));
in->setFieldSeparatorCharacter("; "); // Change the separator

When requesting a "Row" type input, extra caution has to be taken: the usual separator between two fields are blank
and/or tabulation. With this formatting, an input can look like this:

1.234 4.321 5.653
5.321

With this kind of file, it is impossible to know which attributes own the element on the second line (in other words, if it
should have been, first, second or third column). The proposed solution is to change the separator between field, using
any specific sign, followed by a blank. This is done using ";" and it is shown as the last line in previous code. The rest
is very common and a screenshot of the result displayed in console is provided in the following subsection.

XIV.4.32.3 Console

Processing launchCodeReadMultiTypeRow.C...

* Row * thev1 * thev2 *

* 0 * 0.2819049 * 11.424490 *
* 1 * -0.692320 * 15.966536 *
* 2 * -12345678 * 12.629065 *
* 3 * -0.819208 * 11.086281 *
* 4 * -1.561012 * -12345678 *
* 5 * 0.8843648 * 10.340774 *
* 6 * -12345678 * 7.1500716 *
* 7 * 1.6335793 * 14.537357 *
* 8 * -12345678 * -12345678 *
* 9 * -0.239765 * 9.3210062 *

page 535

Macro "launchCodeReadMultiTypeXML.C" CHAPTER XIV. USE-CASES IN C++

XIV.4.33 Macro "launchCodeReadMultiTypeXML.C"

XIV.4.33.1 Objective

The objective of this macro is to test the case where vectors and strings are used as inputs, using the code described
in Section XIV.4.22.2, with a XML format, obtained by doing:

multitype -ReadmtXML

The input values will be read from a database which is produced with the multitype -mt code, as no sampling
is available yet to produce vectors and strings. The database file is readmultitype_sampling.dat which is
shown in Section XIV.4.29.1. For every pattern, an input file will be created with the XML format. This input file looks
like this:

<?xml version="1.0" encoding="iso-8859-1"?>
<multitypeMT>
<w1 value="nine"/>
<v1 n="8">
<values>
-0.512095 0.039669 -1.3834 1.37667 0.220672 0.633267 1.37027 -0.765636

</values>
</v1>
<v2 n="14">
<values>
14.1981 14.0855 10.7848 9.45476 9.17308 6.60804 10.0711 14.1761 10.318 12.5095 15.6614 ←↩

10.3452 9.41101 7.47887
</values>

</v2>
<f1 value="32.2723"/>
<w2 value="eight"/>

</multitypeMT>

The resulting output file is named _output_multitype_readmt_.xml and looks like:

<?xml version="1.0" encoding="iso-8859-1"?>
<multitypeREADMT>
<thev1 value="-0.2397650482929"/>
<thev2 value="9.321006265935"/>

</multitypeREADMT>

XIV.4.33.2 Macro Uranie

{
//Create dataserver with a database of 10 runs of the "multitype -mt" code
TDataServer *tds = new TDataServer("foo","pouet");
tds->fileDataRead("readmultitype_sampling.dat");

//Produce the input files
gSystem->Exec("multitype -mtXML");

//Explain the name of the input file and the format chosen
tds->getAttribute("w1")->setFileKey("_output_multitype_mt_.xml","w1/@value", "", ←↩

TAttributeFileKey::kXMLAttribute);
tds->getAttribute("v1")->setFileKey("_output_multitype_mt_.xml","v1/values", "", ←↩

TAttributeFileKey::kXMLField);
tds->getAttribute("v2")->setFileKey("_output_multitype_mt_.xml","v2/values", "", ←↩

TAttributeFileKey::kXMLField);

page 536

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeReadMultiTypeXML.C"

tds->getAttribute("f1")->setFileKey("_output_multitype_mt_.xml","f1/@value", "", ←↩
TAttributeFileKey::kXMLAttribute);

tds->getAttribute("w2")->setFileKey("_output_multitype_mt_.xml","w2/@value", "", ←↩
TAttributeFileKey::kXMLAttribute);

//Create the Class that will handle re-writting the input file
TString OutName="_output_multitype_mt_.xml";
TInputFileXML *in = new TInputFileXML(gSystem->PrependPathName(gSystem->pwd(),OutName));

// Add attribute in the correct (needed) order
in->addAttribute(tds->getAttribute("w1"));
in->addAttribute(tds->getAttribute("v1"));
in->addAttribute(tds->getAttribute("v2"));
in->addAttribute(tds->getAttribute("f1"));
in->addAttribute(tds->getAttribute("w2"));

// Create the output file interface and state that there will be 2 outputs
TOutputFileXML *out = new TOutputFileXML("_output_multitype_readmt_.xml");
out->addAttribute(new TAttribute("thev1"), "/flowrateREADMT/thev1/@value", ←↩

TAttributeFileKey::kXMLAttribute);
out->addAttribute(new TAttribute("thev2"), "/flowrateREADMT/thev2/@value", ←↩

TAttributeFileKey::kXMLAttribute);

// Create the corresponding interface to code
TCode *tc1 = new TCode(tds, "multitype -ReadmtXML");
tc1->addInputFile(in);
tc1->addOutputFile(out);

// Create the launcher and run the code
TLauncher *tl1 = new TLauncher(tds, tc1);
tl1->run();

tds->Scan("thev1:thev2");

}

When looking at the code and comparing it to an usual launcher job, the organisation is completely transparent. A
dataserver is created by reading an input file readmultitype_sampling.dat in which 10 events are stored.
The main difference arises from the way the input file is created: it is done explicitly because the order in which the
attributes are stored in the database file are not the one needed by the code in the input file (this case is discussed in
Section IV.3.1.1). The name of the file given in the construction has to be absolute, as the TCode object will check this
in order to know whether the input file should be created.

//Create the Class that will handle re-writing the input file
TInputFileXML *in = new TInputFileXML(Form("%s/_output_multitype_mt_.xml",gSystem->pwd()));

// Add attribute in the correct (needed) order
in->addAttribute(tds->getAttribute("w1"));
in->addAttribute(tds->getAttribute("v1"));
in->addAttribute(tds->getAttribute("v2"));
in->addAttribute(tds->getAttribute("f1"));
in->addAttribute(tds->getAttribute("w2"));

The class of input file is not a TInputFileRecreate as an example of input file is needed. The class used is so
the TInputFileXML and in order to be sure that this file exists, the code is called at first as following to produce the
_output_multitype_mt_.xml.

//Produce the input files
gSystem->Exec("multitype -mtXML");

page 537

Macro "launchCodeFilesWithBlank.C" CHAPTER XIV. USE-CASES IN C++

The rest is very common and a screenshot of the result displayed in console is provided in the following subsection.

XIV.4.33.3 Console

Processing launchCodeReadMultiTypeXML.C...

* Row * thev1 * thev2 *

* 0 * 1.2345678 * 1.2345678 *
* 1 * 1.2345678 * 1.2345678 *
* 2 * 1.2345678 * 1.2345678 *
* 3 * 1.2345678 * 1.2345678 *
* 4 * 1.2345678 * 1.2345678 *
* 5 * 1.2345678 * 1.2345678 *
* 6 * 1.2345678 * 1.2345678 *
* 7 * 1.2345678 * 1.2345678 *
* 8 * 1.2345678 * 1.2345678 *
* 9 * 1.2345678 * 1.2345678 *

XIV.4.34 Macro "launchCodeFilesWithBlank.C"

XIV.4.34.1 Objective

The objective of this macro is to test the case where input and output key files are dfined with blank space in the key
definition. This is a first attempt to overcome this situation and it will be using a newly-made code named withblank
that deal with pressure and density of water in a brewery and take its input from the following file withblank_
input.dat

water model.brewery pit pressure = 1E5 \\ Double
I do like Chocolate
residual brew density model.factor for glass = 1E-2 \\ Double aussi

The code itself is meaningless as it only multiply by two (for the pressure) and by three (for the density) and these
meaningless information are stored in the output file withblank_output.dat which also is the form of key file, in
which the keys contains several blank space, as shown below

Test doubling.water model.brewery pit pressure = 10.55397966411

Bla Bla Bla

Chocolat doubling.residual brew density model.factor for glass = 2.738635531741

XIV.4.34.2 Macro Uranie

{
// Create dataserver and add attributes
TDataServer *tds = new TDataServer("pouet","foo");
tds->addAttribute(new TUniformDistribution("pressure",0,10));
tds->addAttribute(new TLogUniformDistribution("density",0.01,100));

page 538

CHAPTER XIV. USE-CASES IN C++ Macro "launchCodeFilesWithBlank.C"

// Define the input file and the keys for
TString sFileName=TString("withblank_input.dat");
tds->getAttribute("pressure")->setFileKey(sFileName, "water model.brewery pit pressure ") ←↩

;
tds->getAttribute("density")->setFileKey(sFileName, "residual brew density model.factor ←↩

for glass ");

// Create the input file interface before it’s done by the TCode to precise information
TInputFileKey *in = new TInputFileKey(gSystem->PrependPathName(gSystem->pwd(),sFileName)) ←↩

;
// Set the separator to ’=’ so that the line could contains blank spaces (specific)
in->setFieldSeparatorCharacter("=");
in->setSeparatorCharacter(" ");
in->addAttribute(tds->getAttribute("pressure"));
in->addAttribute(tds->getAttribute("density"));

// Generate a doe
TBasicSampling *sampl = new TBasicSampling(tds,"srs",10);
sampl->generateSample();

// Define the output
TString sOutFileName="withblank_output.dat";
TOutputFileKey *fout = new TOutputFileKey(sOutFileName);
// Set the separator to ’=’ so that the line could contains blank spaces (specific)
fout->setFieldSeparatorCharacter("=");
fout->setSeparatorCharacter("\n");

// Define the attributes and their keys
TAttribute *outAtt = new TAttribute("outpressure");
outAtt->setFileKey(sOutFileName,"Test doubling.water model.brewery pit pressure ");
TAttribute *outAtt2 = new TAttribute("outdensity");
outAtt2->setFileKey(sOutFileName,"Chocolat doubling.residual brew density model.factor ←↩

for glass ");
fout->addAttribute(outAtt);
fout->addAttribute(outAtt2);

// Create a TCode object with the TDS (attribute and input files) and the command to ←↩
execute

TCode *mycode = new TCode(tds, "withblank");
// Add the output file
mycode->addInputFile(in);
mycode->addOutputFile(fout);

// Launcher of the code on the Design of experiments (DoE) in the TDS
TLauncher *tlch = new TLauncher(tds, mycode);
tlch->setSave(-1);
tlch->setClean();
tlch->run();

tds->Scan("pressure:outpressure:density:outdensity");

}

As for all launcher’s macro, it starts by defining the attributes and precise the key values with setFileKey method.
From there, the main difference arise from the few lines below: as for the case introduced Section XIV.4.27 one needs
to recreate the input file TInputFileKey as one needs to specify some properties

// Create the input file interface before it’s done by the TCode to precise information
TInputFileKey *in = new TInputFileKey(gSystem->PrependPathName(gSystem->pwd(),sFileName));
// Set the separator to ’=’ so that the line could contains blank spaces (specific)
in->setFieldSeparatorCharacter("=");

page 539

Macros Sensitivity CHAPTER XIV. USE-CASES IN C++

in->setSeparatorCharacter(" ");
in->addAttribute(tds->getAttribute("pressure"));
in->addAttribute(tds->getAttribute("density"));

Apart from the creation of the file, the two main functions to be called are setFieldSeparatorCharacter, used
to define the "=" character as the field delimiter while the second one setSeparatorCharacter cancel the usual
separator cleaning procedure (usually the code is removing few characters such as ";", "\n", "="). Given this option, the
file is breakdown, on a line-by-line basis, to find the field separator.

The following block is defining a sampler while the next one is the definition of the output files withblank_output.
dat. As previously the output file is created and the two main functions are called with the same consequences: thanks
to setFieldSeparatorCharacter and setSeparatorCharacter, used with the already discussed argu-
ment, the output keys are also usable with blank.

// Define the output
TString sOutFileName="withblank_output.dat";
TOutputFileKey *fout = new TOutputFileKey(sOutFileName);
// Set the separator to ’=’ so that the line could contains blank spaces (specific)
fout->setFieldSeparatorCharacter("=");
fout->setSeparatorCharacter("\n");

The rest of this macro is very usual, as one defines the code, the launcher and one runs it, one can check the content
through a scan, shown below.xs

XIV.4.34.3 Console

Processing launchCodeFilesWithBlank.C...

**
* Row * pressure * outpressu * density * outdensit *
**
* 0 * 3.3622174 * 6.7244349 * 19.122886 * 57.368659 *
* 1 * 5.4302620 * 10.860524 * 0.0823283 * 0.2469849 *
* 2 * 6.2876717 * 12.575343 * 0.2559847 * 0.7679543 *
* 3 * 3.3986722 * 6.7973444 * 0.0503713 * 0.1511141 *
* 4 * 1.1833060 * 2.3666120 * 0.0364635 * 0.1093906 *
* 5 * 9.3162251 * 18.632450 * 0.0134744 * 0.0404234 *
* 6 * 2.1579343 * 4.3158686 * 0.0431745 * 0.1295236 *
* 7 * 1.2310214 * 2.4620429 * 12.797791 * 38.393373 *
* 8 * 4.5137647 * 9.0275294 * 2.3940563 * 7.1821691 *
* 9 * 8.4025508 * 16.805101 * 65.518819 * 196.55645 *
**

XIV.5 Macros Sensitivity

XIV.5.1 Macro "sensitivityBrutForceMethodFlowrate.C"

XIV.5.1.1 Objective

The objective of this macro is to perform a sensitivity analysis with brute force method on a set of eight parameters
used in the flowrate model described in Section IV.1.2.1. Sensitivity indexes are computed dividing conditional variance
by the standard deviation of the output variable.

page 540

CHAPTER XIV. USE-CASES IN C++ Macro "sensitivityBrutForceMethodFlowrate.C"

Warning This macro is purely illustrative. It is not meant to be used for proper results with a real code /
function as it needs a large number of computation to only get the first order index. Its main appeal is to be
nicely illustrative: it shows plainly the definition of the conditional expectation and also its variance used to
defined the first order sobol indices.

XIV.5.1.2 Macro Uranie

void drawBarWithTuple(TTree *tt, TString sx, TString sy, TString stitle)
{

TLeaf *lx = tt->GetLeaf(sx);
TLeaf *ly = tt->GetLeaf(sy);

TH1F *hDiv = new TH1F("hDivdrawBarWithTuple",stitle,3,0,3);
hDiv->SetCanExtend(TH1::kXaxis); //SetBit(TH1::kCanRebin);
hDiv->SetStats(0);

if (hDiv) {
hDiv->SetBarWidth(0.45);
hDiv->SetBarOffset(0.1);
hDiv->SetMarkerColor(2);
hDiv->SetMarkerSize(2);
hDiv->SetFillColor(49);
hDiv->SetTitle(stitle);
for (Int_t i = 0; i < tt->GetEntries(); i++) {

tt->GetEntry(i);
TString title = *((string*)lx->GetValuePointer());
hDiv->Fill(title, ly->GetValue());

}
hDiv->LabelsDeflate();
hDiv->LabelsOption(">u");
hDiv->SetMinimum(0.0);
hDiv->SetMaximum(1.0);
gStyle->SetPaintTextFormat("5.2f");
hDiv->Draw("bar2, text45");

}
}

void sensitivityBrutForceMethodFlowrate(Int_t nCond = 50, Int_t nbins = 10)
{

// Create a TDataServer
TDataServer * tds = new TDataServer();

cout << endl << " **" << endl;
cout << " ** sensitivityBrutForceMethodFlowrate nbins[" << nbins << "] nCond[" << nCond ←↩

<< "]" << endl;
cout << " **" << endl;

// Add the eight attributes of the study with uniform law
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

page 541

Macro "sensitivityBrutForceMethodFlowrate.C" CHAPTER XIV. USE-CASES IN C++

Int_t nvar = tds->getNAttributes();
cout << " ** nX[" << nvar << "]" << endl;

Int_t nS = nbins*nvar*nCond;
cout << " ** nS[" << nS << "]" << endl;

// TSampling *sam = new TSampling(tds, "lhs", nS);
TQMC * sam = new TQMC(tds, "halton", nS);
sam->generateSample();

// Load the function
gROOT->LoadMacro("UserFunctions.C");

// Create a TLauncherFunction from a TDataServer and an analytical function
// Rename the outpout attribute "ymod"
TLauncherFunction * tlf = new TLauncherFunction(tds, "flowrateModel","","ymod");
// Evaluate the function on all the design of experiments
tlf->setDrawProgressBar(kFALSE);
tlf->run();

TCanvas *Canvas = new TCanvas("c1", "Graph for the Macro modeler",5,64,1270,667);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();
pad->Divide(2,2);
pad->cd(1);
tds->computeStatistic("ymod");
tds->draw("ymod");
Double_t dstdy = tds->getAttribute("ymod")->getStd();
Double_t svary = dstdy * dstdy;
cout << " ** ymod : std[" << dstdy << "] vary[" << svary << "]" << endl;

tds->getAttribute("ymod")->setOutput();

gStyle->SetOptStat(1);

// Tempory TTree for Histogram visualisation
Double_t valSobolCrt;
string sName;
TTree *tt = new TTree("sobolforcebrut","MonteCarlo brute force sobol sensitivity ");
tt->Branch("Var","string",&sName);
tt->Branch("Value",&valSobolCrt,"Value/D");
tt->SetMarkerColor(kRed);
tt->SetMarkerStyle(7);
tt->SetMarkerSize(1.75);

TCanvas *c = new TCanvas();
c->Divide(2);
c->cd(1);
for(Int_t ivar=0; ivar<nvar; ivar++) {
cout << " *****************************" << endl << " *** " << tds->getAttribute(ivar) ←↩

->GetName() << endl;

const char * svar = tds->getAttribute(ivar)->GetName();

if(ivar==0)
pad->cd(2);

else
c->cd(1);

tds->drawProfile(Form("ymod:%s", svar),"",Form("nclass=%d", nbins));
TProfile *hprofs = (TProfile*)gPad->GetPrimitive(Form("Profile ymod:%s (Bin = %d)", ←↩

svar, nbins+2));

page 542

CHAPTER XIV. USE-CASES IN C++ Macro "sensitivityBrutForceMethodFlowrate.C"

TNtupleD * ntd = new TNtupleD("dd", "sjsjs", "i:x:m");
ntd->SetMarkerColor(kBlue);
ntd->SetMarkerStyle(8);
// ntd->SetMarkerSize(1.25);
Int_t nnbins = hprofs->GetNbinsX();
for(Int_t i=1; i <= nnbins; i++)

ntd->Fill(i-1, hprofs->GetBinCenter(i), hprofs->GetBinContent(i));

tds->draw(Form("ymod:%s", svar));
ntd->Draw("m:x", "","same");

if(ivar==0)
pad->cd(3);

else
c->cd(2);

ntd->Draw("m");
TH1F *htemp = (TH1F*)gPad->GetPrimitive("htemp");

Double_t dvarcond = htemp->GetRMS();

// Tempory TTree for histogram
sName=string(svar);
valSobolCrt = dvarcond*dvarcond /svary;
tt->Fill();
cout << " *** S1[" << svar <<"] Cond. Var.[" << dvarcond*dvarcond << "] -- [" << ←↩

valSobolCrt <<"]" << endl;

c->Modified(); c->Update(); c->SaveAs(Form("SAFlowRateVersus%s.png", svar));

delete ntd;
}
pad->cd(4);
drawBarWithTuple(tt, "Var", "Value", "Sensitivity Indexes : ymod [Brute-Force Method]" ←↩

);

}

Each parameter is related to the TDataServer as a TAttribute and obeys an uniform law on specific interval:

TDataServer *tds = new TDataServer("tdsflowreate", "DataBase flowreate");
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

A design-of-experiments is built with a "Halton" method (nS = 4000):

TQMC * sam = new TQMC(tds, "halton", nS);
sam->generateSample();

The function flowrateModel is loaded from the macro UserFunctions.C (the file can be found in ${URANIESYS}/share/uranie/macros):

gROOT->LoadMacro("UserFunctions.C");

The flowrateModel model is applied on previous variables:

page 543

Macro "sensitivityBrutForceMethodFlowrate.C" CHAPTER XIV. USE-CASES IN C++

TLauncherFunction * tlf = new TLauncherFunction(tds, "flowrateModel","","ymod");
tlf->run();

Characteristic values for the output attribute are computed:

tds->computeStatistic("ymod");

Sensitivity indexes are computed in the for loop. Average value of output variable is computed on nbins+2=12 points
for each input variable:

c->cd(1);
...
Int_t nnbins = hprofs->GetNbinsX();
for(Int_t i=1; i <= nnbins; i++)
ntd->Fill(i-1, hprofs->GetBinCenter(i), hprofs->GetBinContent(i));

The RMS value is obtained from the graphic of ymod versus the considered output variable and the sensitivity index is
computed dividing the conditional variance value by the standard deviation of the output variable ymod.

c->cd(2);
ntd->Draw("m");
TH1F *htemp = (TH1F*)gPad->GetPrimitive("htemp");
Double_t dvarcond = htemp->GetRMS();
valSobolCrt = dvarcond*dvarcond /svary;

XIV.5.1.3 Graph

Figure XIV.44: Graph of the macro "sensitivityBrutForceMethodFlowrate.C"

XIV.5.1.4 Console

Processing sensitivityBrutForceMethodFlowrate.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

page 544

CHAPTER XIV. USE-CASES IN C++ Macro "sensitivityFiniteDifferencesFunctionFlowrate.C"

**
** sensitivityBrutForceMethodFlowrate nbins[10] nCond[50]

**
** nX[8]

** nS[4000]

** ymod : std[45.6059] vary[2079.9]

*** rw

*** S1[rw] Cond. Var.[1763.28] -- [0.847774]
Info in <TCanvas::Print>: png file SAFlowRateVersusrw.png has been created

*** r

*** S1[r] Cond. Var.[0.0624988] -- [3.00489e-05]
Info in <TCanvas::Print>: png file SAFlowRateVersusr.png has been created

*** tu

*** S1[tu] Cond. Var.[0.0886501] -- [4.26223e-05]
Info in <TCanvas::Print>: png file SAFlowRateVersustu.png has been created

*** tl

*** S1[tl] Cond. Var.[0.0909604] -- [4.37331e-05]
Info in <TCanvas::Print>: png file SAFlowRateVersustl.png has been created

*** hu

*** S1[hu] Cond. Var.[88.368] -- [0.0424867]
Info in <TCanvas::Print>: png file SAFlowRateVersushu.png has been created

*** hl

*** S1[hl] Cond. Var.[88.2039] -- [0.0424078]
Info in <TCanvas::Print>: png file SAFlowRateVersushl.png has been created

*** l

*** S1[l] Cond. Var.[84.9543] -- [0.0408454]
Info in <TCanvas::Print>: png file SAFlowRateVersusl.png has been created

*** kw

*** S1[kw] Cond. Var.[20.8848] -- [0.0100413]
Info in <TCanvas::Print>: png file SAFlowRateVersuskw.png has been created

XIV.5.2 Macro "sensitivityFiniteDifferencesFunctionFlowrate.C"

XIV.5.2.1 Objective

The objective of this macro is to compute the finite differences indexes on a function.

XIV.5.2.2 Macro Uranie

{
// loading the flowrateModel function
gROOT->LoadMacro("UserFunctions.C");

// Define the DataServer and add the attributes (stochastic variables here)
TDataServer *tds = new TDataServer("tdsflowrate", "DataBase flowrate");
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));

page 545

Macro "sensitivityFiniteDifferencesFunctionFlowrate.C" CHAPTER XIV. USE-CASES IN C++

tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

tds->getAttribute("rw")->setDefaultValue(0.075);
tds->getAttribute("r")->setDefaultValue(25000.0);
tds->getAttribute("tu")->setDefaultValue(90000.0);
tds->getAttribute("tl")->setDefaultValue(90.0);
tds->getAttribute("hu")->setDefaultValue(1050.0);
tds->getAttribute("hl")->setDefaultValue(760.0);
tds->getAttribute("l")->setDefaultValue(1400.0);
tds->getAttribute("kw")->setDefaultValue(10500.0);

// Create a TFiniteDifferences object
TFiniteDifferences * tfindef = new TFiniteDifferences(tds,"flowrateModel", "rw:r:tu:tl:hu: ←↩

hl:l:kw", "y", "steps=1%");
tfindef->setDrawProgressBar(kFALSE);
tfindef->computeIndexes();
TMatrixD matRes = tfindef->getSensitivityMatrix();
matRes.Print();

}

The function flowrateModel is loaded from the macro UserFunctions.C (the file can be found in ${URANIESYS}/share/uranie/macros)

gROOT->LoadMacro("UserFunctions.C");

Each parameter is related to the TDataServer as a TAttribute and obeys an uniform law on specific interval:

TDataServer *tds = new TDataServer("tdsflowreate", "DataBase flowreate");
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

Each parameter gets a default value:

tds->getAttribute("rw")->setDefaultValue(0.075);
tds->getAttribute("r")->setDefaultValue(25000.0);
tds->getAttribute("tu")->setDefaultValue(90000.0);
tds->getAttribute("tl")->setDefaultValue(90.0);
tds->getAttribute("hu")->setDefaultValue(1050.0);
tds->getAttribute("hl")->setDefaultValue(760.0);
tds->getAttribute("l")->setDefaultValue(1400.0);
tds->getAttribute("kw")->setDefaultValue(10500.0);

To instantiate the TFiniteDifferences object, one uses the TDataServer, the name of the function, the name
of the output of the function, the names of the input variables separated by ":" and the option to specify the sampling:

TFiniteDifferences * tfindef = new TFiniteDifferences(tds, "flowrateModel", "rw:r:tu:tl:hu: ←↩
hl:l:kw","y", "steps=1%");

Computation of sensitivity indexes:

page 546

CHAPTER XIV. USE-CASES IN C++ Macro "sensitivityDataBaseFlowrate.C"

tfindef->computeIndexes();

XIV.5.2.3 Console

Processing sensitivityFiniteDifferencesFunctionFlowrate.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

1x8 matrix is as follows

| 0 | 1 | 2 | 3 | 4 |
--

0 | 1019 -3.586e-07 1.265e-09 0.001265 0.1321

| 5 | 6 | 7 |
--

0 | -0.1321 -0.02729 0.003639

XIV.5.3 Macro "sensitivityDataBaseFlowrate.C"

XIV.5.3.1 Objective

The objective of this macro is to perform a SRC regression on data stored in a TDataServer. Data are loaded in
the TDataServer from an ASCII data file flowrateUniformDesign.dat:

#NAME: flowrateborehole
#TITLE: Uniform design of flow rate borehole problem proposed by Ho and Xu(2000)
#COLUMN_NAMES: rw| r| tu| tl| hu| hl| l| kw | ystar
#COLUMN_TITLES: r_{#omega}| r | T_{u} | T_{l} | H_{u} | H_{l} | L | K_{#omega} | y^{*}
#COLUMN_UNITS: m | m | m^{2}/yr | m^{2}/yr | m | m | m | m/yr | m^{3}/yr

0.0500 33366.67 63070.0 116.00 1110.00 768.57 1200.0 11732.14 26.18
0.0500 100.00 80580.0 80.73 1092.86 802.86 1600.0 10167.86 14.46
0.0567 100.00 98090.0 80.73 1058.57 717.14 1680.0 11106.43 22.75
0.0567 33366.67 98090.0 98.37 1110.00 734.29 1280.0 10480.71 30.98
0.0633 100.00 115600.0 80.73 1075.71 751.43 1600.0 11106.43 28.33
0.0633 16733.33 80580.0 80.73 1058.57 785.71 1680.0 12045.00 24.60
0.0700 33366.67 63070.0 98.37 1092.86 768.57 1200.0 11732.14 48.65
0.0700 16733.33 115600.0 116.00 990.00 700.00 1360.0 10793.57 35.36
0.0767 100.0 115600.0 80.73 1075.71 751.43 1520.0 10793.57 42.44
0.0767 16733.33 80580.0 80.73 1075.71 802.86 1120.0 9855.00 44.16
0.0833 50000.00 98090.0 63.10 1041.43 717.14 1600.0 10793.57 47.49
0.0833 50000.00 115600.0 63.10 1007.14 768.57 1440.0 11419.29 41.04
0.0900 16733.33 63070.0 116.00 1075.71 751.43 1120.0 11419.29 83.77
0.0900 33366.67 115600.0 116.00 1007.14 717.14 1360.0 11106.43 60.05
0.0967 50000.00 80580.0 63.10 1024.29 820.00 1360.0 9855.00 43.15
0.0967 16733.33 80580.0 98.37 1058.57 700.00 1120.0 10480.71 97.98
0.1033 50000.00 80580.0 63.10 1024.29 700.00 1520.0 10480.71 74.44
0.1033 16733.33 80580.0 98.37 1058.57 820.00 1120.0 10167.86 72.23
0.1100 50000.00 98090.0 63.10 1024.29 717.14 1520.0 10793.57 82.18

page 547

Macro "sensitivityDataBaseFlowrate.C" CHAPTER XIV. USE-CASES IN C++

0.1100 100.00 63070.0 98.37 1041.43 802.86 1600.0 12045.00 68.06
0.1167 33366.67 63070.0 116.00 990.00 785.71 1280.0 12045.00 81.63
0.1167 100.00 98090.0 98.37 1092.86 802.86 1680.0 9855.00 72.5
0.1233 16733.33 115600.0 80.73 1092.86 734.29 1200.0 11419.29 161.35
0.1233 16733.33 63070.0 63.10 1041.43 785.71 1680.0 12045.00 86.73
0.1300 33366.67 80580.0 116.00 1110.00 768.57 1280.0 11732.14 164.78
0.1300 100.00 98090.0 98.37 1110.00 820.00 1280.0 10167.86 121.76
0.1367 50000.00 98090.0 63.10 1007.14 820.00 1440.0 10167.86 76.51
0.1367 33366.67 98090.0 116.00 1024.29 700.00 1200.0 10480.71 164.75
0.1433 50000.00 63070.0 116.00 990.00 785.71 1440.0 9855.00 89.54
0.1433 50000.00 115600.0 63.10 1007.14 734.29 1440.0 11732.14 141.09
0.1500 33366.67 63070.0 98.37 990.00 751.43 1360.0 11419.29 139.94
0.1500 100.00 115600.0 80.73 1041.43 734.29 1520.0 11106.43 157.59

XIV.5.3.2 Macro Uranie

{
// Create a TDataServer
TDataServer * tds = new TDataServer();
// Load a database in an ASCII file
tds->fileDataRead("flowrateUniformDesign.dat");

// Graph
TCanvas *Canvas = new TCanvas("c2", "Graph for the Macro",5,64,1270,667);
// Visualisation
tds->Draw("ystar:rw");

// Sensitivity analysis
TRegression *treg = new TRegression(tds, "rw:r:tu:tl:hu:hl:l:kw", "ystar", "src");
treg->computeIndexes();

treg->drawIndexes("Flowrate", "", "hist,first");
//treg->getResultTuple()->Scan();

// Graph
TCanvas *c = (TCanvas *)(gROOT->FindObject("__sensitivitycan__0"));
TCanvas *can = new TCanvas("c1", "Graph for the Macro sensitivityDataBaseFlowrate" ←↩

,5,64,1270,667);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();
pad->Divide(2);
pad->cd(1);
Canvas->DrawClonePad();
pad->cd(2);
c->DrawClonePad();

}

The TDataServer is filled with the data file flowrateUniformDesign.dat through the fileDataRead
method:

tds->fileDataRead("flowrateUniformDesign.dat");

The regression is performed on all the variables with a SRC method and sensitivity indexes are computed:

TRegression *treg = new TRegression(tds, "rw:r:tu:tl:hu:hl:l:kw", "ystar", "src");
treg->computeIndexes();

page 548

CHAPTER XIV. USE-CASES IN C++ Macro "sensitivityFASTFunctionFlowrate.C"

XIV.5.3.3 Graph

Figure XIV.45: Graph of the macro "sensitivityDataBaseFlowrate.C"

XIV.5.4 Macro "sensitivityFASTFunctionFlowrate.C"

XIV.5.4.1 Objective

The objective of this macro is to perform a Fast sensitivity analysis on a set of eight parameters used in the flowrateModel
model described in Section IV.1.2.1.

XIV.5.4.2 Macro Uranie

void sensitivityFASTFunctionFlowrate(){

gROOT->LoadMacro("UserFunctions.C");

// Define the DataServer
TDataServer *tds = new TDataServer("tdsflowreate", "DataBase flowreate");
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

// \param Size of a sampling.
Int_t nS = 4000;
// Graph
TFast * tfast = new TFast(tds, "flowrateModel", nS);
tfast->setDrawProgressBar(kFALSE);
tfast->computeIndexes("graph");

tfast->getResultTuple()->Scan("Out:Inp:Order:Method:Value","Algo==\"--first--\"");

}

page 549

Macro "sensitivityFASTFunctionFlowrate.C" CHAPTER XIV. USE-CASES IN C++

The function flowrateModel is loaded from the macro UserFunctions.C (the file can be found in ${URANIESYS}/share/uranie/macros)

gROOT->LoadMacro("UserFunctions.C");

Each parameter is related to the TDataServer as a TAttribute and obeys an uniform law on specific interval:

TDataServer *tds = new TDataServer("tdsflowreate", "DataBase flowreate");
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

To instantiate the TFast object, one uses the TDataServer, the name of the function and the number of samplings
needed to perform sensitivity analysis (here nS=500):

TFast * tfast = new TFast(tds, "flowrateModel", nS);

Computation of sensitivity indexes:

tfast->computeIndexes();

XIV.5.4.3 Graph

Figure XIV.46: Graph of the macro "sensitivityFASTFunctionFlowrate.C"

XIV.5.4.4 Console

page 550

CHAPTER XIV. USE-CASES IN C++ Macro "sensitivityRBDFunctionFlowrate.C"

Processing sensitivityFASTFunctionFlowrate.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

<URANIE::WARNING>
<URANIE::WARNING> *** URANIE WARNING ***
<URANIE::WARNING> *** File[${SOURCEDIR}/dataSERVER/souRCE/TDataServer.cxx] Line[8099]
<URANIE::WARNING> TDataServer::getTuple Error : There is no tree!
<URANIE::WARNING> *** END of URANIE WARNING ***
<URANIE::WARNING>
<URANIE::WARNING>
<URANIE::WARNING> *** URANIE WARNING ***
<URANIE::WARNING> *** File[${SOURCEDIR}/dataSERVER/souRCE/TDataServer.cxx] Line[8099]
<URANIE::WARNING> TDataServer::getTuple Error : There is no tree!
<URANIE::WARNING> *** END of URANIE WARNING ***
<URANIE::WARNING>
<URANIE::INFO>
<URANIE::INFO> *** URANIE INFORMATION ***
<URANIE::INFO> *** File[${SOURCEDIR}/meTIER/sampler/souRCE/TSpaceFilling.cxx] Line[167]
<URANIE::INFO> TSamplerStochastic::init: the TDS [tdsflowreate] contains data: we need to ←↩

empty it !
<URANIE::INFO> *** END of URANIE INFORMATION ***
<URANIE::INFO>

**
* Row * Out * Inp * Order * Method * Value *
**
* 0 * flowrateM * rw * First * FAST * 0.8278187 *
* 2 * flowrateM * r * First * FAST * 8.924e-07 *
* 4 * flowrateM * tu * First * FAST * 2.308e-06 *
* 6 * flowrateM * tl * First * FAST * 3.204e-05 *
* 8 * flowrateM * hu * First * FAST * 0.0414390 *
* 10 * flowrateM * hl * First * FAST * 0.0414046 *
* 12 * flowrateM * l * First * FAST * 0.0392873 *
* 14 * flowrateM * kw * First * FAST * 0.0094983 *
**
==> 8 selected entries

XIV.5.5 Macro "sensitivityRBDFunctionFlowrate.C"

XIV.5.5.1 Objective

The objective of this macro is to perform a RBD sensitivity analysis on a set of eight parameters used in the flowrateModel
model described in Section IV.1.2.1.

XIV.5.5.2 Macro Uranie

void sensitivityRBDFunctionFlowrate(){

gROOT->LoadMacro("UserFunctions.C");

// Define the DataServer
TDataServer *tds = new TDataServer("tdsflowrate", "DataBase flowrate");
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));

page 551

Macro "sensitivityRBDFunctionFlowrate.C" CHAPTER XIV. USE-CASES IN C++

tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

// \param Size of a sampling.
Int_t nS = 4000;
// Graph
TRBD * trbd = new TRBD(tds, "flowrateModel", nS);
trbd->setDrawProgressBar(kFALSE);
trbd->computeIndexes("graph");

trbd->getResultTuple()->Scan("Out:Inp:Order:Method:Value","Algo==\"--first--\"");

}

The function flowrateModel is loaded from the macro UserFunctions.C (the file can be found in ${URANIESYS}/share/uranie/macros)

gROOT->LoadMacro("UserFunctions.C");

Each parameter is related to the TDataServer as a TAttribute and obeys an uniform law on specific interval

TDataServer *tds = new TDataServer("tdsflowreate", "DataBase flowreate");
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

To instantiate the TRBD object, one uses the TDataServer, the name of the function and the number of samplings
needed to perform sensitivity analysis (here nS=4000):

TRBD * trbd = new TRBD(tds, "flowrateModel", nS);

Computation of sensitivity indexes:

trbd->computeIndexes();

page 552

CHAPTER XIV. USE-CASES IN C++ Macro "sensitivityRBDFunctionFlowrate.C"

XIV.5.5.3 Graph

Figure XIV.47: Graph of the macro "sensitivityRBDFunctionFlowrate.C"

XIV.5.5.4 Console

Processing sensitivityRBDFunctionFlowrate.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

<URANIE::WARNING>
<URANIE::WARNING> *** URANIE WARNING ***
<URANIE::WARNING> *** File[${SOURCEDIR}/dataSERVER/souRCE/TDataServer.cxx] Line[8099]
<URANIE::WARNING> TDataServer::getTuple Error : There is no tree!
<URANIE::WARNING> *** END of URANIE WARNING ***
<URANIE::WARNING>
<URANIE::WARNING>
<URANIE::WARNING> *** URANIE WARNING ***
<URANIE::WARNING> *** File[${SOURCEDIR}/dataSERVER/souRCE/TDataServer.cxx] Line[8099]
<URANIE::WARNING> TDataServer::getTuple Error : There is no tree!
<URANIE::WARNING> *** END of URANIE WARNING ***
<URANIE::WARNING>
<URANIE::INFO>
<URANIE::INFO> *** URANIE INFORMATION ***
<URANIE::INFO> *** File[${SOURCEDIR}/meTIER/sampler/souRCE/TSpaceFilling.cxx] Line[167]
<URANIE::INFO> TSamplerStochastic::init: the TDS [tdsflowrate] contains data: we need to ←↩

empty it !
<URANIE::INFO> *** END of URANIE INFORMATION ***
<URANIE::INFO>

**
* Row * Out * Inp * Order * Method * Value *
**

page 553

Macro "sensitivityMorrisFunctionFlowrate.C" CHAPTER XIV. USE-CASES IN C++

* 0 * flowrateM * rw * First * RBD * 0.7558010 *
* 2 * flowrateM * r * First * RBD * 0.0026080 *
* 4 * flowrateM * tu * First * RBD * 0.0035324 *
* 6 * flowrateM * tl * First * RBD * 0.0032848 *
* 8 * flowrateM * hu * First * RBD * 0.0408758 *
* 10 * flowrateM * hl * First * RBD * 0.0469345 *
* 12 * flowrateM * l * First * RBD * 0.0347870 *
* 14 * flowrateM * kw * First * RBD * 0.0165843 *
**
==> 8 selected entries

XIV.5.6 Macro "sensitivityMorrisFunctionFlowrate.C"

XIV.5.6.1 Objective

The objective of this macro is to perform a Morris sensitivity analysis on a set of eight parameters used in the
flowrateModel model described in Section IV.1.2.1.

XIV.5.6.2 Macro Uranie

void sensitivityMorrisFunctionFlowrate(Int_t nk = 5)
{

gROOT->LoadMacro("UserFunctions.C");

// Define the DataServer
TDataServer *tds = new TDataServer("tdsflowreate", "DataBase flowreate");
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

Int_t nreplique = 3;
Int_t nlevel = 10;
TMorris * scmo = new TMorris(tds, "flowrateModel", nreplique, nlevel);
scmo->setDrawProgressBar(kFALSE);
scmo->generateSample();

tds->exportData("_morris_sampling_.dat");
scmo->computeIndexes();

tds->exportData("_morris_launching_.dat");

TTree *ntresu = scmo->getMorrisResults();
ntresu->Scan("*");

// Graph
TCanvas *cc = new TCanvas("c1", "Graph for the Macro sensitivityMorrisFunctionFlowrate" ←↩

,5,64,1270,667);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();
pad->Divide(2);
pad->cd(1);
scmo->drawSample("", -1,"nonewcanv");

page 554

CHAPTER XIV. USE-CASES IN C++ Macro "sensitivityMorrisFunctionFlowrate.C"

pad->cd(2);
scmo->drawIndexes("mustar,nonewcanv");

}

The function flowrateModel is loaded from the macro UserFunctions.C (the file can be found in ${URANIESYS}/share/uranie/macros)

gROOT->LoadMacro("UserFunctions.C");

Each parameter is related to the TDataServer as a TAttribute and obeys an uniform law on specific interval:

TDataServer *tds = new TDataServer("tdsflowreate", "DataBase flowreate");
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

To instantiate the TMorris , one uses the TDataServer, the name of the function, the number of replicas (here
nreplique=3), the level parameter (here nlevel=10)

TMorris * scmo = new TMorris(tds, "flowrateModel", nreplique, nlevel);

Creation of the sampling:

scmo->generateSample();

Data are exported in an ASCII file:

tds->exportData("_morris_sampling_.dat");

Computation of sensitivity indexes:

scmo->computeIndexes();

XIV.5.6.3 Graph

Figure XIV.48: Graph of the macro "sensitivityMorrisFunctionFlowrate.C"

page 555

Macro "sensitivityMorrisFunctionFlowrateRunner.C" CHAPTER XIV. USE-CASES IN C++

XIV.5.6.4 Console

Processing sensitivityMorrisFunctionFlowrate.C...

**
* Row * Input * Output * mu.mu * mustar.mu * sigma.sig *
**
* 0 * rw * flowrateM * 127.47900 * 127.47900 * 34.521839 *
* 1 * r * flowrateM * -0.069601 * 0.0696013 * 0.0793689 *
* 2 * tu * flowrateM * 0.0004201 * 0.0004201 * 0.0004641 *
* 3 * tl * flowrateM * 0.4659763 * 0.4659763 * 0.3301256 *
* 4 * hu * flowrateM * 21.192361 * 21.192361 * 8.8498989 *
* 5 * hl * flowrateM * -32.74887 * 32.748874 * 30.146134 *
* 6 * l * flowrateM * -23.89328 * 23.893280 * 8.2781934 *
* 7 * kw * flowrateM * 7.5766167 * 7.5766167 * 2.7457665 *
**

XIV.5.7 Macro "sensitivityMorrisFunctionFlowrateRunner.C"

XIV.5.7.1 Objective

The objective of this macro is to perform a Morris sensitivity analysis on a set of eight parameters used in the
flowrateModel model described in Section IV.1.2.1, but this time using the Relauncher architecture.

XIV.5.7.2 Macro Uranie

void sensitivityMorrisFunctionFlowrateRunner(Int_t nk = 5)
{

gROOT->LoadMacro("UserFunctions.C");

// Define the attributes
TUniformDistribution rw("rw", 0.05, 0.15);
TUniformDistribution r("r", 100.0, 50000.0);
TUniformDistribution tu("tu", 63070.0, 115600.0);
TUniformDistribution tl("tl", 63.1, 116.0);
TUniformDistribution hu("hu", 990.0, 1110.0);
TUniformDistribution hl("hl", 700.0, 820.0);
TUniformDistribution l("l", 1120.0, 1680.0);
TUniformDistribution kw("kw", 9855.0, 12045.0);

// Create the evaluator
TCIntEval code("flowrateModel");
// Create output attribute
TAttribute yout("flowrateModel");
// Provide input/output attributes to the assessor
code.setInputs(8, &rw, &r, &tu, &tl, &hu, &hl, &l, &kw);
code.setOutputs(1, &yout);

TSequentialRun run(&code); // To be replaced to distribute the computation
run.startSlave();
if(run.onMaster())
{
// Create the dataserver
TDataServer *tds = new TDataServer("sobol", "foo bar pouet chocolat");
tds->addAttribute(&rw);
tds->addAttribute(&r);
tds->addAttribute(&tu);

page 556

CHAPTER XIV. USE-CASES IN C++ Macro "sensitivityMorrisFunctionFlowrateRunner.C"

tds->addAttribute(&tl);
tds->addAttribute(&hu);
tds->addAttribute(&hl);
tds->addAttribute(&l);
tds->addAttribute(&kw);
Int_t nreplique = 3;
Int_t nlevel = 10;
// Create the Morris object
TMorris * scmo = new TMorris(tds, &run, nreplique, nlevel);
scmo->setDrawProgressBar(kFALSE);
scmo->generateSample();

tds->exportData("_morris_sampling_.dat");
scmo->computeIndexes();

tds->exportData("_morris_launching_.dat");

TTree *ntresu = scmo->getMorrisResults();
ntresu->Scan("*");

// Graph
TCanvas *cc = new TCanvas("c1", "Graph for the Macro ←↩

sensitivityMorrisFunctionFlowrateRunner",5,64,1270,667);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();
pad->Divide(2);
pad->cd(1);
scmo->drawSample("", -1,"nonewcanv");
pad->cd(2);
scmo->drawIndexes("mustar,nonewcanv");

}
}

The function flowrateModel is loaded from the macro UserFunctions.C (the file can be found in ${URANIESYS}/share/uranie/macros)

gROOT->LoadMacro("UserFunctions.C");

Each parameter is related to the TDataServer as a TAttribute and obeys an uniform law on specific interval:

// Define the attributes
TUniformDistribution rw("rw", 0.05, 0.15);
TUniformDistribution r("r", 100.0, 50000.0);
TUniformDistribution tu("tu", 63070.0, 115600.0);
TUniformDistribution tl("tl", 63.1, 116.0);
TUniformDistribution hu("hu", 990.0, 1110.0);
TUniformDistribution hl("hl", 700.0, 820.0);
TUniformDistribution l("l", 1120.0, 1680.0);
TUniformDistribution kw("kw", 9855.0, 12045.0);

The interface to the function is then defined, using the Relauncher interface, through a TCIntEval object and a
sequential runner:

// Create the evaluator
TCIntEval code("flowrateModel");
// Create output attribute
TAttribute yout("flowrateModel");
// Provide input/output attributes to the assessor
code.setInputs(8, &rw, &r, &tu, &tl, &hu, &hl, &l, &kw);
code.setOutputs(1, &yout);

TSequentialRun run(&code); // To be replaced to distribute the computation
run.startSlave();

page 557

Macro "sensitivityMorrisFunctionFlowrateRunner.C" CHAPTER XIV. USE-CASES IN C++

The dataserver object is defined only on the master to avoid useless replication if one wants to run the estimation of the
function in parallel (by changing the TSequentialRun by either a TThreadedRun or a TMpiRun). To instantiate
the TMorris object, one uses the TDataServer, a pointer to the chosen runner, the number of replicas (here
nreplique=3), the level parameter (here nlevel=10)

TMorris * scmo = new TMorris(tds, &run, nreplique, nlevel);

Creation of the sampling:

scmo->generateSample();

Data are exported in an ASCII file:

tds->exportData("_morris_sampling_.dat");

Computation of sensitivity indexes:

scmo->computeIndexes();

The rest of the code is providing command to get a final plot.

XIV.5.7.3 Graph

Figure XIV.49: Graph of the macro "sensitivityMorrisFunctionFlowrateRunner.C"

XIV.5.7.4 Console

Processing sensitivityMorrisFunctionFlowrateRunner.C...

**
* Row * Input * Output * mu.mu * mustar.mu * sigma.sig *
**
* 0 * rw * flowrateM * 127.47900 * 127.47900 * 34.521839 *
* 1 * r * flowrateM * -0.069601 * 0.0696013 * 0.0793689 *
* 2 * tu * flowrateM * 0.0004201 * 0.0004201 * 0.0004641 *
* 3 * tl * flowrateM * 0.4659763 * 0.4659763 * 0.3301256 *
* 4 * hu * flowrateM * 21.192361 * 21.192361 * 8.8498989 *
* 5 * hl * flowrateM * -32.74887 * 32.748874 * 30.146134 *
* 6 * l * flowrateM * -23.89328 * 23.893280 * 8.2781934 *
* 7 * kw * flowrateM * 7.5766167 * 7.5766167 * 2.7457665 *
**

page 558

CHAPTER XIV. USE-CASES IN C++ Macro "sensitivityRegressionFunctionFlowrate.C"

XIV.5.8 Macro "sensitivityRegressionFunctionFlowrate.C"

XIV.5.8.1 Objective

The objective of this macro is to perform a regression with "SRC" method on a database generated with a function us-
ing sampling of parameters obeying uniform laws with 4000 patterns. flowrateModel is a function defined in Sec-
tion IV.1.2.1 and "loaded" through the macro UserFunctions.C (the file can be found in ${URANIESYS}/share/uranie/macros).
Function flowrateModel uses the eight variables defined in Section IV.1.2.1 and set in the main macro.

XIV.5.8.2 Macro Uranie

void sensitivityRegressionFunctionFlowrate(){

gROOT->LoadMacro("UserFunctions.C");

// Define the DataServer
TDataServer *tds = new TDataServer("tdsflowreate", "DataBase flowreate");
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

// \param Size of a sampling.
Int_t nS = 4000;

TSampling *sampling = new TSampling(tds, "lhs", nS);
sampling->generateSample();

TLauncherFunction * tlf = new TLauncherFunction(tds, "flowrateModel");
tlf->setDrawProgressBar(kFALSE);
tlf->run();

TRegression * treg = new TRegression(tds, "rw:r:tu:tl:hu:hl:l:kw","flowrateModel", "SRC") ←↩
;

treg->computeIndexes();
treg->getResultTuple()->SetScanField(60);

treg->getResultTuple()->Scan("Out:Inp:Method:Algo:Value:CILower:CIUpper","Order==\"First ←↩
\"");

TCanvas *can = new TCanvas("c1", "Graph for the Macro ←↩
sensitivityRegressionFunctionFlowrate",5,64,1270,667);

treg->drawIndexes("Flowrate", "", "hist,first,nonewcanv");

}

Each attribute is related to a TAttribute obeying uniform laws on specific intervals:

tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));

page 559

Macro "sensitivityRegressionFunctionFlowrate.C" CHAPTER XIV. USE-CASES IN C++

tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

The sampling is generated on 4000 patterns with a LHS method:

TSampling *sampling = new TSampling(tds, "lhs", 4000);
sampling->generateSample();

Function flowrateModel is set to perform calculation on the sampling:

TLauncherFunction * tlf = new TLauncherFunction(tds, "flowrateModel");
tlf->run();

The regression is performed over all variables:

TRegression * treg = new TRegression(tds, "rw:r:tu:tl:hu:hl:l:kw","flowrateModel", "SRRC");
treg->computeIndexes();

Sensitivity indexes are then displayed through an histogram and a pie graph:

TCanvas *cc = new TCanvas("canhist", "histgramme");
treg->drawIndexes("Flowrate", "", "nonewcanv,hist,first");
TCanvas *ccc = new TCanvas("canpie", "TPie");
treg->drawIndexes("Flowrate", "", "nonewcanv,pie,first");

XIV.5.8.3 Graph

Figure XIV.50: Graph of the macro "sensitivityRegressionFunctionFlowrate.C"

XIV.5.8.4 Console

Processing sensitivityRegressionFunctionFlowrate.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr

page 560

CHAPTER XIV. USE-CASES IN C++ Macro "sensitivitySobolFunctionFlowrate.C"

Date: Tue Jan 09, 2024

* Row * Out * Inp * Metho * Algo * Value * CILower * CIUpper *

* 0 * flowra * rw * SRC^2 * --first-- * 0.820265 * -1 * -1 *
* 2 * flowra * rw * SRC^2 * --rho^2-- * 0.81668 * 0.805846 * 0.826888 *
* 4 * flowra * r * SRC^2 * --first-- * 5.97e-06 * -1 * -1 *
* 6 * flowra * r * SRC^2 * --rho^2-- * 1.92e-06 * 2.65e-07 * 0.001339 *
* 8 * flowra * tu * SRC^2 * --first-- * 8.64e-06 * -1 * -1 *
* 10 * flowra * tu * SRC^2 * --rho^2-- * 4.03e-06 * 3.14e-07 * 0.001306 *
* 12 * flowra * tl * SRC^2 * --first-- * 5.73e-05 * -1 * -1 *
* 14 * flowra * tl * SRC^2 * --rho^2-- * 0.000209 * 7.34e-07 * 0.002085 *
* 16 * flowra * hu * SRC^2 * --first-- * 0.039645 * -1 * -1 *
* 18 * flowra * hu * SRC^2 * --rho^2-- * 0.037119 * 0.026221 * 0.049000 *
* 20 * flowra * hl * SRC^2 * --first-- * 0.040597 * -1 * -1 *
* 22 * flowra * hl * SRC^2 * --rho^2-- * 0.039708 * 0.028688 * 0.052470 *
* 24 * flowra * l * SRC^2 * --first-- * 0.040895 * -1 * -1 *
* 26 * flowra * l * SRC^2 * --rho^2-- * 0.041241 * 0.029896 * 0.054454 *
* 28 * flowra * kw * SRC^2 * --first-- * 0.009174 * -1 * -1 *
* 30 * flowra * kw * SRC^2 * --rho^2-- * 0.009090 * 0.004191 * 0.015767 *
* 32 * flowra * __sum__ * SRC^2 * --first-- * 0.95065 * -1 * -1 *
* 34 * flowra * __R2__ * SRC^2 * --first-- * 0.947296 * -1 * -1 *
* 36 * flowra * __R2A__ * SRC^2 * --first-- * 0.94719 * -1 * -1 *

==> 19 selected entries

XIV.5.9 Macro "sensitivitySobolFunctionFlowrate.C"

XIV.5.9.1 Objective

The objective of this macro is to perform Sobol sensitivity analysis on a set of eight parameters used in the flowrateModel
model described in Section IV.1.2.1.

XIV.5.9.2 Macro Uranie

{

gROOT->LoadMacro("UserFunctions.C");

// Define the DataServer
TDataServer *tds = new TDataServer("tdsflowreate", "DataBase flowreate");
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

Int_t ns = 100000;
TSobol * tsobol = new TSobol(tds, "flowrateModel", ns, "rw:r:tu:tl:hu:hl:l:kw", " ←↩

flowrateModel", "pouet");
tsobol->setDrawProgressBar(kFALSE);
tsobol->computeIndexes();

page 561

Macro "sensitivitySobolFunctionFlowrate.C" CHAPTER XIV. USE-CASES IN C++

tsobol->getResultTuple()->Scan("*","Algo==\"--first--\" || Algo==\"--total--\"");

TCanvas *cc = new TCanvas("c1", "histgramme",5,64,1270,667);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();
pad->Divide(2,1);
pad->cd(1);
tsobol->drawIndexes("Flowrate", "", "nonewcanv,hist,all");

pad->cd(2);
tsobol->drawIndexes("Flowrate", "", "nonewcanv,pie,first");

gSystem->Rename("_sobol_launching_.dat","ref_sobol_launching_.dat");
tds->exportData("_onlyMandN_sobol_launching_.dat","rw:r:tu:tl:hu:hl:l:kw:flowrateModel"," ←↩

sobol__n__iter__tdsflowreate < 100");
}

The function flowrateModel is loaded from the macro UserFunctions.C (the file can be found in ${URANIESYS}/share/uranie/macros)

gROOT->LoadMacro("UserFunctions.C");

Each parameter is related to the TDataServer as a TAttribute and obeys an uniform law on specific interval:

TDataServer *tds = new TDataServer("tdsflowreate", "DataBase flowreate");
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

To instantiate the TSobol, one uses the TDataServer, the name of the function and the number of samplings
needed to perform sensitivity analysis (here ns=600):

TSobol * tsobol = new TSobol(tds, "flowrateModel", ns, "rw:r:tu:tl:hu:hl:l:kw", " ←↩
flowrateModel", "pouet");

Computation of the sensitivity indexes:

tsobol->computeIndexes();

The automatic backup of data (the file _sobol_launching_.dat) is renamed so that it can be used in other
macros (see Section XIV.5.13 and Section XIV.5.15) while the tds contains is exported (only the M and N matrices
content) to be also used in another macro (Section XIV.5.14) :

gSystem->Rename("_sobol_launching_.dat","ref_sobol_launching_.dat");
tds->exportData("_onlyMandN_sobol_launching_.dat","rw:r:tu:tl:hu:hl:l:kw:flowrateModel"," ←↩

sobol__n__iter__tdsflowreate < 100");

page 562

CHAPTER XIV. USE-CASES IN C++ Macro "sensitivitySobolFunctionFlowrate.C"

XIV.5.9.3 Graph

Figure XIV.51: Graph of the macro "sensitivitySobolFunctionFlowrate.C"

XIV.5.9.4 Console

Processing sensitivitySobolFunctionFlowrate.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

<URANIE::WARNING>
<URANIE::WARNING> *** URANIE WARNING ***
<URANIE::WARNING> *** File[${SOURCEDIR}/dataSERVER/souRCE/TDataServer.cxx] Line[8099]
<URANIE::WARNING> TDataServer::getTuple Error : There is no tree!
<URANIE::WARNING> *** END of URANIE WARNING ***
<URANIE::WARNING>
<URANIE::INFO>
<URANIE::INFO> *** URANIE INFORMATION ***
<URANIE::INFO> *** File[${SOURCEDIR}/meTIER/sampler/souRCE/TSamplerStochastic.cxx] Line ←↩

[66]
<URANIE::INFO> TSamplerStochastic::init: the TDS [tdsflowreate] contains data: we need to ←↩

empty it !
<URANIE::INFO> *** END of URANIE INFORMATION ***
<URANIE::INFO>

** Case of Output atty [flowrateModel] nSimPerIndex 10000

** Input att [rw] First [0.830033] Total Order[0.865762]

** Input att [r] First [0] Total Order[0.000102212]

** Input att [tu] First [0] Total Order[0.0001]

** Input att [tl] First [0] Total Order[0.000110756]

** Input att [hu] First [0.0417298] Total Order[0.0554922]

** Input att [hl] First [0.0367345] Total Order[0.0526188]

** Input att [l] First [0.0384214] Total Order[0.0535728]

** Input att [kw] First [0.00669831] Total Order[0.0132316]

** ←↩

page 563

Macro "sensitivitySobolFunctionFlowrateRunner.C" CHAPTER XIV. USE-CASES IN C++

* Row * Out.Out * Inp.Inp * Order.Ord * Method.Me * Algo.Algo * Value.Val * ←↩
CILower.C * CIUpper.C *

** ←↩

* 0 * flowrateM * rw * First * Sobol * --first-- * 0.8300331 * ←↩
0.8238356 * 0.8360321 *

* 4 * flowrateM * rw * Total * Sobol * --total-- * 0.8657619 * ←↩
0.8465652 * 0.8850599 *

* 8 * flowrateM * r * First * Sobol * --first-- * 0 * ←↩
0 * 0.0196004 *

* 12 * flowrateM * r * Total * Sobol * --total-- * 0.0001022 * 9.828e ←↩
-05 * 0.0001062 *

* 16 * flowrateM * tu * First * Sobol * --first-- * 0 * ←↩
0 * 0.0196004 *

* 20 * flowrateM * tu * Total * Sobol * --total-- * 0.0001000 * 9.615e ←↩
-05 * 0.0001039 *

* 24 * flowrateM * tl * First * Sobol * --first-- * 0 * ←↩
0 * 0.0196004 *

* 28 * flowrateM * tl * Total * Sobol * --total-- * 0.0001107 * ←↩
0.0001064 * 0.0001151 *

* 32 * flowrateM * hu * First * Sobol * --first-- * 0.0417297 * ←↩
0.0221474 * 0.0612800 *

* 36 * flowrateM * hu * Total * Sobol * --total-- * 0.0554921 * ←↩
0.0534156 * 0.0576470 *

* 40 * flowrateM * hl * First * Sobol * --first-- * 0.0367345 * ←↩
0.0171464 * 0.0562944 *

* 44 * flowrateM * hl * Total * Sobol * --total-- * 0.0526187 * ←↩
0.0506469 * 0.0546652 *

* 48 * flowrateM * l * First * Sobol * --first-- * 0.0384214 * ←↩
0.0188352 * 0.0579782 *

* 52 * flowrateM * l * Total * Sobol * --total-- * 0.0535727 * ←↩
0.0515661 * 0.0556552 *

* 56 * flowrateM * kw * First * Sobol * --first-- * 0.0066983 * ←↩
0 * 0.0262952 *

* 60 * flowrateM * kw * Total * Sobol * --total-- * 0.0132315 * ←↩
0.0127261 * 0.0137570 *

* 64 * flowrateM * __sum__ * First * Sobol * --first-- * 0.9536171 * ←↩
-1 * -1 *

* 65 * flowrateM * __sum__ * Total * Sobol * --total-- * 1.0409902 * ←↩
-1 * -1 *

** ←↩

==> 18 selected entries

XIV.5.10 Macro "sensitivitySobolFunctionFlowrateRunner.C"

XIV.5.10.1 Objective

The objective of this macro is to perform Sobol sensitivity analysis on a set of eight parameters used in the flowrateModel
model described in Section IV.1.2.1, but this time using the Relauncher architecture.

XIV.5.10.2 Macro Uranie

{

gROOT->LoadMacro("UserFunctions.C");

page 564

CHAPTER XIV. USE-CASES IN C++ Macro "sensitivitySobolFunctionFlowrateRunner.C"

// Define the attributes
TUniformDistribution rw("rw", 0.05, 0.15);
TUniformDistribution r("r", 100.0, 50000.0);
TUniformDistribution tu("tu", 63070.0, 115600.0);
TUniformDistribution tl("tl", 63.1, 116.0);
TUniformDistribution hu("hu", 990.0, 1110.0);
TUniformDistribution hl("hl", 700.0, 820.0);
TUniformDistribution l("l", 1120.0, 1680.0);
TUniformDistribution kw("kw", 9855.0, 12045.0);

// Create the evaluator
TCIntEval code("flowrateModel");
// Create output attribute
TAttribute yout("flowrateModel");
// Provide input/output attributes to the assessor
code.setInputs(8, &rw, &r, &tu, &tl, &hu, &hl, &l, &kw);
code.setOutputs(1, &yout);

TSequentialRun run(&code); // To be replaced to distribute the computation
run.startSlave();
if(run.onMaster())
{

// Create the dataserver
TDataServer *tds = new TDataServer("sobol", "foo bar pouet chocolat");
tds->addAttribute(&rw);
tds->addAttribute(&r);
tds->addAttribute(&tu);
tds->addAttribute(&tl);
tds->addAttribute(&hu);
tds->addAttribute(&hl);
tds->addAttribute(&l);
tds->addAttribute(&kw);

// Create the sobol object
Int_t ns = 100000;
TSobol * tsobol = new TSobol(tds, &run, ns);
tsobol->setDrawProgressBar(kFALSE);
tsobol->computeIndexes();

if (1) {
TCanvas *cc = new TCanvas("c1", "histgramme",5,64,1270,667);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();
pad->Divide(2,1);
pad->cd(1);
tsobol->drawIndexes("Flowrate", "", "nonewcanv,hist,all");

pad->cd(2);
tsobol->drawIndexes("Flowrate", "", "nonewcanv,pie,first");

}
}

}

The function flowrateModel is loaded from the macro UserFunctions.C (the file can be found in ${URANIESYS}/share/uranie/macros)

gROOT->LoadMacro("UserFunctions.C");

Each parameter is related to the TDataServer as a TAttribute and obeys an uniform law on specific interval:

// Define the attributes
TUniformDistribution rw("rw", 0.05, 0.15);
TUniformDistribution r("r", 100.0, 50000.0);

page 565

Macro "sensitivitySobolFunctionFlowrateRunner.C" CHAPTER XIV. USE-CASES IN C++

TUniformDistribution tu("tu", 63070.0, 115600.0);
TUniformDistribution tl("tl", 63.1, 116.0);
TUniformDistribution hu("hu", 990.0, 1110.0);
TUniformDistribution hl("hl", 700.0, 820.0);
TUniformDistribution l("l", 1120.0, 1680.0);
TUniformDistribution kw("kw", 9855.0, 12045.0);

The interface to the function is then defined, using the Relauncher interface, through a TCIntEval object and a
sequential runner:

// Create the evaluator
TCIntEval code("flowrateModel");
// Create output attribute
TAttribute yout("flowrateModel");
// Provide input/output attributes to the assessor
code.setInputs(8, &rw, &r, &tu, &tl, &hu, &hl, &l, &kw);
code.setOutputs(1, &yout);

TSequentialRun run(&code); // To be replaced to distribute the computation
run.startSlave();

To instantiate the TSobol, one uses the TDataServer, a pointer to the runner and the number of samplings needed
to perform sensitivity analysis (here ns=600):

TSobol * tsobol = new TSobol(tds, &run, ns);

Computation of the sensitivity indexes:

tsobol->computeIndexes();

Data are exported from the TDataServer to an ASCII file:

tds->exportData("_sobol_launching_.dat");

XIV.5.10.3 Graph

Figure XIV.52: Graph of the macro "sensitivitySobolFunctionFlowrateRunner.C"

page 566

CHAPTER XIV. USE-CASES IN C++ Macro "sensitivityRegressionLeveLE.C"

XIV.5.10.4 Console

Processing sensitivitySobolFunctionFlowrateRunner.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

<URANIE::WARNING>
<URANIE::WARNING> *** URANIE WARNING ***
<URANIE::WARNING> *** File[${SOURCEDIR}/dataSERVER/souRCE/TDataServer.cxx] Line[8099]
<URANIE::WARNING> TDataServer::getTuple Error : There is no tree!
<URANIE::WARNING> *** END of URANIE WARNING ***
<URANIE::WARNING>
<URANIE::INFO>
<URANIE::INFO> *** URANIE INFORMATION ***
<URANIE::INFO> *** File[${SOURCEDIR}/meTIER/sampler/souRCE/TSamplerStochastic.cxx] Line ←↩

[66]
<URANIE::INFO> TSamplerStochastic::init: the TDS [sobol] contains data: we need to empty ←↩

it !
<URANIE::INFO> *** END of URANIE INFORMATION ***
<URANIE::INFO>

** Case of Output atty [flowrateModel] nSimPerIndex 10000

** Input att [rw] First [0.830033] Total Order[0.865762]

** Input att [r] First [0] Total Order[0.000102212]

** Input att [tu] First [0] Total Order[0.0001]

** Input att [tl] First [0] Total Order[0.000110756]

** Input att [hu] First [0.0417298] Total Order[0.0554922]

** Input att [hl] First [0.0367345] Total Order[0.0526188]

** Input att [l] First [0.0384214] Total Order[0.0535728]

** Input att [kw] First [0.00669831] Total Order[0.0132316]

XIV.5.11 Macro "sensitivityRegressionLeveLE.C"

Warning
The levele command will be installed on your machine only if a Fortran compiler is found

XIV.5.11.1 Objective

The objective of this macro is to perform a SRC and SRRC measurement on the temporal use-case levele. This
use-case is an example of code that takes a dozen of entries in order to compute the evolution of dose as a function of
time. The result of every computation consists in 3 vectors: the time (always the same value disregarding all entries),
the dose called "y" and a third useless information.

XIV.5.11.2 Macro Uranie

{
// OS abstraction
string which_levele =
string(gSystem->GetBuildArch()) == "win64" ? "where levele" : "which levele";

page 567

Macro "sensitivityRegressionLeveLE.C" CHAPTER XIV. USE-CASES IN C++

//Exit if levele not found
if(gSystem->Exec(which_levele.c_str()))
exit(-1);

//Create DataServer and add input attributes
TDataServer *tds = new URANIE::DataServer::TDataServer("tds", "levelE usecase");
tds->addAttribute(new TUniformDistribution("t", 100, 1000));
tds->addAttribute(new TLogUniformDistribution("kl", 0.001, .01));
tds->addAttribute(new TLogUniformDistribution("kc", 1.0e-6, 1.0e-5));
tds->addAttribute(new TLogUniformDistribution("v1", 1.0e-3, 1.0e-1));
tds->addAttribute(new TUniformDistribution("l1", 100., 500.));
tds->addAttribute(new TUniformDistribution("r1", 1., 5.));
tds->addAttribute(new TUniformDistribution("rc1", 3., 30.));
tds->addAttribute(new TLogUniformDistribution("v2", 1.0e-2, 1.0e-1));
tds->addAttribute(new TUniformDistribution("l2", 50., 200.));
tds->addAttribute(new TUniformDistribution("r2", 1., 5.));
tds->addAttribute(new TUniformDistribution("rc2", 3., 30.));
tds->addAttribute(new TLogUniformDistribution("w", 1.0e5, 1.0e7));

//Tell the code where to find attribute value in input file
TString sIn = "levelE_input_with_values_rows.in";
tds->getAttribute("t")->setFileKey(sIn, "", "%e",TAttributeFileKey::kNewRow);
tds->getAttribute("kl")->setFileKey(sIn,"", "%e",TAttributeFileKey::kNewRow);
tds->getAttribute("kc")->setFileKey(sIn, "", "%e",TAttributeFileKey::kNewRow);
tds->getAttribute("v1")->setFileKey(sIn, "", "%e",TAttributeFileKey::kNewRow);
tds->getAttribute("l1")->setFileKey(sIn, "", "%e",TAttributeFileKey::kNewRow);
tds->getAttribute("r1")->setFileKey(sIn, "", "%e",TAttributeFileKey::kNewRow);
tds->getAttribute("rc1")->setFileKey(sIn, "", "%e",TAttributeFileKey::kNewRow);
tds->getAttribute("v2")->setFileKey(sIn, "", "%e",TAttributeFileKey::kNewRow);
tds->getAttribute("l2")->setFileKey(sIn, "", "%e",TAttributeFileKey::kNewRow);
tds->getAttribute("r2")->setFileKey(sIn, "", "%e",TAttributeFileKey::kNewRow);
tds->getAttribute("rc2")->setFileKey(sIn, "", "%e",TAttributeFileKey::kNewRow);
tds->getAttribute("w")->setFileKey(sIn, "", "%e",TAttributeFileKey::kNewRow);

// Create DOE
Int_t ns = 1024;
TSampling *samp = new TSampling(tds, "lhs", ns);
samp->generateSample();

//How to read ouput files
TOutputFileRow *out = new TOutputFileRow("_output_levelE_withRow_.dat");
//Tell the output file that attribute IS a vector and is SECOND column
out->addAttribute(new TAttribute("y", TAttribute::kVector), 2);

//Creation of TCode
TCode *myc = new TCode(tds," levele 2> /dev/null");
myc->addOutputFile(out);

//Run the code
TLauncher * tl = new TLauncher(tds, myc);
tl->run();

//Launch Regression
TRegression *tsen = new TRegression(tds, "t:kl:kc:v1:l1:r1:rc1:v2:l2:r2:rc2:w" , "y", " ←↩

SRCSRRC");
tsen->computeIndexes();
TTree *res=tsen->getResultTuple();

//Plotting mess
double tps[26]={20000,30000,40000,50000,60000,70000,80000,90000,100000, ←↩

200000,300000,400000,500000,600000,700000,800000,900000, 1e+06,2e+06,3e+06,4e+06,5e ←↩
+06,6e+06,7e+06,8e+06,9e+06};

page 568

CHAPTER XIV. USE-CASES IN C++ Macro "sensitivityRegressionLeveLE.C"

int colors[12] ={1,2,3,4,6,7,8,15,30,38,41,46};

TCanvas *c2 = new TCanvas("c2","c2",5,64,1600,500);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();
pad->Divide(3,1); pad->cd(1);
gPad->SetLogx(); gPad->SetGrid();
TMultiGraph *mg = new TMultiGraph();
res->Draw("Value","Inp==\"__R2__\" && Order==\"Total\" && Method==\"SRRC^2\"","goff");
double *data3=res->GetV1();

TGraph *gr3 = new TGraph(26,tps,data3); gr3->SetMarkerColor(2); gr3->SetLineColor(2); gr3 ←↩
->SetMarkerStyle(23);

mg->Add(gr3);
res->Draw("Value","Inp==\"__R2__\" && Order==\"Total\" && Method==\"SRC^2\"","goff");
double *data4=res->GetV1();

TGraph *gr4 = new TGraph(26,tps,data4); gr4->SetMarkerColor(4); gr4->SetLineColor(4); gr4 ←↩
->SetMarkerStyle(23);

mg->Add(gr4);
mg->Draw("APC");
mg->GetXaxis()->SetTitle("Time");
mg->GetYaxis()->SetTitle("#sum Sobol");
mg->GetYaxis()->SetRangeUser(0.0,1.0);

//Legend
gStyle->SetLegendBorderSize(0);
gStyle->SetFillStyle(0);

TLegend *lg = new TLegend(0.25,0.7,0.45,0.9);
lg->AddEntry(gr4,"R2 SRC","lp");
lg->AddEntry(gr3,"R2 SRRC","lp");
lg->Draw();

pad->cd(2); gPad->SetLogx(); gPad->SetGrid();
TMultiGraph *mg2 = new TMultiGraph();

string names[12] = {"t","kl","kc","v1","l1","r1","rc1","v2","l2","r2","rc2","w"};
TGraph *src[12];
TLegend *leg = new TLegend(0.25,0.3,0.45,0.89,"Cumulative contributions");
leg->SetTextSize(0.035);
for(unsigned int igr=0; igr<12; igr++)
{
string sel="Inp==\""+names[igr]+"\" && Order==\"Total\" && Method==\"SRC^2\" && Algo ←↩

!=\"--rho^2--\"";
res->Draw("Value", sel.c_str(),"goff");
double *data=res->GetV1();
src[igr] = new TGraph();
src[igr]->SetMarkerColor(colors[igr]); src[igr]->SetLineColor(colors[igr]); src[igr]-> ←↩

SetFillColor(colors[igr]);

src[igr]->SetPoint(0, 0.99999999*tps[0], 0);
for(unsigned int ip=0; ip<26; ip++)
{

double x=0, y=0;
if(igr!=0)
src[igr-1]->GetPoint(ip+1,x,y);

src[igr]->SetPoint(ip+1, tps[ip], y+data[ip]);
}
src[igr]->SetPoint(27, tps[25]*1.000000001, 0);
leg->AddEntry(src[igr],names[igr].c_str(),"f");

}

page 569

Macro "sensitivityRegressionLeveLE.C" CHAPTER XIV. USE-CASES IN C++

for(int igr2=11; igr2>-1; igr2--)
mg2->Add(src[igr2]);

mg2->Draw("AFL");
mg2->GetXaxis()->SetTitle("Time");
mg2->GetYaxis()->SetTitle("SRC^{2}");
mg2->GetYaxis()->SetRangeUser(0.0,0.3);
leg->Draw();

pad->cd(3); gPad->SetLogx(); gPad->SetGrid();
TMultiGraph *mg3 = new TMultiGraph();
TGraph *srrc[12];
for(unsigned int igr=0; igr<12; igr++)
{
string sel="Inp==\""+names[igr]+"\" && Order==\"Total\" && Method==\"SRRC^2\" && Algo ←↩

!=\"--rho^2--\"";
res->Draw("Value", sel.c_str(),"goff");
double *data=res->GetV1();
srrc[igr] = new TGraph();
srrc[igr]->SetMarkerColor(colors[igr]); srrc[igr]->SetLineColor(colors[igr]); srrc[igr ←↩

]->SetFillColor(colors[igr]);

srrc[igr]->SetPoint(0, 0.99999999*tps[0], 0);
for(unsigned int ip=0; ip<26; ip++)
{
double x=0, y=0;
if(igr!=0)
srrc[igr-1]->GetPoint(ip+1,x,y);

srrc[igr]->SetPoint(ip+1, tps[ip], y+data[ip]);
}
srrc[igr]->SetPoint(27, tps[25]*1.000000001, 0);
srrc[igr]->SetTitle(names[igr].c_str());

}

for(int igr2=11; igr2>-1; igr2--)
mg3->Add(srrc[igr2]);

// mg3->Draw("a fb l3d");
mg3->Draw("AFL");
mg3->GetXaxis()->SetTitle("Time");
mg3->GetYaxis()->SetTitle("SRRC^{2}");
mg3->GetYaxis()->SetRangeUser(0.0,1.0);
leg->Draw();

}

The levele external code is located in the bin directory of the Uranie installation.

When looking at the code and comparing it to an usual Regression estimation, the organisation is completely transpar-
ent. The only noticeable (and compulsory) thing to do is to change the default type of the attribute read at the end of
the job. This is done in this line:

out->addAttribute(new TAttribute("y", TAttribute::kVector), 2);

where the output attribute is provided, changing its nature to a vector, thanks to the second argument of the TAttribute
constructor from the default (kReal) to the desired nature (kVector). Once this is done, this information is broadcast
internally to the code that knows how to deal with this type of attribute.

The rest of the code is the graphical part, leading to the figure below (it is provided to illustrate how to represent results).

page 570

CHAPTER XIV. USE-CASES IN C++ Macro "sensitivitySobolLeveLE.C"

XIV.5.11.3 Graph

The results of the previous macro is shown in Figure XIV.53, where the left panel represents the value of the R2

coefficients both the SRC and SRRC coefficients estimation. The middle and right panel display the cumulative sum of
the quadratic value of the coefficient respectively for the SRC and SRRC case.

Figure XIV.53: Graph of the macro "sensitivityRegressionLeveLE.C"

XIV.5.12 Macro "sensitivitySobolLeveLE.C"

Warning
The levele command will be installed on your machine only if a Fortran compiler is found

XIV.5.12.1 Objective

The objective of this macro is to perform a full Sobol analysis on the temporal use-case levele. This use-case is an
example of code that takes a dozen of entries in order to compute the evolution of dose as a function of time. The
result of every computation consists in 3 vectors: the time (always the same value disregarding all entries), the dose
called "y" and a third useless information.

XIV.5.12.2 Macro Uranie

{
// OS abstraction
string which_levele =
string(gSystem->GetBuildArch()) == "win64" ? "where levele" : "which levele";

//Exit if levele not found
if(gSystem->Exec(which_levele.c_str()))
exit(-1);

// Define the DataServer
TDataServer *tds = new TDataServer("tdsLevelE","levele");
tds->addAttribute(new TUniformDistribution("t", 100, 1000));
tds->addAttribute(new TLogUniformDistribution("kl", 0.001, 0.01));
tds->addAttribute(new TLogUniformDistribution("kc", 0.000001, 0.00001));

page 571

Macro "sensitivitySobolLeveLE.C" CHAPTER XIV. USE-CASES IN C++

tds->addAttribute(new TLogUniformDistribution("v1", 0.001, 0.1));
tds->addAttribute(new TUniformDistribution("l1", 100, 500));
tds->addAttribute(new TUniformDistribution("r1", 1, 5));
tds->addAttribute(new TUniformDistribution("rc1", 3, 30));
tds->addAttribute(new TLogUniformDistribution("v2", 0.01, 0.1));
tds->addAttribute(new TUniformDistribution("l2", 50, 200));
tds->addAttribute(new TUniformDistribution("r2", 1, 5));
tds->addAttribute(new TUniformDistribution("rc2", 3, 30));
tds->addAttribute(new TLogUniformDistribution("w", 100000, 10000000));

//Tell the code where to find attribute value in input file
TString sIn="levelE_input_with_values_rows.in";
tds->getAttribute("t")->setFileKey(sIn, "", "%e", TAttributeFileKey::kNewRow);
tds->getAttribute("kl")->setFileKey(sIn, "", "%e", TAttributeFileKey::kNewRow);
tds->getAttribute("kc")->setFileKey(sIn, "", "%e", TAttributeFileKey::kNewRow);
tds->getAttribute("v1")->setFileKey(sIn, "", "%e", TAttributeFileKey::kNewRow);
tds->getAttribute("l1")->setFileKey(sIn, "", "%e", TAttributeFileKey::kNewRow);
tds->getAttribute("r1")->setFileKey(sIn, "", "%e", TAttributeFileKey::kNewRow);
tds->getAttribute("rc1")->setFileKey(sIn, "", "%e", TAttributeFileKey::kNewRow);
tds->getAttribute("v2")->setFileKey(sIn, "", "%e", TAttributeFileKey::kNewRow);
tds->getAttribute("l2")->setFileKey(sIn, "", "%e", TAttributeFileKey::kNewRow);
tds->getAttribute("r2")->setFileKey(sIn, "", "%e", TAttributeFileKey::kNewRow);
tds->getAttribute("rc2")->setFileKey(sIn, "", "%e", TAttributeFileKey::kNewRow);
tds->getAttribute("w")->setFileKey(sIn, "", "%e", TAttributeFileKey::kNewRow);

//How to read ouput files
TOutputFileRow *out = new TOutputFileRow("_output_levelE_withRow_.dat");
//Tell the output file that attribute IS a vector and is SECOND column
out->addAttribute(new TAttribute("y", TAttribute::kVector), 2);

//Creation of TCode
TCode *myc = new TCode(tds,"levele 2> /dev/null");
myc->addOutputFile(out);

//Run Sobol analysis
TSobol * tsobol = new TSobol(tds, myc, 10000);
tsobol->computeIndexes();

TTree *ntresu = (TTree*)tsobol->getResultTuple();

//Plotting mess
int colors[12] ={1,2,3,4,6,7,8,15,30,38,41,46};
double tps[26]={20000,30000,40000,50000,60000,70000,80000,90000,100000, ←↩

200000,300000,400000,500000,600000,700000,800000,900000, 1e+06,2e+06,3e+06,4e+06,5e ←↩
+06,6e+06,7e+06,8e+06,9e+06};

TCanvas *c2 = new TCanvas("c2","c2",5,64,1200,900);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();
pad->Divide(1,2); pad->cd(1); gPad->SetLogx(); gPad->SetGrid();

//LegendandMArker
gStyle->SetMarkerStyle(3);
gStyle->SetLegendBorderSize(0);
gStyle->SetFillStyle(0);

TMultiGraph *mg2 = new TMultiGraph();
string names[12] = {"t","kl","kc","v1","l1","r1","rc1","v2","l2","r2","rc2","w"};
TGraphAsymmErrors *fdeg[12];
TLegend *leg[6]; double *data, *themin, *themax;

for(unsigned int igr=0; igr<12; igr++)
{

page 572

CHAPTER XIV. USE-CASES IN C++ Macro "sensitivitySobolLeveLE.C"

stringstream sel; sel << "Inp==\"" << names[igr] << "\" && Order==\"First\" && Algo ←↩
==\"martinez11\"";

ntresu->Draw("CILower:CIUpper:Value", sel.str().c_str(),"goff");
data=ntresu->GetV3();
themin=ntresu->GetV1();
themax=ntresu->GetV2();
for(unsigned int i=0; i<26; i++)

{
themin[i] = data[i] - themin[i];
themax[i] = - data[i] + themax[i];

}

if(igr%2==0)
{

leg[igr/2] = new TLegend(0.1+0.15*(igr/2),0.91,0.25+0.15*(igr/2),0.98);
leg[igr/2]->SetTextSize(0.045);

}

fdeg[igr] = new TGraphAsymmErrors(26,tps, data,0, 0, themin, themax);
fdeg[igr]->SetMarkerColor(colors[igr]); fdeg[igr]->SetLineColor(colors[igr]); fdeg[igr ←↩

]->SetFillColor(colors[igr]);
leg[igr/2]->AddEntry(fdeg[igr],names[igr].c_str(),"pl");

}

for(int igr2=11; igr2>-1; igr2--)
mg2->Add(fdeg[igr2]);

mg2->Draw("APC");
mg2->GetXaxis()->SetTitle("Time");
mg2->GetYaxis()->SetTitle("S_{1}[martinez11]");
for(int igr3=0; igr3<6; igr3++)
leg[igr3]->Draw();

TMultiGraph *mg = new TMultiGraph();
TGraphAsymmErrors *tdeg[12];
pad->cd(2); gPad->SetLogx(); gPad->SetGrid();
for(unsigned int igr=0; igr<12; igr++)
{
stringstream sel; sel << "Inp==\"" << names[igr] << "\" && Order==\"Total\" && Algo ←↩

==\"martinez11\"";
ntresu->Draw("CILower:CIUpper:Value", sel.str().c_str(),"goff");
data=ntresu->GetV3();
themin=ntresu->GetV1();
themax=ntresu->GetV2();
for(unsigned int i=0; i<26; i++)

{
themin[i] = data[i] - themin[i];
themax[i] = - data[i] + themax[i];

}

for(unsigned int ip=0; ip<26; ip++)
{

if(ip==0)
{
tdeg[igr] = new TGraphAsymmErrors();
tdeg[igr]->SetMarkerColor(colors[igr]); tdeg[igr]->SetLineColor(colors[igr]); tdeg ←↩

[igr]->SetFillColor(colors[igr]);
}

tdeg[igr]->SetPoint(ip, tps[ip], data[ip]);

page 573

Macro "sensitivitySobolLeveLE.C" CHAPTER XIV. USE-CASES IN C++

tdeg[igr]->SetPointError(ip, 0, 0, themin[ip], themax[ip]);

}
}

for(int igr2=11; igr2>-1; igr2--)
mg->Add(tdeg[igr2]);

mg->Draw("APC");
mg->GetXaxis()->SetTitle("Time");
mg->GetYaxis()->SetTitle("S_{T}[martinez11]");
for(int igr3=0; igr3<6; igr3++)
leg[igr3]->Draw();

}

The levele external code is located in the bin directory of the Uranie installation.

When looking at the code and comparing it to an usual Sobol estimation, the organisation is completely transparent.
The only noticeable (and compulsory) thing to do is to change the default type of the attribute read at the end of the
job. This is done in this line:

out->addAttribute(new TAttribute("y", TAttribute::kVector), 2);

where the output attribute is provided, changing its nature to a vector, thanks to the second argument of the TAttribute
constructor from the default (kReal) to the desired nature (kVector). Once this is done, this information is broadcast
internally to the code that knows how to deal with this type of attribute.

The rest of the code is the graphical part, leading to the figure below (it is provided to illustrate how to represent results).

XIV.5.12.3 Graph

The results of the previous macro is shown in Figure XIV.54, where the evolution of the sobol coefficient is shown for
all inputs with the uncertainty band, for the first order coefficient and the total one, respectively on the top and bottom
panel.

page 574

CHAPTER XIV. USE-CASES IN C++ Macro "sensitivitySobolRe-estimation.C"

Figure XIV.54: Graph of the macro "sensitivitySobolLeveLE.C"

XIV.5.13 Macro "sensitivitySobolRe-estimation.C"

XIV.5.13.1 Objective

The objective of this macro is to perform a full Sobol analysis using the existing file created when the Sobol class is
allowed to perform the design-of-experiments and the estimations by itself (see the first item in the tip box in Sec-
tion VI.5.2 for more details). This would mean that the only computation done would be to estimate the coefficients (no
external code / function called).

Warning The ref_sobol_launching_.dat file used as input is not provided in the usual sub-directory
"/share/uranie/macros" of the installation folder of Uranie ($URANIESYS) but can be generated by the user
by running the macro discussed in Section XIV.5.9.

XIV.5.13.2 Macro Uranie

{

// Define the DataServer
TDataServer *tds = new TDataServer("tdsflowreate", "DataBase flowreate");
tds->fileDataRead("ref_sobol_launching_.dat");

TSobol * tsobol = new TSobol(tds, "rw:r:tu:tl:hu:hl:l:kw", "flowrateModel");
tsobol->computeIndexes();

page 575

Macro "sensitivitySobolRe-estimation.C" CHAPTER XIV. USE-CASES IN C++

TCanvas *cc = new TCanvas("c1", "histgramme",5,64,1270,667);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();
pad->Divide(2,1);
pad->cd(1);
tsobol->drawIndexes("Flowrate", "", "nonewcanv,hist,all");

pad->cd(2);
tsobol->drawIndexes("Flowrate", "", "nonewcanv,pie,first");

}

There are no external code or function to be run here. The input file ref_sobol_launching_.dat has to be
generated by the use of sensitivtySobolFunctionFlowrate.C. Once done it is loaded into the dataserver
and the TSobol object is constructed from the simplest constructor with only the pointer to the dataserver, the input
and output list:

TSobol * tsobol = new TSobol(tds, "rw:r:tu:tl:hu:hl:l:kw", "flowrateModel");

Once done, the computeIndexes() method is called and few lines are shown to display the results in the classical
plot form, leading to the figure below (it is provided to illustrate how to represent results). The numerical results are
shown in the console below and are identical to the ones shown in Section XIV.5.9.4 from where the full sample is
coming from.

XIV.5.13.3 Graph

The results of the previous macro is shown in Figure XIV.55, where the evolution of the sobol coefficient is shown for
all inputs with the uncertainty band, for the first order coefficient and the total one, respectively on the top and bottom
panel.

Figure XIV.55: Graph of the macro "sensitivitySobolRe-estimation.C"

XIV.5.13.4 Console

page 576

CHAPTER XIV. USE-CASES IN C++ Macro "sensitivitySobolWithData.C"

Processing sensitivitySobolRe-estimation.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

** Case of Output atty [flowrateModel] nSimPerIndex 10000

** Input att [rw] First [0.830033] Total Order[0.865762]

** Input att [r] First [0] Total Order[0.000102212]

** Input att [tu] First [0] Total Order[0.0001]

** Input att [tl] First [0] Total Order[0.000110756]

** Input att [hu] First [0.0417298] Total Order[0.0554922]

** Input att [hl] First [0.0367345] Total Order[0.0526188]

** Input att [l] First [0.0384214] Total Order[0.0535728]

** Input att [kw] First [0.00669831] Total Order[0.0132316]

XIV.5.14 Macro "sensitivitySobolWithData.C"

XIV.5.14.1 Objective

The objective of this macro is to perform a Sobol analysis using the some already made computations in order to be
able to save ressources. The idea (discussed in the second item in the tip box in Section VI.5.2 is indeed to use the
provided points as the 2×nS first estimations corresponding to both the M and N matrices content. The class will still
have to create all the cross configurations (the Ni matrices) and launch their corresponding estimations. In order to do
that there are few things to keep in mind:

• The input file (here _onlyMandN_sobol_launching_.dat) should contains input and output variables only,
the user being in charge of having a decent design-of-experiments for the sobol estimation.

Warning The _onlyMandN_sobol_launching_.dat file used as input is not provided in the usual
sub-directory "/share/uranie/macros" of the installation folder of Uranie ($URANIESYS) but can be generated
by the user by running the macro discussed in Section XIV.5.9.

XIV.5.14.2 Macro Uranie

{

gROOT->LoadMacro("UserFunctions.C");

// Define the DataServer
TDataServer *tds = new TDataServer("tdsflowreate", "DataBase flowreate");
tds->fileDataRead("_onlyMandN_sobol_launching_.dat");

int ns=10000;
TSobol * tsobol = new TSobol(tds, "flowrateModel", ns, "rw:r:tu:tl:hu:hl:l:kw", " ←↩

flowrateModel", "WithData");
tsobol->setDrawProgressBar(kFALSE);
tsobol->computeIndexes();

TCanvas *cc = new TCanvas("c1", "histgramme",5,64,1270,667);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();

page 577

Macro "sensitivitySobolWithData.C" CHAPTER XIV. USE-CASES IN C++

pad->Divide(2,1);
pad->cd(1);
tsobol->drawIndexes("Flowrate", "", "nonewcanv,hist,all");

pad->cd(2);
tsobol->drawIndexes("Flowrate", "", "nonewcanv,pie,first");

}

As for Section XIV.5.9, the UserFunctions.C file is loaded and the input file _onlyMandN_sobol_launching_
.dat (which should have been generated by the use of sensitivtySobolFunctionFlowrate.C), is loaded
into the dataserver. The TSobol object is constructed from the usual function constructor with a noticing difference:
the option field is filled with WithData to specify that data are already there and the code has to use these data and
split them into both the M and N matrices.

TSobol * tsobol = new TSobol(tds, "flowrateModel", ns, "rw:r:tu:tl:hu:hl:l:kw", " ←↩
flowrateModel", "WithData");

Once done, the computeIndexes() method is called and few lines are shown to display the results in the classical
plot form, leading to the figure below (it is provided to illustrate how to represent results). The numerical results are
shown in the console below and are identical to the ones shown in Section XIV.5.9.4 from where the original set of
points is coming from.

XIV.5.14.3 Graph

The results of the previous macro is shown in Figure XIV.56, where the evolution of the sobol coefficient is shown for
all inputs with the uncertainty band, for the first order coefficient and the total one, respectively on the top and bottom
panel.

Figure XIV.56: Graph of the macro "sensitivitySobolWithData.C"

XIV.5.14.4 Console

page 578

CHAPTER XIV. USE-CASES IN C++ Macro "sensitivitySobolLoadFile.C"

Processing sensitivitySobolWithData.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

** Case of Output atty [flowrateModel] nSimPerIndex 10000

** Input att [rw] First [0.830033] Total Order[0.865762]

** Input att [r] First [0] Total Order[0.000102212]

** Input att [tu] First [0] Total Order[0.0001]

** Input att [tl] First [0] Total Order[0.000110756]

** Input att [hu] First [0.0417298] Total Order[0.0554922]

** Input att [hl] First [0.0367345] Total Order[0.0526188]

** Input att [l] First [0.0384214] Total Order[0.0535728]

** Input att [kw] First [0.00669831] Total Order[0.0132316]

XIV.5.15 Macro "sensitivitySobolLoadFile.C"

XIV.5.15.1 Objective

The objective of this macro is to perform a full Sobol analysis using the existing file created when the Sobol class is
allowed to perform the design-of-experiments and the estimations by itself when this one is not considered accurate
enough (from the statistical point of view). The idea is to use anyway all the computations already done and generate
some more to increase the statistical precision. In order to do that there are few things to keep in mind:

• The problem should obviously be exactly the same: same input and output (name, statistical laws, parameter val-
ues...).

• The input file (here ref_sobol_launching_.dat) should contains the internal variable in order to figure out
from what matrices every configuration is taken out of (generally an iterator whose name should look like sobol_
_n__iter__ plus the dataserver name).

• If the pseudo-random generator seed is set to a given value, bBe sure that you are not be using the same seed than
the once used to generate the input file, which would lead to twice the same events.

One can find another discussion for this objective in the third item in the tip box in Section VI.5.2.

Warning The ref_sobol_launching_.dat file used as input is not provided in the usual sub-directory
"/share/uranie/macros" of the installation folder of Uranie ($URANIESYS) but can be generated by the user
by running the macro discussed in Section XIV.5.9.

XIV.5.15.2 Macro Uranie

{

gROOT->LoadMacro("UserFunctions.C");

// Define the DataServer
TDataServer *tds = new TDataServer("tdsflowreate", "DataBase flowreate");
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));

page 579

Macro "sensitivitySobolLoadFile.C" CHAPTER XIV. USE-CASES IN C++

tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

int ns=100000;
TSobol * tsobol = new TSobol(tds, "flowrateModel", ns, "rw:r:tu:tl:hu:hl:l:kw", " ←↩

flowrateModel");
tsobol->loadOtherSobolFile("ref_sobol_launching_.dat");
tsobol->setDrawProgressBar(kFALSE);
tsobol->computeIndexes();

tsobol->getResultTuple()->Scan("*","Algo==\"--first--\" || Algo==\"--total--\"");

TCanvas *cc = new TCanvas("c1", "histgramme",5,64,1270,667);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();
pad->Divide(2,1);
pad->cd(1);
tsobol->drawIndexes("Flowrate", "", "nonewcanv,hist,all");

pad->cd(2);
tsobol->drawIndexes("Flowrate", "", "nonewcanv,pie,first");

}

As for Section XIV.5.9, the UserFunctions.C file is loaded and all the input stochastic distribution are chosen
wisely. The number of new estimations is set (to 10000, doubling the statistic as this is also the number used in
Section XIV.5.9 which provided the input file that would be used to complete this estimation).

All the code lines are exactly those taken out of Section XIV.5.9.2 but the one that is used to load a previous estimation
which is shown below:

tsobol->loadOtherSobolFile("ref_sobol_launching_.dat");

Once done, the computeIndexes() method is called and few lines are shown to display the results in the classical
plot form, leading to the figure below (it is provided to illustrate how to represent results). The numerical results are
shown in the console below and the improvement in terms of statistical precision can be seen by comparing the 95
percent confidence intervals going from Section XIV.5.9.4 to Section XIV.5.15.4.

XIV.5.15.3 Graph

The results of the previous macro is shown in Figure XIV.57, where the evolution of the sobol coefficient is shown for
all inputs with the uncertainty band, for the first order coefficient and the total one, respectively on the top and bottom
panel.

page 580

CHAPTER XIV. USE-CASES IN C++ Macro "sensitivitySobolLoadFile.C"

Figure XIV.57: Graph of the macro "sensitivitySobolLoadFile.C"

XIV.5.15.4 Console

Processing sensitivitySobolLoadFile.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

<URANIE::WARNING>
<URANIE::WARNING> *** URANIE WARNING ***
<URANIE::WARNING> *** File[${SOURCEDIR}/dataSERVER/souRCE/TDataServer.cxx] Line[759]
<URANIE::WARNING> TDataServer::fileDataRead: Expected iterator tdsflowreate_1__n__iter__ ←↩

not found but tdsflowreate__n__iter__ looks like an URANIE iterator => Will be used as ←↩
so.

<URANIE::WARNING> *** END of URANIE WARNING ***
<URANIE::WARNING>
<URANIE::WARNING>
<URANIE::WARNING> *** URANIE WARNING ***
<URANIE::WARNING> *** File[${SOURCEDIR}/dataSERVER/souRCE/TDataServer.cxx] Line[8099]
<URANIE::WARNING> TDataServer::getTuple Error : There is no tree!
<URANIE::WARNING> *** END of URANIE WARNING ***
<URANIE::WARNING>
<URANIE::INFO>
<URANIE::INFO> *** URANIE INFORMATION ***
<URANIE::INFO> *** File[${SOURCEDIR}/meTIER/sampler/souRCE/TSamplerStochastic.cxx] Line ←↩

[66]
<URANIE::INFO> TSamplerStochastic::init: the TDS [tdsflowreate] contains data: we need to ←↩

empty it !
<URANIE::INFO> *** END of URANIE INFORMATION ***
<URANIE::INFO>

** Case of Output atty [flowrateModel] nSimPerIndex 20000

** Input att [rw] First [0.823516] Total Order[0.873849]

** Input att [r] First [0] Total Order[5.22438e-05]

** Input att [tu] First [0] Total Order[5e-05]

** Input att [tl] First [0] Total Order[6.08391e-05]

** Input att [hu] First [0.0319889] Total Order[0.0547724]

page 581

Macro "sensitivityJohnsonRWFunctionFlowrate.C" CHAPTER XIV. USE-CASES IN C++

** Input att [hl] First [0.0304453] Total Order[0.0540884]

** Input att [l] First [0.0315935] Total Order[0.0527791]

** Input att [kw] First [0] Total Order[0.0129065]

** ←↩

* Row * Out.Out * Inp.Inp * Order.Ord * Method.Me * Algo.Algo * Value.Val * ←↩
CILower.C * CIUpper.C *

** ←↩

* 0 * flowrateM * rw * First * Sobol * --first-- * 0.8235162 * ←↩
0.8190045 * 0.8279262 *

* 4 * flowrateM * rw * Total * Sobol * --total-- * 0.8738492 * ←↩
0.8602341 * 0.8875120 *

* 8 * flowrateM * r * First * Sobol * --first-- * 0 * ←↩
0 * 0.0138594 *

* 12 * flowrateM * r * Total * Sobol * --total-- * 5.224e-05 * 5.081e ←↩
-05 * 5.371e-05 *

* 16 * flowrateM * tu * First * Sobol * --first-- * 0 * ←↩
0 * 0.0138594 *

* 20 * flowrateM * tu * Total * Sobol * --total-- * 5.000e-05 * 4.863e ←↩
-05 * 5.140e-05 *

* 24 * flowrateM * tl * First * Sobol * --first-- * 0 * ←↩
0 * 0.0138594 *

* 28 * flowrateM * tl * Total * Sobol * --total-- * 6.083e-05 * 5.917e ←↩
-05 * 6.254e-05 *

* 32 * flowrateM * hu * First * Sobol * --first-- * 0.0319888 * ←↩
0.0181374 * 0.0458280 *

* 36 * flowrateM * hu * Total * Sobol * --total-- * 0.0547723 * ←↩
0.0533147 * 0.0562686 *

* 40 * flowrateM * hl * First * Sobol * --first-- * 0.0304453 * ←↩
0.0165929 * 0.0442861 *

* 44 * flowrateM * hl * Total * Sobol * --total-- * 0.0540884 * ←↩
0.0526485 * 0.0555665 *

* 48 * flowrateM * l * First * Sobol * --first-- * 0.0315935 * ←↩
0.0177418 * 0.0454330 *

* 52 * flowrateM * l * Total * Sobol * --total-- * 0.0527791 * ←↩
0.0513732 * 0.0542224 *

* 56 * flowrateM * kw * First * Sobol * --first-- * 0 * ←↩
0 * 0.0138594 *

* 60 * flowrateM * kw * Total * Sobol * --total-- * 0.0129065 * ←↩
0.0125558 * 0.0132669 *

* 64 * flowrateM * __sum__ * First * Sobol * --first-- * 0.9175440 * ←↩
-1 * -1 *

* 65 * flowrateM * __sum__ * Total * Sobol * --total-- * 1.0485587 * ←↩
-1 * -1 *

** ←↩

==> 18 selected entries

XIV.5.16 Macro "sensitivityJohnsonRWFunctionFlowrate.C"

XIV.5.16.1 Objective

The objective of this macro is to perform a sensitivity analysis using the Johnson’s relative weight method on a set of
eight parameters used in the flowrateModel model described in Section IV.1.2.1.

XIV.5.16.2 Macro Uranie

page 582

CHAPTER XIV. USE-CASES IN C++ Macro "sensitivityJohnsonRWFunctionFlowrate.C"

{
gROOT->LoadMacro("UserFunctions.C");

// Define the DataServer
TDataServer *tds = new TDataServer("tdsflowrate", "DataBase flowrate");
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

// \param Size of a sampling.
Int_t nS = 1000;
TString FuncName="flowrateModel";

TJohnsonRW *tjrw = new TJohnsonRW(tds, FuncName, nS, "rw:r:tu:tl:hu:hl:l:kw", FuncName);
tjrw->computeIndexes();

// Get the results on screen
tjrw->getResultTuple()->Scan("Out:Inp:Method:Value","Order==\"First\"");

// Get the results as plots
TCanvas *cc = new TCanvas("canhist", "histgramme");
tjrw->drawIndexes("Flowrate", "", "nonewcanv,hist,first");
cc->Print("appliUranieFlowrateJohnsonRW1000Histogram.png");

TCanvas *ccc = new TCanvas("canpie", "TPie");
tjrw->drawIndexes("Flowrate", "", "nonewcanv,pie");
ccc->Print("appliUranieFlowrateJohnsonRW1000Pie.png");

}

The function flowrateModel is loaded from the macro UserFunctions.C (the file can be found in ${URANIESYS}/share/uranie/macros)

gROOT->LoadMacro("UserFunctions.C");

Each parameter is related to the TDataServer as a TAttribute and obeys an uniform law on specific interval

TDataServer *tds = new TDataServer("tdsflowreate", "DataBase flowreate");
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

To instantiate the TJohnsonRW object, one uses the TDataServer, the name of the function, the number of
samplings needed to perform sensitivity analysis (here nS=4000) and the input and output variables:

TJohnsonRW * tjrw = new TJohnsonRW(tds, FuncName, nS, "rw:r:tu:tl:hu:hl:l:kw", FuncName);

Computation of sensitivity indexes:

trbd->computeIndexes();

page 583

Macro "sensitivityJohnsonRWFunctionFlowrate.C" CHAPTER XIV. USE-CASES IN C++

The rest is very common to all sensitivity macros discussed here: it will produce two plots (the first one being a
histogram show below) and the console is also shown below for completness.

XIV.5.16.3 Graph

Figure XIV.58: Graph of the macro "sensitivityJohnsonRWFunctionFlowrate.C"

XIV.5.16.4 Console

Processing sensitivityJohnsonRWFunctionFlowrate.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

<URANIE::WARNING>
<URANIE::WARNING> *** URANIE WARNING ***
<URANIE::WARNING> *** File[${SOURCEDIR}/dataSERVER/souRCE/TDataServer.cxx] Line[8099]
<URANIE::WARNING> TDataServer::getTuple Error : There is no tree!
<URANIE::WARNING> *** END of URANIE WARNING ***
<URANIE::WARNING>
<URANIE::INFO>
<URANIE::INFO> *** URANIE INFORMATION ***
<URANIE::INFO> *** File[${SOURCEDIR}/meTIER/sampler/souRCE/TSamplerStochastic.cxx] Line ←↩

[66]
<URANIE::INFO> TSamplerStochastic::init: the TDS [tdsflowrate] contains data: we need to ←↩

empty it !
<URANIE::INFO> *** END of URANIE INFORMATION ***
<URANIE::INFO>

**
* Row * Out * Inp * Method * Value *
**
* 0 * flowrateM * rw * JohnsonRW * 0.8636266 *

page 584

CHAPTER XIV. USE-CASES IN C++Macro "sensitivityJohnsonRWCorrelatedFunctionFlowrate.C"

* 2 * flowrateM * r * JohnsonRW * 4.598e-05 *
* 4 * flowrateM * tu * JohnsonRW * 8.775e-06 *
* 6 * flowrateM * tl * JohnsonRW * 9.689e-05 *
* 8 * flowrateM * hu * JohnsonRW * 0.0439173 *
* 10 * flowrateM * hl * JohnsonRW * 0.0435594 *
* 12 * flowrateM * l * JohnsonRW * 0.0378304 *
* 14 * flowrateM * kw * JohnsonRW * 0.0109144 *
* 16 * flowrateM * __R2__ * JohnsonRW * 0.9447092 *
* 18 * flowrateM * __R2A__ * JohnsonRW * 0.9442633 *
**
==> 10 selected entries

XIV.5.17 Macro "sensitivityJohnsonRWCorrelatedFunctionFlowrate.C"

XIV.5.17.1 Objective

The objective of this macro is to perform a sensitivity analysis using the Johnson’s relative weight method on a set of
eight parameters used in the flowrateModel model described in Section IV.1.2.1. Compared to version detailled
in Section XIV.5.16, the idea is here to correlate the input variables with a random correlation matrix.

XIV.5.17.2 Macro Uranie

// Function defined to generate randomly a good, highly-correlated, input correlation ←↩
matrix

TMatrixD GenCorr(int _nX=8, bool correlated=true)
{

gRandom->SetSeed(__rdtsc());
//Define a randomly filled matrix
TMatrixD A(_nX,_nX);
for (int i=0; i<_nX; i++)

for (int j=0; j<_nX; j++)
A(i,j)=gRandom->Gaus(0,1);

// Compute AA^T and normalise it to get "covariance matrix"
TMatrixD Gamma(A,TMatrixD::kMultTranspose,A);
Gamma*=1./_nX;

// Get the inverse of the diagonal matrix to do as if this was 1/sqrt(variance)
TMatrixD Sig(_nX,_nX);
for(int i=0;i<_nX;i++) Sig(i,i)=1./sqrt(Gamma(i,i));

// Compute the correlation matrix
TMatrixD Corr(Sig*Gamma,TMatrixD::kMult, Sig);
if(!correlated)

Corr.UnitMatrix();

return Corr;
}

void sensitivityJohnsonRWCorrelatedFunctionFlowrate()
{
gROOT->LoadMacro("UserFunctions.C");

// Define the DataServer
TDataServer *tds = new TDataServer("tdsflowrate", "DataBase flowrate");

page 585

Macro "sensitivityJohnsonRWCorrelatedFunctionFlowrate.C"CHAPTER XIV. USE-CASES IN C++

tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

// \param Size of a sampling.
Int_t nS = 1000;
TString FuncName="flowrateModel";

// Get a correlation matrix for the inputs
TMatrixD inCorr=GenCorr(8,true);
inCorr.Print();

TJohnsonRW *tjrw = new TJohnsonRW(tds, FuncName, nS, "rw:r:tu:tl:hu:hl:l:kw", FuncName);
//Set the correlation
tjrw->setInputCorrelationMatrix(inCorr);
tjrw->computeIndexes();

// Get the results on screen
tjrw->getResultTuple()->Scan("Out:Inp:Method:Value","Order==\"First\"");

// Get the results as plots
TCanvas *cc = new TCanvas("canhist", "histgramme");
tjrw->drawIndexes("Flowrate", "", "nonewcanv,hist,first");
cc->Print("appliUranieFlowrateJohnsonRWCorrelated1000Histogram.png");

TCanvas *ccc = new TCanvas("canpie", "TPie");
tjrw->drawIndexes("Flowrate", "", "nonewcanv,pie");
ccc->Print("appliUranieFlowrateJohnsonRWCorrelated1000Pie.png");

}

The first function, called GenCorr, is not discussed, because it is really technical and not really interesting here. The
only thing to know is that it provides a proper correlation matrix: a positive-definite symmetrical matrix.

The function flowrateModel is loaded from the macro UserFunctions.C (the file can be found in ${URANIESYS}/share/uranie/macros)

gROOT->LoadMacro("UserFunctions.C");

Compared to the discussion in Section XIV.5.16.2, the instantiation of the attributes and the TJohnsonRW object is
the same. The only difference is done when injecting the correlation matrix, which is done in these lines:

// Get a correlation matrix for the inputs
TMatrixD inCorr=GenCorr(8,true);
//Set the correlation
tjrw->setInputCorrelationMatrix(inCorr);

The computation of sensitivity indices can finally be done:

trbd->computeIndexes();

The rest is very common to all sensitivity macros discussed here: it will produce two plots (the first one being a
histogram show below) and the console is also shown below for completness.

page 586

CHAPTER XIV. USE-CASES IN C++Macro "sensitivityJohnsonRWCorrelatedFunctionFlowrate.C"

XIV.5.17.3 Graph

Figure XIV.59: Graph of the macro "sensitivityJohnsonRWCorrelatedFunctionFlowrate.C"

XIV.5.17.4 Console

Processing sensitivityJohnsonRWCorrelatedFunctionFlowrate.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

8x8 matrix is as follows

| 0 | 1 | 2 | 3 | 4 |
--

0 | 1 0.4488 0.2894 -0.05727 0.3627
1 | 0.4488 1 0.02022 -0.2547 0.3764
2 | 0.2894 0.02022 1 0.4982 -0.2078
3 | -0.05727 -0.2547 0.4982 1 -0.9199
4 | 0.3627 0.3764 -0.2078 -0.9199 1
5 | 0.2569 -0.1996 -0.288 0.1004 -0.1362
6 | -0.2167 -0.4425 0.004268 0.1412 -0.111
7 | -0.2948 0.1982 -0.001661 0.1943 -0.3131

| 5 | 6 | 7 |
--

0 | 0.2569 -0.2167 -0.2948
1 | -0.1996 -0.4425 0.1982
2 | -0.288 0.004268 -0.001661
3 | 0.1004 0.1412 0.1943
4 | -0.1362 -0.111 -0.3131

page 587

Macro "sensitivityJohnsonRWJustCorrelationFakeFlowrate.C"CHAPTER XIV. USE-CASES IN C++

5 | 1 -0.1943 0.2848
6 | -0.1943 1 -0.4415
7 | 0.2848 -0.4415 1

<URANIE::WARNING>
<URANIE::WARNING> *** URANIE WARNING ***
<URANIE::WARNING> *** File[${SOURCEDIR}/dataSERVER/souRCE/TDataServer.cxx] Line[8099]
<URANIE::WARNING> TDataServer::getTuple Error : There is no tree!
<URANIE::WARNING> *** END of URANIE WARNING ***
<URANIE::WARNING>
<URANIE::INFO>
<URANIE::INFO> *** URANIE INFORMATION ***
<URANIE::INFO> *** File[${SOURCEDIR}/meTIER/sampler/souRCE/TSamplerStochastic.cxx] Line ←↩

[66]
<URANIE::INFO> TSamplerStochastic::init: the TDS [tdsflowrate] contains data: we need to ←↩

empty it !
<URANIE::INFO> *** END of URANIE INFORMATION ***
<URANIE::INFO>

**
* Row * Out * Inp * Method * Value *
**
* 0 * flowrateM * rw * JohnsonRW * 0.5113911 *
* 2 * flowrateM * r * JohnsonRW * 0.1409327 *
* 4 * flowrateM * tu * JohnsonRW * 0.0505176 *
* 6 * flowrateM * tl * JohnsonRW * 0.0482684 *
* 8 * flowrateM * hu * JohnsonRW * 0.0969452 *
* 10 * flowrateM * hl * JohnsonRW * 0.0306674 *
* 12 * flowrateM * l * JohnsonRW * 0.0836757 *
* 14 * flowrateM * kw * JohnsonRW * 0.0376016 *
* 16 * flowrateM * __R2__ * JohnsonRW * 0.9500813 *
* 18 * flowrateM * __R2A__ * JohnsonRW * 0.9496787 *
**
==> 10 selected entries

XIV.5.18 Macro "sensitivityJohnsonRWJustCorrelationFakeFlowrate.C"

XIV.5.18.1 Objective

The objective of this macro is to perform a sensitivity analysis using the Johnson’s relative weight method on a set
of eight parameters which IS NOT the usual flowrateModel model. Indeed, compared to version detailled in
Section XIV.5.17, the idea is here to correlate the input variables with a random correlation matrix and to translate this
into a full correlation matrix, meaning defining a "fake" output by computing their covariance with every input as if this
output was a perfect linear combination of these inputs.

An important particularity of this study is that no data are generated at all, it only uses the correlation matrix.

XIV.5.18.2 Macro Uranie

// Function defined to generate randomly a good, highly-correlated, correlation matrix for ←↩
inputs

// and defibe the proper covariance with the output to do as if this output if a perfect ←↩
linear combination

// of the inputs
TMatrixD GenCorr(int _nX=8, bool correlated=true)
{

gRandom->SetSeed(__rdtsc());

page 588

CHAPTER XIV. USE-CASES IN C++Macro "sensitivityJohnsonRWJustCorrelationFakeFlowrate.C"

//Define a randomly filled matrix
TMatrixD A(_nX,_nX);
for (int i=0; i<_nX; i++)

for (int j=0; j<_nX; j++)
A(i,j)=gRandom->Gaus(0,1);

// Compute AA^T and normalise it to get "covariance matrix"
TMatrixD Gamma(A,TMatrixD::kMultTranspose,A);
Gamma*=1./_nX;

// Get the inverse of the diagonal matrix to do as if this was 1/sqrt(variance)
TMatrixD Sig(_nX,_nX);
for(int i=0;i<_nX;i++) Sig(i,i)=1./sqrt(Gamma(i,i));

// Compute the input correlation matrix
TMatrixD inCorr(Sig*Gamma,TMatrixD::kMult, Sig);
if(!correlated)

inCorr.UnitMatrix();
double varY=inCorr.Sum();

// Proper correlation, output included
TMatrixD Corr(_nX+1,_nX+1);
Corr.UnitMatrix();
// putting already defined input
Corr.SetSub(0,0,inCorr);
// Adjust the covariance of the output wrt to all inputs
for(unsigned int i=0; i<_nX; i++)
{

double value=0;
for(unsigned int j=0; j<_nX; j++)

value+=inCorr(i,j);
Corr(_nX,i) = Corr(i,_nX) = value / sqrt(varY);

}

return Corr;
}

void sensitivityJohnsonRWJustCorrelationFakeFlowrate()
{
// Define the DataServer
TDataServer *tds = new TDataServer("tdsflowrate", "DataBase flowrate");
tds->addAttribute("rw");
tds->addAttribute("r");
tds->addAttribute("tu");
tds->addAttribute("tl");
tds->addAttribute("hu");
tds->addAttribute("hl");
tds->addAttribute("l");
tds->addAttribute("kw");
// outputs
tds->addAttribute("flowrateModel");
tds->getAttribute("flowrateModel")->setOutput();

// Get the full correlation matrix
TMatrixD inCorr=GenCorr(8,true);

// Johnson definition
TJohnsonRW * tjrw = new TJohnsonRW(tds, "rw:r:tu:tl:hu:hl:l:kw", "flowrateModel");
//Putting the newly defined correlation that states our output as a perfect linear ←↩

combination of inputs

page 589

Macro "sensitivityJohnsonRWJustCorrelationFakeFlowrate.C"CHAPTER XIV. USE-CASES IN C++

tjrw->setCorrelationMatrix(inCorr);
tjrw->computeIndexes();

// Get the results on screen
tjrw->getResultTuple()->Scan("Out:Inp:Method:Value","Order==\"First\"");

// Get the results as plots
TCanvas *cc = new TCanvas("canhist", "histgramme");
tjrw->drawIndexes("Flowrate", "", "nonewcanv,hist,first");
cc->Print("appliUranieFakeFlowrateJohnsonRWCorrelationHistogram.png");

TCanvas *ccc = new TCanvas("canpie", "TPie");
tjrw->drawIndexes("Flowrate", "", "nonewcanv,pie");
ccc->Print("appliUranieFakeFlowrateJohnsonRWCorrelationPie.png");

}

The first function, called GenCorr, is not discussed, because it is really technical and not really interesting here. The
only thing to know is that it provides a proper correlation matrix: a positive-definite symmetrical matrix for the input and
it computes the covariance for a "fake" output that would be a perfect linear combination of all the inputs.

Because of this, the function flowrateModel is not loaded anymore and the definition of the attributes is not the
same: it is not necessary to use TStochasticAttribute because no data are generated here:

// Define the DataServer
TDataServer *tds = new TDataServer("tdsflowrate", "DataBase flowrate");
tds->addAttribute("rw");
tds->addAttribute("r");
tds->addAttribute("tu");
tds->addAttribute("tl");
tds->addAttribute("hu");
tds->addAttribute("hl");
tds->addAttribute("l");
tds->addAttribute("kw");
// outputs
tds->addAttribute("flowrateModel");
tds->getAttribute("flowrateModel")->setOutput();

Compared to the discussion in Section XIV.5.17.2, the only differences are the instantiation of the TJohnsonRW object
and the method code to provide the correlation matrix.

// Get the full correlation matrix
TMatrixD inCorr=GenCorr(8,true);
// Johnson definition
TJohnsonRW * tjrw = new TJohnsonRW(tds, "rw:r:tu:tl:hu:hl:l:kw", "flowrateModel");
//Putting the newly defined correlation that states our output as a perfect linear ←↩

combination of inputs
tjrw->setCorrelationMatrix(inCorr);

The method called to provide the correlation matrix is setCorrelationMatrix and it means that the user give
a full correlation matrix (input and output variables), on the contrary to the one used in Section XIV.5.17.2 which is
setInputCorrelationMatrix, which set only the input correlation matrix.

The computation of sensitivity indices can finally be done:

trbd->computeIndexes();

The rest is very common to all sensitivity macros discussed here: it will produce two plots (the first one being a
histogram show below) and the console is also shown below for completness.

page 590

CHAPTER XIV. USE-CASES IN C++Macro "sensitivityJohnsonRWJustCorrelationFakeFlowrate.C"

XIV.5.18.3 Graph

Figure XIV.60: Graph of the macro "sensitivityJohnsonRWJustCorrelationFakeFlowrate.C"

XIV.5.18.4 Console

Processing sensitivityJohnsonRWJustCorrelationFakeFlowrate.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

<URANIE::WARNING>
<URANIE::WARNING> *** URANIE WARNING ***
<URANIE::WARNING> *** File[${SOURCEDIR}/dataSERVER/souRCE/TDataServer.cxx] Line[2020]
<URANIE::WARNING> TDataServer::getNPatterns[tdsflowrate] WARNING
<URANIE::WARNING> The TTree is NULL
<URANIE::WARNING> *** END of URANIE WARNING ***
<URANIE::WARNING>
<URANIE::WARNING>
<URANIE::WARNING> *** URANIE WARNING ***
<URANIE::WARNING> *** File[${SOURCEDIR}/meTIER/sensitivity/souRCE/TSensitivity.cxx] Line ←↩

[165]
<URANIE::WARNING> TSensitivity::constructor ERROR The TTree is empty []
<URANIE::WARNING> *** END of URANIE WARNING ***
<URANIE::WARNING>
<URANIE::WARNING>
<URANIE::WARNING> *** URANIE WARNING ***
<URANIE::WARNING> *** File[${SOURCEDIR}/dataSERVER/souRCE/TDataServer.cxx] Line[8099]
<URANIE::WARNING> TDataServer::getTuple Error : There is no tree!
<URANIE::WARNING> *** END of URANIE WARNING ***
<URANIE::WARNING>

**
* Row * Out * Inp * Method * Value *

page 591

Macro "sensitivityHSICFunctionFlowrate.C" CHAPTER XIV. USE-CASES IN C++

**
* 0 * flowrateM * rw * JohnsonRW * 0.2844573 *
* 2 * flowrateM * r * JohnsonRW * 0.1600467 *
* 4 * flowrateM * tu * JohnsonRW * 0.2004196 *
* 6 * flowrateM * tl * JohnsonRW * 0.0512434 *
* 8 * flowrateM * hu * JohnsonRW * 0.0446220 *
* 10 * flowrateM * hl * JohnsonRW * 0.1295644 *
* 12 * flowrateM * l * JohnsonRW * 0.0333889 *
* 14 * flowrateM * kw * JohnsonRW * 0.0962574 *
* 16 * flowrateM * __R2__ * JohnsonRW * 1 *
**
==> 9 selected entries

XIV.5.19 Macro "sensitivityHSICFunctionFlowrate.C"

XIV.5.19.1 Objective

The objective of this macro is to perform a sensitivity analysis using the HSIC method on a set of eight parameters
used in the flowrateModel model described in Section IV.1.2.1.

XIV.5.19.2 Macro Uranie

void sensitivityHSICFunctionFlowrate(){

gROOT->LoadMacro("UserFunctions.C");

// Define the DataServer
TDataServer *tds = new TDataServer("tdsflowreate", "DataBase flowreate");
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

// Generation of the sample (it can be a given sample).
Int_t nS = 500;
TSampling *sampling = new TSampling(tds, "lhs", nS);
sampling->generateSample();

TLauncherFunction * tlf = new TLauncherFunction(tds, "flowrateModel");
tlf->setDrawProgressBar(kFALSE);
tlf->run();

// Create a THSIC object, compute indexes and print results
THSIC * thsic = new THSIC(tds, "rw:r:tu:tl:hu:hl:l:kw","flowrateModel");
thsic->computeIndexes("quiet");
thsic->getResultTuple()->SetScanField(60);
thsic->getResultTuple()->Scan("Out:Inp:Method:Order:Value:CILower:CIUpper");

// Print HSIC indexes
TCanvas *can = new TCanvas("c1", "Graph for the Macro sensitivityHSICFunctionFlowrate" ←↩

,5,64,1270,667);
thsic->drawIndexes("Flowrate", "", "hist,first,nonewcanv");

}

page 592

CHAPTER XIV. USE-CASES IN C++ Macro "sensitivityHSICFunctionFlowrate.C"

The function flowrateModel is loaded from the macro UserFunctions.C (the file can be found in ${URANIESYS}/share/uranie/macros)

gROOT->LoadMacro("UserFunctions.C");

Each parameter is related to the TDataServer as a TAttribute and obeys an uniform law on specific interval

// Define the DataServer
TDataServer *tds = new TDataServer("tdsflowreate", "DataBase flowreate");
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

HSIC does not need a specific DOE, it works with a given sample. We generate a sample with TSampling and we
evaluate it using TLauncherFunction

Int_t nS = 500;
TSampling *sampling = new TSampling(tds, "lhs", nS);
sampling->generateSample();

TLauncherFunction * tlf = new TLauncherFunction(tds, "flowrateModel");
tlf->setDrawProgressBar(kFALSE);
tlf->run();

To instantiate the THSIC object, one uses the TDataServer,the name of the input and output variables:

THSIC * thsic = new THSIC(tds, "rw:r:tu:tl:hu:hl:l:kw","flowrateModel");

Computation of sensitivity indexes:

thsic->computeIndexes();

It will produce one plots containing the HSIC indexes and the p-value to test the Independance between inputs and
outputs.The console is also shown below for completness.

XIV.5.19.3 Graph

Figure XIV.61: Graph of the macro "sensitivityHSICFunctionFlowrate.C"

page 593

Macro "sensitivitySobolRankFunctionFlowrate.C" CHAPTER XIV. USE-CASES IN C++

XIV.5.19.4 Console

Processing sensitivityHSICFunctionFlowrate.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

* Row * Out * Inp * Metho * Order * Value * CILower * CIUpper *

* 0 * flowra * rw * HSic * R2HSic * 0.804431 * -1 * -1 *
* 1 * flowra * rw * HSic * HSic * 0.072723 * 0.071620 * 0.073826 *
* 2 * flowra * rw * HSic * pValues * 6.8e-106 * -1 * -1 *
* 3 * flowra * r * HSic * R2HSic * 0.002238 * -1 * -1 *
* 4 * flowra * r * HSic * HSic * 0.000202 * -0.00090 * 0.001305 *
* 5 * flowra * r * HSic * pValues * 0.712174 * -1 * -1 *
* 6 * flowra * tu * HSic * R2HSic * 0.002528 * -1 * -1 *
* 7 * flowra * tu * HSic * HSic * 0.000228 * -0.00087 * 0.001331 *
* 8 * flowra * tu * HSic * pValues * 0.662668 * -1 * -1 *
* 9 * flowra * tl * HSic * R2HSic * 0.003806 * -1 * -1 *
* 10 * flowra * tl * HSic * HSic * 0.000344 * -0.00075 * 0.001447 *
* 11 * flowra * tl * HSic * pValues * 0.449068 * -1 * -1 *
* 12 * flowra * hu * HSic * R2HSic * 0.025554 * -1 * -1 *
* 13 * flowra * hu * HSic * HSic * 0.002309 * 0.001206 * 0.003412 *
* 14 * flowra * hu * HSic * pValues * 3.13e-05 * -1 * -1 *
* 15 * flowra * hl * HSic * R2HSic * 0.020243 * -1 * -1 *
* 16 * flowra * hl * HSic * HSic * 0.001829 * 0.000726 * 0.002932 *
* 17 * flowra * hl * HSic * pValues * 0.000445 * -1 * -1 *
* 18 * flowra * l * HSic * R2HSic * 0.024934 * -1 * -1 *
* 19 * flowra * l * HSic * HSic * 0.002253 * 0.001150 * 0.003356 *
* 20 * flowra * l * HSic * pValues * 5.64e-05 * -1 * -1 *
* 21 * flowra * kw * HSic * R2HSic * 0.010567 * -1 * -1 *
* 22 * flowra * kw * HSic * HSic * 0.000955 * -0.00014 * 0.002058 *
* 23 * flowra * kw * HSic * pValues * 0.032459 * -1 * -1 *

XIV.5.20 Macro "sensitivitySobolRankFunctionFlowrate.C"

XIV.5.20.1 Objective

The objective of this macro is to perform a sensitivity analysis using the SobolRank method on a set of eight parameters
used in the flowrateModel model described in Section IV.1.2.1.

XIV.5.20.2 Macro Uranie

void sensitivitySobolRankFunctionFlowrate(){

gROOT->LoadMacro("UserFunctions.C");

// Define the DataServer
TDataServer *tds = new TDataServer("tdsflowreate", "DataBase flowreate");
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));

page 594

CHAPTER XIV. USE-CASES IN C++ Macro "sensitivitySobolRankFunctionFlowrate.C"

tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

// Generation of the sample (it can be a given sample).
Int_t nS = 500;
TSampling *sampling = new TSampling(tds, "lhs", nS);
sampling->generateSample();

TLauncherFunction * tlf = new TLauncherFunction(tds, "flowrateModel");
tlf->setDrawProgressBar(kFALSE);
tlf->run();

// Create a TSobolRank object, compute indexes and print results
TSobolRank * tsobolrank = new TSobolRank(tds, "rw:r:tu:tl:hu:hl:l:kw","flowrateModel");
tsobolrank->computeIndexes("quiet");
tsobolrank->getResultTuple()->SetScanField(60);
tsobolrank->getResultTuple()->Scan("Out:Inp:Method:Order:Value:CILower:CIUpper");

// Print Sobol indexes
TCanvas *can = new TCanvas("c1", "Graph for the Macro sensitivitySobolRankFunctionFlowrate ←↩

",5,64,1270,667);
tsobolrank->drawIndexes("Flowrate", "", "hist,first,nonewcanv");

}

The function flowrateModel is loaded from the macro UserFunctions.C (the file can be found in ${URANIESYS}/share/uranie/macros)

gROOT->LoadMacro("UserFunctions.C");

Each parameter is related to the TDataServer as a TAttribute and obeys an uniform law on specific interval

// Define the DataServer
TDataServer *tds = new TDataServer("tdsflowreate", "DataBase flowreate");
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

SobolRank does not need a specific DOE, it works with a given sample. We generate a sample with TSampling
and we evaluate it using TLauncherFunction

Int_t nS = 500;
TSampling *sampling = new TSampling(tds, "lhs", nS);
sampling->generateSample();

TLauncherFunction * tlf = new TLauncherFunction(tds, "flowrateModel");
tlf->setDrawProgressBar(kFALSE);
tlf->run();

To instantiate the TSobolRank object, one uses the TDataServer,the name of the input and output variables:

TSobolRank * tsobolrank = new TSobolRank(tds, "rw:r:tu:tl:hu:hl:l:kw","flowrateModel");

Computation of sensitivity indexes:

page 595

Macro "sensitivitySobolRankFunctionFlowrate.C" CHAPTER XIV. USE-CASES IN C++

tsobolrank->computeIndexes();

It will produce one plots containing the HSIC indexes and the p-value to test the Independance between inputs and
outputs.The console is also shown below for completness.

XIV.5.20.3 Graph

Figure XIV.62: Graph of the macro "sensitivitySobolRankFunctionFlowrate.C"

XIV.5.20.4 Console

Processing sensitivitySobolRankFunctionFlowrate.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

* Row * Out * Inp * Metho * Order * Value * CILower * CIUpper *

* 0 * flowra * rw * Sobol * First * 0.816872 * -1 * -1 *
* 1 * flowra * r * Sobol * First * -0.04759 * -1 * -1 *
* 2 * flowra * tu * Sobol * First * -0.04164 * -1 * -1 *
* 3 * flowra * tl * Sobol * First * -0.00414 * -1 * -1 *
* 4 * flowra * hu * Sobol * First * 0.041272 * -1 * -1 *
* 5 * flowra * hl * Sobol * First * 0.036748 * -1 * -1 *
* 6 * flowra * l * Sobol * First * 0.062867 * -1 * -1 *
* 7 * flowra * kw * Sobol * First * 0.021273 * -1 * -1 *

page 596

CHAPTER XIV. USE-CASES IN C++ Macros Modeler

XIV.6 Macros Modeler

XIV.6.1 Macro "modelerCornellLinearRegression.C"

XIV.6.1.1 Objective

The objective of the macro is to build a multilinear regression between the predictors related to the normalisation
of the variables x1, x2, x3, x4, x5, x6, x7 and a target variable y from the database contained in the ASCII file
cornell.dat:

#NAME: cornell
#TITLE: Dataset Cornell 1990
#COLUMN_NAMES: x1 | x2 | x3 | x4 | x5 | x6 | x7 | y
#COLUMN_TITLES: x_{1} | x_{2} | x_{3} | x_{4} | x_{5} | x_{6} | x_{7} | y

0.00 0.23 0.00 0.00 0.00 0.74 0.03 98.7
0.00 0.10 0.00 0.00 0.12 0.74 0.04 97.8
0.00 0.00 0.00 0.10 0.12 0.74 0.04 96.6
0.00 0.49 0.00 0.00 0.12 0.37 0.02 92.0
0.00 0.00 0.00 0.62 0.12 0.18 0.08 86.6
0.00 0.62 0.00 0.00 0.00 0.37 0.01 91.2
0.17 0.27 0.10 0.38 0.00 0.00 0.08 81.9
0.17 0.19 0.10 0.38 0.02 0.06 0.08 83.1
0.17 0.21 0.10 0.38 0.00 0.06 0.08 82.4
0.17 0.15 0.10 0.38 0.02 0.10 0.08 83.2
0.21 0.36 0.12 0.25 0.00 0.00 0.06 81.4
0.00 0.00 0.00 0.55 0.00 0.37 0.08 88.1

XIV.6.1.2 Macro Uranie

{
TDataServer * tds = new TDataServer();
tds->fileDataRead("cornell.dat");

tds->normalize("*", "cr"); // ("x1:x2:x3:x4:x5:x6:y", "cr", TDataServer::kCR)

TCanvas *c = new TCanvas("c1", "Graph for the Macro modeler",5,64,1270,667);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();
pad->Divide(2);
pad->cd(1);
tds->draw("y:x7");

TLinearRegression *tlin = new TLinearRegression(tds,"x1cr:x2cr:x3cr:x4cr:x5cr:x6cr", "ycr ←↩
", "nointercept");

tlin->estimate();

pad->cd(2);
tds->draw("ycr:ycrhat");

}

The ASCII data file cornell.dat is loaded in the TDataServer:

TDataServer * tds = new TDataServer();
tds->fileDataRead("cornell.dat");

The variables are all normalised with a standardised method. The normalised attributes are created with the cr exten-
sion:

page 597

Macro "modelerFlowrateLinearRegression.C" CHAPTER XIV. USE-CASES IN C++

tds->normalize("*", "cr");

The linear regression is initialised and characteristic values are computed for each normalised variable with the
estimate method. The regression is built with no intercept:

TLinearRegression *tlin = new TLinearRegression(tds,"x1cr:x2cr:x3cr:x4cr:x5cr:x6cr", "ycr", ←↩
"nointercept");

tlin->estimate();

XIV.6.1.3 Graph

Figure XIV.63: Graph of the macro "modelerCornellLinearRegression.C"

XIV.6.2 Macro "modelerFlowrateLinearRegression.C"

XIV.6.2.1 Objective

The objective of this macro is to build a linear regression between a predictor rw and a target variable yhat from the
database contained in the ASCII file flowrate_sampler_launcher_500.dat defining values for the eight
variables described in Section IV.1.2.1 on 500 patterns.

XIV.6.2.2 Macro Uranie

{
TDataServer * tds = new TDataServer();
tds->fileDataRead("flowrate_sampler_launcher_500.dat");

TCanvas *c = new TCanvas("c1", "Graph for the Macro modeler",5,64,1270,667);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();
pad->Divide(2);
pad->cd(1); tds->draw("yhat:rw");

// tds->getAttribute("yhat")->setOutput();

TLinearRegression *tlin = new TLinearRegression(tds, "rw","yhat");

page 598

CHAPTER XIV. USE-CASES IN C++ Macro "modelerFlowrateMultiLinearRegression.C"

tlin->estimate();

pad->cd(2); tds->draw("yhathat:yhat");

tds->startViewer();

}

The TDataServer is loaded with the database contained in the file flowrate_sampler_launcher_500.
dat with the fileDataRead method:

TDataServer * tds = new TDataServer();
tds->fileDataRead("flowrate_sampler_launcher_500.dat");

The linear regression is initialised and characteristic values are computed for rw with the estimate method:

TLinearRegression *tlin = new TLinearRegression(tds, "rw","yhat");
tlin->estimate();

XIV.6.2.3 Graph

Figure XIV.64: Graph of the macro "modelerFlowrateLinearRegression.C"

XIV.6.3 Macro "modelerFlowrateMultiLinearRegression.C"

XIV.6.3.1 Objective

The objective of the macro is to build a multilinear regression between the predictors rω , r, Tu, Tl , Hu, Hl , L, Kω and
a target variable yhat from the database contained in the ASCII file flowrate_sampler_launcher_500.dat
defining values for these eight variables described in Section IV.1.2.1 on 500 patterns. Parameters of the regression
are then exported in a .C file _FileContainingFunction_.C:

void MultiLinearFunction(double *param, double *res)
{
//////////////////////////////
//
// ***

page 599

Macro "modelerFlowrateMultiLinearRegression.C" CHAPTER XIV. USE-CASES IN C++

// ** Uranie v3.12/0 - Date : Thu Jan 04, 2018
// ** Export Modeler : Modeler[LinearRegression]Tds[tdsFlowrate]Predictor[rw:r:tu:tl: ←↩

hu:hl:l:kw]Target[yhat]
// ** Date : Tue Jan 9 12:08:27 2018

// ***
//
// ***
// ** TDataServer
// ** Name : tdsFlowrate
// ** Title : Design of experiments for Flowrate
// ** Patterns : 500
// ** Attributes : 10
// ***
//
// INPUT : 8
// rw : Min[0.050069828419999997] Max[0.14991758599999999] Unit[]
// r : Min[147.90551809999999] Max[49906.309529999999] Unit[]
// tu : Min[63163.702980000002] Max[115568.17200000001] Unit[]
// tl : Min[63.169232649999998] Max[115.90147020000001] Unit[]
// hu : Min[990.00977509999996] Max[1109.786159] Unit[]
// hl : Min[700.14498509999999] Max[819.81105760000003] Unit[]
// l : Min[1120.3428429999999] Max[1679.3424649999999] Unit[]
// kw : Min[9857.3689890000005] Max[12044.00546] Unit[]
//
// OUTPUT : 1
// yhat : Min[13.09821] Max[208.25110000000001] Unit[]
//
//////////////////////////////
//
// QUALITY :
//
// R2 = 0.948985
// R2a = 0.948154
// Q2 = 0.946835
//
//////////////////////////////

// Intercept
double y = -156.03;

// Attribute : rw
y += param[0]*1422.21;

// Attribute : r
y += param[1]*-3.07412e-07;

// Attribute : tu
y += param[2]*2.15208e-06;

// Attribute : tl
y += param[3]*-0.00498512;

// Attribute : hu
y += param[4]*0.261104;

// Attribute : hl
y += param[5]*-0.254419;

// Attribute : l
y += param[6]*-0.0557145;

page 600

CHAPTER XIV. USE-CASES IN C++ Macro "modelerFlowrateMultiLinearRegression.C"

// Attribute : kw
y += param[7]*0.00813552;

// Return the value
res[0] = y;

}

This file contains a MultiLinearFunction function. Comparison is made with a database generated from random
variables obeying uniform laws and output variable calculated with this database and the MultiLinearFunction
function.

XIV.6.3.2 Macro Uranie

{
TDataServer * tds = new TDataServer();
tds->fileDataRead("flowrate_sampler_launcher_500.dat");

TCanvas *c = new TCanvas("c1", "Graph for the Macro modeler",5,64,1270,667);
c->Divide(2);
c->cd(1); tds->draw("yhat:rw");

// tds->getAttribute("yhat")->setOutput();

TLinearRegression *tlin = new TLinearRegression(tds, "rw:r:tu:tl:hu:hl:l:kw", "yhat");
tlin->estimate();

tlin->exportFunction("c++", "_FileContainingFunction_", "MultiLinearFunction");

// Define the DataServer
TDataServer *tds2 = new TDataServer("tdsFlowrate", "Design of experiments for Flowrate");

// Add the study attributes
tds2->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds2->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds2->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds2->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds2->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds2->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds2->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds2->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

Int_t nS = 1000;
// \test Générateur de plan d’expérience
TSampling *sampling = new TSampling(tds2, "lhs", nS);
sampling->generateSample();

gROOT->LoadMacro("_FileContainingFunction_.C");

// Create a TLauncherFunction from a TDataServer and an analytical function
// Rename the outpout attribute "ymod"
TLauncherFunction * tlf = new TLauncherFunction(tds2, "MultiLinearFunction","","ymod");
// Evaluate the function on all the design of experiments
tlf->run();

c->Clear();
tds2->getTuple()->SetMarkerColor(kBlue);
tds2->getTuple()->SetMarkerStyle(8);
tds2->getTuple()->SetMarkerSize(1.2);

page 601

Macro "modelerFlowrateMultiLinearRegression.C" CHAPTER XIV. USE-CASES IN C++

tds->getTuple()->SetMarkerColor(kGreen);
tds->getTuple()->SetMarkerStyle(8);
tds->getTuple()->SetMarkerSize(1.2);

tds2->draw("ymod:rw");
tds->draw("yhat:rw","","same");

}

The TDataServer is loaded with the database contained in the file flowrate_sampler_launcher_500.
dat with the fileDataRead method:

TDataServer * tds = new TDataServer();
tds->fileDataRead("flowrate_sampler_launcher_500.dat");

The linear regression is initialised and characteristic values are computed for each variable with the estimate
method:

TLinearRegression *tlin = new TLinearRegression(tds, "rw:r:tu:tl:hu:hl:l:kw", "yhat");
tlin->estimate();

The model is exported in an external file in C++ language _FileContainingFunction_.C where the function
name is MultiLinearFunction:

tlin->exportFunction("c++", "_FileContainingFunction_", "MultiLinearFunction");

A second TDataServer is created. The previous variables then obey uniform laws and are linked as TAttribute
in this new TDataServer:

tds2->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds2->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds2->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds2->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds2->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds2->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds2->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds2->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

A sampling is realised with a LHS method on 1000 patterns:

TSampling *sampling = new TSampling(tds2, "lhs", nS=1000);
sampling->generateSample();

The previously exported macro _FileContainingFunction_.C is loaded so as to perform calculation over
the database in the second TDataServer with the function MultiLinearFunction. Results are stored in the
ymod variable:

gROOT->LoadMacro("_FileContainingFunction_.C");
TLauncherFunction * tlf = new TLauncherFunction(tds2, "MultiLinearFunction", "", "ymod");
tlf->run();

page 602

CHAPTER XIV. USE-CASES IN C++ Macro "modelerFlowrateNeuralNetworks.C"

XIV.6.3.3 Graph

Figure XIV.65: Graph of the macro "modelerFlowrateMultiLinearRegression.C"

XIV.6.4 Macro "modelerFlowrateNeuralNetworks.C"

XIV.6.4.1 Objective

The objective of this macro is to build a surrogate model (an Artificial Neural Network) from a database. From
a first database created from an ASCII file flowrate_sampler_launcher_500.dat (which defines values
for eight variables described in Section IV.1.2.1 on 500 patterns), two ASCII files are created: one with the 300st
patterns (_flowrate_sampler_launcher_app_.dat), the other with the 200 last patterns (_flowrate_
sampler_launcher_val_.dat). The surrogate model is built with the database extracted from the first of the
two files, the second allowing to perform calculations with a function.

XIV.6.4.2 Macro Uranie

{
// Create a TDataServer
// Load a database in an ASCII file
TDataServer * tdsu = new TDataServer("tdsu","tds u");
tdsu->fileDataRead("flowrate_sampler_launcher_500.dat");

//Create database
tdsu->exportData("_flowrate_sampler_launcher_app_.dat", "","tdsFlowrate__n__iter__<=300") ←↩

;
tdsu->exportData("_flowrate_sampler_launcher_val_.dat", "","tdsFlowrate__n__iter__>300");

TDataServer * tds = new TDataServer("tdsFlowrate", "tds for flowrate");
tds->fileDataRead("_flowrate_sampler_launcher_app_.dat");

TCanvas *c = new TCanvas("c1", "Graph for the Macro modeler",5,64,1270,667);
// Buils a surrogate model (Artificial Neural Networks) from the DataBase
TANNModeler* tann = new TANNModeler(tds, "rw:r:tu:tl:hu:hl:l:kw,3,yhat");
tann->setFcnTol(1e-5);
//tann->setLog();
tann->train(3, 2, "test");

page 603

Macro "modelerFlowrateNeuralNetworks.C" CHAPTER XIV. USE-CASES IN C++

tann->exportFunction("pmmlc++","uranie_ann_flowrate","ANNflowrate");

gROOT->LoadMacro("uranie_ann_flowrate.C");

TDataServer * tdsv = new TDataServer();
tdsv->fileDataRead("_flowrate_sampler_launcher_val_.dat");

cout << tdsv->getNPatterns() << endl;

// evaluate the surrogate model on the database
TLauncherFunction * tlf = new TLauncherFunction(tdsv, "ANNflowrate", "rw:r:tu:tl:hu:hl:l: ←↩

kw", "yann");
tlf->run();

tdsv->startViewer();

tdsv->Draw("yann:yhat");
// tdsv->draw("yhat");

}

The main TDataServer loads the main ASCII data file flowrate_sampler_launcher_500.dat

TDataServer * tdsu = new TDataServer("tdsu","tds u");
tdsu->fileDataRead("flowrate_sampler_launcher_500.dat");

The database is split in two parts by exporting the 300st patterns in a file and the remaining 200 in another one:

tdsu->exportData("_flowrate_sampler_launcher_app_.dat", "","tdsFlowrate__n__iter__<=300");
tdsu->exportData("_flowrate_sampler_launcher_val_.dat", "","tdsFlowrate__n__iter__>300");

A second TDataServer loads _flowrate_sampler_launcher_app_.dat and builds the surrogate model
over all the variables:

TDataServer * tds = new TDataServer("tds", "tds for flowrate");
tds->fileDataRead("_flowrate_sampler_launcher_app_.dat");
TANNModeler* tann = new TANNModeler(tds, "rw:r:tu:tl:hu:hl:l:kw,3,yhat");
tann->setFcnTol(1e-5);
tann->train(3, 2, "test");

The model is exported in an external file in C++ language "uranie_ann_flowrate.C where the function name
is ANNflowrate:

tann->exportFunction("c++", "uranie_ann_flowrate.C","ANNflowrate");

The model is loaded from the macro "uranie_ann_flowrate.C and applied on the second database with the
function ANNflowrate:

gROOT->LoadMacro("uranie_ann_flowrate.C");
TDataServer * tdsv = new TDataServer();
tdsv->fileDataRead("_flowrate_sampler_launcher_val_.dat");
TLauncherFunction * tlf = new TLauncherFunction(tdsv, "ANNflowrate", "rw:r:tu:tl:hu:hl:l:kw ←↩

", "yann");
tlf->run();

page 604

CHAPTER XIV. USE-CASES IN C++ Macro "modelerFlowrateNeuralNetworks.C"

XIV.6.4.3 Graph

Figure XIV.66: Graph of the macro "modelerFlowrateNeuralNetworks.C"

XIV.6.4.4 Console

Processing modelerFlowrateNeuralNetworks.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

<URANIE::WARNING>
<URANIE::WARNING> *** URANIE WARNING ***
<URANIE::WARNING> *** File[${SOURCEDIR}/dataSERVER/souRCE/TDataServer.cxx] Line[759]
<URANIE::WARNING> TDataServer::fileDataRead: Expected iterator tdsu__n__iter__ not found ←↩

but tdsFlowrate__n__iter__ looks like an URANIE iterator => Will be used as so.
<URANIE::WARNING> *** END of URANIE WARNING ***
<URANIE::WARNING>

** TANNModeler::train niter[3] ninit[2]

** init the ANN

** Input (1) Name[rw] Min[0.101018] Max[0.0295279]

** Input (2) Name[r] Min[25668.6] Max[14838.3]

** Input (3) Name[tu] Min[89914.4] Max[14909]

** Input (4) Name[tl] Min[89.0477] Max[15.0121]

** Input (5) Name[hu] Min[1048.92] Max[34.8615]

** Input (6) Name[hl] Min[763.058] Max[33.615]

** Input (7) Name[l] Min[1401.09] Max[163.611]

** Input (8) Name[kw] Min[10950.2] Max[635.503]

** Output (1) Name[yhat] Min[78.0931] Max[44.881]

** Tolerance (1e-05)

** sHidden (3) (3)

** Nb Weights (31)

** ActivationFunction[LOGISTIC]

**

** iter[1/3] : *= : mse_min[0.00150425]

** iter[2/3] : ** : mse_min[0.0024702]

** iter[3/3] : *= : mse_min[0.00122167]

page 605

Macro "modelerFlowrateNeuralNetworksLoadingPMML.C" CHAPTER XIV. USE-CASES IN C++

** solutions : 3

** isol[1] iter[0] learn[0.00126206] test[0.00150425] *
** isol[2] iter[1] learn[0.00152949] test[0.0024702]

** isol[3] iter[2] learn[0.00107926] test[0.00122167] *
** CPU training finished. Total elapsed time: 1.48 sec

*** TModeler::exportFunction lang[pmmlc++] file[uranie_ann_flowrate] name[ANNflowrate] ←↩

soption[]

*** exportFunction lang[pmmlc++] file[uranie_ann_flowrate] name[ANNflowrate]

PMML Constructor: uranie_ann_flowrate.pmml

*** End Of exportModelPMML

*** End Of exportFunction

XIV.6.5 Macro "modelerFlowrateNeuralNetworksLoadingPMML.C"

XIV.6.5.1 Objective

The objective of this macro is to build a surrogate model (an Artificial Neural Network) from a PMML file.

XIV.6.5.2 Macro Uranie

{

// Create a TDataServer
// Load a database in an ASCII file
TDataServer * tds = new TDataServer("tdsFlowrate", "tds for flowrate");
tds->fileDataRead("_flowrate_sampler_launcher_app_.dat");

TCanvas *c = new TCanvas("c1", "Graph for the Macro modeler",5,64,1270,667);
// Build a surrogate model (Artificial Neural Networks) from the PMML file
TANNModeler* tann = new TANNModeler(tds, "uranie_ann_flowrate.pmml","ANNflowrate");

// export the surrogate model in a C file
tann->exportFunction("c++", "uranie_ann_flowrate_loaded","ANNflowrate");
// load the surrogate model in the C file
gROOT->LoadMacro("uranie_ann_flowrate_loaded.C");

TDataServer * tdsv = new TDataServer("tdsv", "tds for surrogate model");
tdsv->fileDataRead("_flowrate_sampler_launcher_val_.dat");

cout << tdsv->getNPatterns() << endl;

// evaluate the surrogate model on the database
TLauncherFunction * tlf = new TLauncherFunction(tdsv, "ANNflowrate", "rw:r:tu:tl:hu:hl:l: ←↩

kw", "yann");
tlf->run();

tdsv->startViewer();

page 606

CHAPTER XIV. USE-CASES IN C++ Macro "modelerFlowrateNeuralNetworksLoadingPMML.C"

tdsv->Draw("yann:yhat");
// tdsv->draw("yhat");

}

A TDataServer loads _flowrate_sampler_launcher_app_.dat:

TDataServer * tds = new TDataServer("tds", "tds for flowrate");
tds->fileDataRead("_flowrate_sampler_launcher_app_.dat");

The surrogate model is loaded from a PMML file:

TANNModeler* tann = new TANNModeler(tds, "uranie_ann_flowrate.pmml","ANNflowrate");

The model is exported in an external file in C++ language "uranie_ann_flowrate.C where the function name
is ANNflowrate:

tann->exportFunction("c++", "uranie_ann_flowrate.C","ANNflowrate");

The model is loaded from the macro "uranie_ann_flowrate.C and applied on the database with the function
ANNflowrate:

gROOT->LoadMacro("uranie_ann_flowrate.C");
TDataServer * tdsv = new TDataServer();
tdsv->fileDataRead("_flowrate_sampler_launcher_val_.dat");
TLauncherFunction * tlf = new TLauncherFunction(tdsv, "ANNflowrate", "rw:r:tu:tl:hu:hl:l:kw ←↩

", "yann");
tlf->run();

XIV.6.5.3 Graph

Figure XIV.67: Graph of the macro "modelerFlowrateNeuralNetworksLoadingPMML.C"

XIV.6.5.4 Console

page 607

Macro "modelerClassificationNeuralNetworks.C" CHAPTER XIV. USE-CASES IN C++

Processing modelerFlowrateNeuralNetworksLoadingPMML.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

PMML Constructor: uranie_ann_flowrate.pmml

*** TModeler::exportFunction lang[c++] file[uranie_ann_flowrate_loaded] name[ANNflowrate] ←↩

soption[]

*** exportFunction lang[c++] file[uranie_ann_flowrate_loaded] name[ANNflowrate]

*** End Of exportFunction

XIV.6.6 Macro "modelerClassificationNeuralNetworks.C"

XIV.6.6.1 Objective

The objective of this macro is to build a surrogate model (an Artificial Neural Network) from a database for a "Clas-
sification" Problem. From a first database loaded from the ASCII file problem2Classes_001000.dat, which
defines three variables (x,y) ∈ [−1.,1]2 and rc01 ∈ {0,1} on 1000 patterns,

two ASCII files are created, one with the 800st patterns (_problem2Classes_app_.dat), the other with the 200
last patterns (_problem2Classes_val_.dat). The surrogate model is built with the database extracted from
the first of the two files, the second allowing to perform calculations with a function.

XIV.6.6.2 Macro Uranie

{
Int_t nH1 = 15;
Int_t nH2 = 10;
Int_t nH3 = 5;

page 608

CHAPTER XIV. USE-CASES IN C++ Macro "modelerClassificationNeuralNetworks.C"

TString sX = "x:y";
TString sY = "rc01";
TString sYhat = Form("%shat_%d_%d_%d", sY.Data(), nH1, nH2, nH3);

// Load a database in an ASCII file
TDataServer * tdsu = new TDataServer("tdsu","tds u");
tdsu->fileDataRead("problem2Classes_001000.dat");

// Split into 2 datasets for learning and testing
tdsu->exportData("_problem2Classes_app_.dat", "", Form("%s<=800", tdsu->getIteratorName ←↩

()));
tdsu->exportData("_problem2Classes_val_.dat", "", Form("%s>800", tdsu->getIteratorName ←↩

()));

TDataServer * tds = new TDataServer("tdsApp", "tds App for problem2Classes");
tds->fileDataRead("_problem2Classes_app_.dat");

TANNModeler* tann = new TANNModeler(tds, Form("%s,%d,%d,%d,@%s", sX.Data(), nH1, nH2, ←↩
nH3, sY.Data()));

//tann->setLog();
tann->setNormalization(TANNModeler::kMinusOneOne);
tann->setFcnTol(1e-6);
tann->train(2, 2, "test", kFALSE);

tann->exportFunction("c++","uranie_ann_problem2Classes","ANNproblem2Classes");

gROOT->LoadMacro("uranie_ann_problem2Classes.C");

TDataServer * tdsv = new TDataServer();
tdsv->fileDataRead("_problem2Classes_val_.dat");

// evaluate the surrogate model on the database
TLauncherFunction * tlf = new TLauncherFunction(tdsv, "ANNproblem2Classes", sX, sYhat);
tlf->run();

TCanvas *c = new TCanvas("c1", "Graph for the Macro modeler",5,64,1270,667);
// Buils a surrogate model (Artificial Neural Networks) from the DataBase
tds->getTuple()->SetMarkerStyle(8);
tds->getTuple()->SetMarkerSize(1.0);
tds->getTuple()->SetMarkerColor(kGreen);
tds->draw(Form("%s:%s", sY.Data(), sX.Data()));

tdsv->getTuple()->SetMarkerStyle(8);
tdsv->getTuple()->SetMarkerSize(0.75);
tdsv->getTuple()->SetMarkerColor(kRed);
tdsv->Draw(Form("%s:%s", sYhat.Data(), sX.Data()),"","same");

}

The main TDataServer loads the main ASCII data file problem2Classes_001000.dat

TDataServer * tdsu = new TDataServer("tdsu","tds u");
tdsu->fileDataRead("problem2Classes_001000.dat");

The database is split with the internal iterator attribute in two parts by exporting the 800st patterns in a file and the
remaining 200 in another one

tdsu->exportData("_problem2Classes_app_.dat", "",Form("%s<=800", tdsu->getIteratorName()));
tdsu->exportData("_problem2Classes_val_.dat", "", Form("%s>800", tdsu->getIteratorName()));

page 609

Macro "modelerClassificationNeuralNetworks.C" CHAPTER XIV. USE-CASES IN C++

A second TDataServer loads _problem2Classes_app_.dat and builds the surrogate model over all the
variables with 3 hidden layers, a Hyperbolic Tangent (TanH) activation function (normalization) in the 3 hidden layers
and set the function tolerance to 1e-.6. The "@" character behind the output name defines a classification problem.

TDataServer * tds = new TDataServer("tds", "tds for the 2 Classes problem");
tds->fileDataRead("_problem2Classes_app_.dat");
TANNModeler* tann = new TANNModeler(tds, Form("%s,%d,%d,%d,@%s", sX.Data(), nH1, nH2, nH3, ←↩

sY.Data()));
tann->setNormalization(TANNModeler::kMinusOneOne);
tann->setFcnTol(1e-6);
tann->train(3, 2, "test");

The model is exported in an external file in C++ language "uranie_ann_problem2Classes.C" where the
function name is ANNproblem2Classes

tann->exportFunction("c++", "uranie_ann_problem2Classes.C","ANNproblem2Classes");

The model is loaded from the macro "uranie_ann_problem2Classes.C and applied on the second database
with the function ANNproblem2Classes.

gROOT->LoadMacro("uranie_ann_problem2Classes.C");
TDataServer * tdsv = new TDataServer();
tdsv->fileDataRead("_problem2Classes_val_.dat");
TLauncherFunction * tlf = new TLauncherFunction(tdsv, "ANNproblem2Classes", sX, sYhat);
tlf->run();

We draw on a 3D graph, the learning database (in green) and the estimations by the Artificial Neural Network with red
points.

TCanvas *c = new TCanvas("c1", "Graph for the Macro modeler",5,64,1270,667);
tds->getTuple()->SetMarkerStyle(8);
tds->getTuple()->SetMarkerSize(1.0);
tds->getTuple()->SetMarkerColor(kGreen);
tds->draw(Form("%s:%s", sY.Data(), sX.Data()));

tdsv->getTuple()->SetMarkerStyle(8);
tdsv->getTuple()->SetMarkerSize(0.75);
tdsv->getTuple()->SetMarkerColor(kRed);
tdsv->Draw(Form("%s:%s", sYhat.Data(), sX.Data()),"","same");

page 610

CHAPTER XIV. USE-CASES IN C++ Macro "modelerClassificationNeuralNetworks.C"

XIV.6.6.3 Graph

Figure XIV.68: Graph of the macro "modelerClassificationNeuralNetworks.C"

XIV.6.6.4 Console

Processing modelerClassificationNeuralNetworks.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

<URANIE::WARNING>
<URANIE::WARNING> *** URANIE WARNING ***
<URANIE::WARNING> *** File[${SOURCEDIR}/dataSERVER/souRCE/TDataServer.cxx] Line[759]
<URANIE::WARNING> TDataServer::fileDataRead: Expected iterator tdsu__n__iter__ not found ←↩

but _tds___n__iter__ looks like an URANIE iterator => Will be used as so.
<URANIE::WARNING> *** END of URANIE WARNING ***
<URANIE::WARNING>
<URANIE::WARNING>
<URANIE::WARNING> *** URANIE WARNING ***
<URANIE::WARNING> *** File[${SOURCEDIR}/dataSERVER/souRCE/TDataServer.cxx] Line[759]
<URANIE::WARNING> TDataServer::fileDataRead: Expected iterator tdsApp__n__iter__ not found ←↩

but _tds___n__iter__ looks like an URANIE iterator => Will be used as so.
<URANIE::WARNING> *** END of URANIE WARNING ***
<URANIE::WARNING>

** TANNModeler::train niter[2] ninit[2]

** init the ANN

** Input (1) Name[x] Min[-0.999842] Max[0.998315]

** Input (2) Name[y] Min[-0.999434] Max[0.998071]

** Output (1) Name[rc01] Min[0] Max[1]

** Tolerance (1e-06)

** sHidden (15,10,5) (30)

** Nb Weights (266)

** ActivationFunction[TanH]

**

** iter[1/2] : ** : mse_min[0.00813999]

** iter[2/2] : ** : mse_min[0.00636923]

page 611

Macro "modelerFlowratePolynChaosRegression.C" CHAPTER XIV. USE-CASES IN C++

** solutions : 2

** isol[1] iter[0] learn[0.00405863] test[0.00813999] *
** isol[2] iter[1] learn[0.00560685] test[0.00636923] *
** CPU training finished. Total elapsed time: 16.7 sec

*** TModeler::exportFunction lang[c++] file[uranie_ann_problem2Classes] name[←↩

ANNproblem2Classes] soption[]

*** exportFunction lang[c++] file[uranie_ann_problem2Classes] name[ANNproblem2Classes]

*** End Of exportFunction

XIV.6.7 Macro "modelerFlowratePolynChaosRegression.C"

XIV.6.7.1 Objective

The objective of this macro is to build a polynomial chaos expansion in order to get a surrogate model along with a global
sensitivity interpretation for the flowrate function, whose purpose and behaviour have been already introduced in
Section IV.1.2.1. The method used here is the regression one, as discussed below.

XIV.6.7.2 Macro Uranie

{

gROOT->LoadMacro("UserFunctions.C");

// Define the DataServer
TDataServer *tds = new TDataServer("tdsFlowrate", "Design of experiments for Flowrate") ←↩

;
// Add the eight attributes of the study with uniform law
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

// Define of TNisp object
TNisp *nisp = new TNisp(tds);
nisp->generateSample("QmcSobol", 500); //State that there is a sample ...

// Compute the output variable
TLauncherFunction * tlf = new TLauncherFunction(tds, "flowrateModel","*","ymod");
tlf->setDrawProgressBar(kFALSE);
tlf->run();

// build a chaos polynomial
TPolynomialChaos *pc = new TPolynomialChaos(tds,nisp);

// compute the pc coefficients using the "Regression" method
Int_t degree = 4;

page 612

CHAPTER XIV. USE-CASES IN C++ Macro "modelerFlowratePolynChaosRegression.C"

pc->setDegree(degree);
pc->computeChaosExpansion("Regression");

// Uncertainty and sensitivity analysis
cout << "Variable ymod ================" << endl;
cout << "Mean = " << pc->getMean("ymod") << endl;
cout << "Variance = " << pc->getVariance("ymod") << endl;
cout << "First Order Indices ================" << endl;
cout << "Indice First Order[1] = " << pc->getIndexFirstOrder(0,0) << endl;
cout << "Indice First Order[2] = " << pc->getIndexFirstOrder(1,0) << endl;
cout << "Indice First Order[3] = " << pc->getIndexFirstOrder(2,0) << endl;
cout << "Indice First Order[4] = " << pc->getIndexFirstOrder(3,0) << endl;
cout << "Indice First Order[5] = " << pc->getIndexFirstOrder(4,0) << endl;
cout << "Indice First Order[6] = " << pc->getIndexFirstOrder(5,0) << endl;
cout << "Indice First Order[7] = " << pc->getIndexFirstOrder(6,0) << endl;
cout << "Indice First Order[8] = " << pc->getIndexFirstOrder(7,0) << endl;
cout << "Total Order Indices ================" << endl;
cout << "Indice Total Order[1] = " << pc->getIndexTotalOrder("rw","ymod") << endl;
cout << "Indice Total Order[2] = " << pc->getIndexTotalOrder("r","ymod") << endl;
cout << "Indice Total Order[3] = " << pc->getIndexTotalOrder("tu","ymod") << endl;
cout << "Indice Total Order[4] = " << pc->getIndexTotalOrder("tl","ymod") << endl;
cout << "Indice Total Order[5] = " << pc->getIndexTotalOrder("hu","ymod") << endl;
cout << "Indice Total Order[6] = " << pc->getIndexTotalOrder("hl","ymod") << endl;
cout << "Indice Total Order[7] = " << pc->getIndexTotalOrder("l","ymod") << endl;
cout << "Indice Total Order[8] = " << pc->getIndexTotalOrder("kw","ymod") << endl;

// Dump main factors up to a certain threshold
Double_t seuil = 0.99;
cout<<"Ordered functionnal ANOVA"<<endl;
pc->getAnovaOrdered(seuil,0);

cout << "Number of experiments = " << tds->getNPatterns() << endl;

//save the pv in a program (C langage)
pc->exportFunction("NispFlowrate","NispFlowrate");

}

The first part is just creating a TDataServer and providing the attributes needed to define the problem. From there, a
TNisp object is created, providing the dataserver that specifies the inputs. This class is used to generate the sample.

// Define of TNisp object
TNisp *nisp = new TNisp(tds);
nisp->generateSample("QmcSobol", 500); //State that there is a sample ...

The function is launched through a TLauncherFunction instance in order to get the output values that will be
needed to train the surrogate model.

TLauncherFunction * tlf = new TLauncherFunction(tds, "flowrateModel","*","ymod");
tlf->run();

Finally, a TPolynomialChaos instance is created and the computation of the coefficients is performed by request-
ing a truncature on the resulting degree of the polynomial expansion (set to 4) and the use of a regression method.

// build a chaos polynomial
TPolynomialChaos *pc = new TPolynomialChaos(tds,nisp);
// compute the pc coefficients using the "Regression" method
Int_t degree = 4;
pc->setDegree(degree);
pc->computeChaosExpansion("Regression");

page 613

Macro "modelerFlowratePolynChaosIntegration.C" CHAPTER XIV. USE-CASES IN C++

The rest of the code is showing how to access the resulting sensitivity indices either one-by-one, or ordered up to a
chosen threshold of the output variance.

XIV.6.7.3 Console

Processing modelerFlowratePolynChaosRegression.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

Variable ymod ================
Mean = 77.651
Variance = 2079.68
First Order Indices ================
Indice First Order[1] = 0.828732
Indice First Order[2] = 1.05548e-06
Indice First Order[3] = 9.86805e-08
Indice First Order[4] = 4.77668e-06
Indice First Order[5] = 0.0414015
Indice First Order[6] = 0.0413215
Indice First Order[7] = 0.039401
Indice First Order[8] = 0.00954644
Total Order Indices ================
Indice Total Order[1] = 0.866773
Indice Total Order[2] = 9.27467e-06
Indice Total Order[3] = 7.01768e-06
Indice Total Order[4] = 1.71944e-05
Indice Total Order[5] = 0.0541916
Indice Total Order[6] = 0.0540578
Indice Total Order[7] = 0.0522121
Indice Total Order[8] = 0.0127809

XIV.6.8 Macro "modelerFlowratePolynChaosIntegration.C"

XIV.6.8.1 Objective

The objective of this macro is to build a polynomial chaos expansion in order to get a surrogate model along with a global
sensitivity interpretation for the flowrate function, whose purpose and behaviour have been already introduced in
Section IV.1.2.1. The method used here is the regression one, as discussed below.

XIV.6.8.2 Macro Uranie

{

gROOT->LoadMacro("UserFunctions.C");

// Define the DataServer
TDataServer *tds = new TDataServer("tdsFlowrate", "Design of experiments for Flowrate") ←↩

;
// Add the eight attributes of the study with uniform law
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("r", 100.0, 50000.0));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));

page 614

CHAPTER XIV. USE-CASES IN C++ Macro "modelerFlowratePolynChaosIntegration.C"

tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

// Define of TNisp object
TNisp *nisp = new TNisp(tds);
nisp->generateSample("Petras", 5); //State that there is a sample ...

// Compute the output variable
TLauncherFunction * tlf = new TLauncherFunction(tds, "flowrateModel","*","ymod");
tlf->setDrawProgressBar(kFALSE);
tlf->run();

// build a chaos polynomial
TPolynomialChaos *pc = new TPolynomialChaos(tds,nisp);

// compute the pc coefficients using the "Integration" method
Int_t degree = 4;
pc->setDegree(degree);
pc->computeChaosExpansion("Integration");

// Uncertainty and sensitivity analysis
cout << "Variable ymod ================" << endl;
cout << "Mean = " << pc->getMean("ymod") << endl;
cout << "Variance = " << pc->getVariance("ymod") << endl;
cout << "First Order Indices ================" << endl;
cout << "Indice First Order[1] = " << pc->getIndexFirstOrder(0,0) << endl;
cout << "Indice First Order[2] = " << pc->getIndexFirstOrder(1,0) << endl;
cout << "Indice First Order[3] = " << pc->getIndexFirstOrder(2,0) << endl;
cout << "Indice First Order[4] = " << pc->getIndexFirstOrder(3,0) << endl;
cout << "Indice First Order[5] = " << pc->getIndexFirstOrder(4,0) << endl;
cout << "Indice First Order[6] = " << pc->getIndexFirstOrder(5,0) << endl;
cout << "Indice First Order[7] = " << pc->getIndexFirstOrder(6,0) << endl;
cout << "Indice First Order[8] = " << pc->getIndexFirstOrder(7,0) << endl;
cout << "Total Order Indices ================" << endl;
cout << "Indice Total Order[1] = " << pc->getIndexTotalOrder("rw","ymod") << endl;
cout << "Indice Total Order[2] = " << pc->getIndexTotalOrder("r","ymod") << endl;
cout << "Indice Total Order[3] = " << pc->getIndexTotalOrder("tu","ymod") << endl;
cout << "Indice Total Order[4] = " << pc->getIndexTotalOrder("tl","ymod") << endl;
cout << "Indice Total Order[5] = " << pc->getIndexTotalOrder("hu","ymod") << endl;
cout << "Indice Total Order[6] = " << pc->getIndexTotalOrder("hl","ymod") << endl;
cout << "Indice Total Order[7] = " << pc->getIndexTotalOrder("l","ymod") << endl;
cout << "Indice Total Order[8] = " << pc->getIndexTotalOrder("kw","ymod") << endl;

// Dump main factors up to a certain threshold
Double_t seuil = 0.99;
cout<<"Ordered functionnal ANOVA"<<endl;
pc->getAnovaOrdered(seuil,0);

cout << "Number of experiments = " << tds->getNPatterns() << endl;

//save the pv in a program (C langage)
pc->exportFunction("NispFlowrate","NispFlowrate");

}

The first part is just creating a TDataServer and providing the attributes needed to define the problem. From there,
a TNisp object is created, providing the dataserver that specifies the inputs. This class is used to generate the sample
(Petras being a design-of-experiments dedicated to integration problem).

page 615

Macro "modelerFlowratePolynChaosIntegration.C" CHAPTER XIV. USE-CASES IN C++

// Define of TNisp object
TNisp *nisp = new TNisp(tds);
nisp->generateSample("Petras", 5); //State that there is a sample ...

The function is launched through a TLauncherFunction instance in order to get the output values that will be
needed to train the surrogate model.

TLauncherFunction * tlf = new TLauncherFunction(tds, "flowrateModel","*","ymod");
tlf->run();

Finally, a TPolynomialChaos instance is created and the computation of the coefficients is performed by request-
ing a truncature on the resulting degree of the polynomial expansion (set to 4) and the use of a regression method.

// build a chaos polynomial
TPolynomialChaos *pc = new TPolynomialChaos(tds,nisp);
// compute the pc coefficients using the "Integration" method
Int_t degree = 4;
pc->setDegree(degree);
pc->computeChaosExpansion("Integration");

The rest of the code is showing how to access the resulting sensitivity indices either one-by-one, or ordered up to a
chosen threshold of the output variance.

XIV.6.8.3 Console

Processing modelerFlowratePolynChaosIntegration.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

Variable ymod ================
Mean = 77.6511
Variance = 2078.91
First Order Indices ================
Indice First Order[1] = 0.828922
Indice First Order[2] = 1.04477e-06
Indice First Order[3] = 8.94692e-12
Indice First Order[4] = 5.30299e-06
Indice First Order[5] = 0.0413852
Indice First Order[6] = 0.0413852
Indice First Order[7] = 0.0393419
Indice First Order[8] = 0.00952157
Total Order Indices ================
Indice Total Order[1] = 0.866834
Indice Total Order[2] = 2.16178e-06
Indice Total Order[3] = 2.28296e-09
Indice Total Order[4] = 1.07386e-05
Indice Total Order[5] = 0.0541095
Indice Total Order[6] = 0.0541095
Indice Total Order[7] = 0.0520767
Indice Total Order[8] = 0.0127306

page 616

CHAPTER XIV. USE-CASES IN C++ Macro "modelerbuildSimpleGP.C"

XIV.6.9 Macro "modelerbuildSimpleGP.C"

XIV.6.9.1 Objective

This macro is the one described in Section V.6.2.2, that creates a simple gaussian process, whose training (utf_4D_
train.dat) and testing (utf_4D_test.dat) database can both be found in the document folder of the Uranie
installation (${URANIESYS}/share/uranie/docUMENTS).

XIV.6.9.2 Macro Uranie

{
// Load observations
TDataServer *tdsObs = new TDataServer("tdsObs", "observations");
tdsObs->fileDataRead("utf_4D_train.dat");

// Construct the GPBuilder
TGPBuilder *gpb = new TGPBuilder(tdsObs, // observations data

"x1:x2:x3:x4", // list of input variables
"y", // output variable
"matern3/2"); // name of the correlation function

// Search for the optimal hyper-parameters
gpb->findOptimalParameters("ML", // optimisation criterion

100, // screening design size
"neldermead", // optimisation algorithm
500); // max. number of optimisation iterations

// Construct the kriging model
TKriging *krig = gpb->buildGP();

// Display model information
krig->printLog();

}

XIV.6.9.3 Console

This is the result of the last command:

** TKriging::printLog[]

Input Variables: x1:x2:x3:x4
Output Variable: y
Deterministic trend:
Correlation function: URANIE::Modeler::TMatern32CorrFunction
Correlation length: normalised (not normalised)

1.6181e+00 (1.6172e+00)
1.4372e+00 (1.4370e+00)
1.5026e+00 (1.5009e+00)
6.7884e+00 (6.7944e+00)

Variance of the gaussian process: 70.8755
RMSE (by Leave One Out): 0.499108
Q2: 0.849843

page 617

Macro "modelerbuildGPInitPoint.C" CHAPTER XIV. USE-CASES IN C++

XIV.6.10 Macro "modelerbuildGPInitPoint.C"

XIV.6.10.1 Objective

This macro is the one described in Section V.6.2.7, that creates a gaussian process, whose training (utf_4D_
train.dat) and testing (utf_4D_test.dat) database can both be found in the document folder of the Uranie
installation (${URANIESYS}/share/uranie/docUMENTS), and whose starting point, in the parameter space,
is specified.

XIV.6.10.2 Macro Uranie

{
// Load observations
TDataServer *tdsObs = new TDataServer("tdsObs", "observations");
tdsObs->fileDataRead("utf_4D_train.dat");

// Construct the GPBuilder
TGPBuilder *gpb = new TGPBuilder(tdsObs, "x1:x2:x3:x4", "y", "matern3/2");

// Set the correlation function parameters
Double_t params[4] = {1.0, 0.25, 0.01, 0.3};
gpb->getCorrFunction()->setParameters(params);

// Find the optimal parameters
gpb->findOptimalParameters("ML", // optimisation criterion

0, // screening size MUST be equal to 0
"neldermead", // optimisation algorithm
500, // max. number of optimisation iterations
kFALSE); // we don’t reset the parameters of the GP builder

// Create the kriging model
TKriging *krig = gpb->buildGP();

// Display model information
krig->printLog();

}

XIV.6.10.3 Console

This is the result of the last command:

** TKriging::printLog[]

Input Variables: x1:x2:x3:x4
Output Variable: y
Deterministic trend:
Correlation function: URANIE::Modeler::TMatern32CorrFunction
Correlation length: normalised (not normalised)

1.6182e+00 (1.6173e+00)
1.4373e+00 (1.4371e+00)
1.5027e+00 (1.5011e+00)
6.7895e+00 (6.7955e+00)

Variance of the gaussian process: 70.8914
RMSE (by Leave One Out): 0.49911

page 618

CHAPTER XIV. USE-CASES IN C++ Macro "modelerbuildGPWithAPriori.C"

Q2: 0.849842

XIV.6.11 Macro "modelerbuildGPWithAPriori.C"

XIV.6.11.1 Objective

This macro is the one described in Section V.6.2.4, that creates a gaussian process with a specific trend and an a priori
knowledge on the mean and variance of the trend parameters.

XIV.6.11.2 Macro Uranie

{
// Load observations

TDataServer *tdsObs = new TDataServer("tdsObs", "observations");
tdsObs->fileDataRead("utf_4D_train.dat");

// Construct the GPBuilder
TGPBuilder *gpb = new TGPBuilder(tdsObs, // observations data

"x1:x2:x3:x4", // list of input variables
"y", // output variable
"matern3/2", // name of the correlation function
"linear"); // trend defined by a keyword

// Bayesian study
Double_t meanPrior[5] = {0.0, 0.0, -1.0, 0.0, -0.1};
Double_t covPrior[25] = {1e-4, 0.0 , 0.0 , 0.0 , 0.0 ,

0.0 , 1e-4, 0.0 , 0.0 , 0.0 ,
0.0 , 0.0 , 1e-4, 0.0 , 0.0 ,
0.0 , 0.0 , 0.0 , 1e-4, 0.0 ,
0.0 , 0.0 , 0.0 , 0.0 , 1e-4};

gpb->setPriorData(meanPrior, covPrior);

// Search for the optimal hyper-parameters
gpb->findOptimalParameters("ReML", // optimisation criterion

100, // screening design size
"neldermead", // optimisation algorithm
500); // max. number of optimisation iterations

// Construct the kriging model
TKriging *krig = gpb->buildGP();

// Display model information
krig->printLog();

}

XIV.6.11.3 Console

This is the result of the last command:

** TKriging::printLog[]

page 619

Macro "modelerbuildSimpleGPEstim.C" CHAPTER XIV. USE-CASES IN C++

Input Variables: x1:x2:x3:x4
Output Variable: y
Deterministic trend: linear
Trend parameters (5): [3.06586494e-05; 1.64887174e-05; -9.99986787e-01; 1.51959859e-05; ←↩

-9.99877606e-02]
Correlation function: URANIE::Modeler::TMatern32CorrFunction
Correlation length: normalised (not normalised)

2.1450e+00 (2.1438e+00)
1.9092e+00 (1.9090e+00)
2.0062e+00 (2.0040e+00)
8.4315e+00 (8.4390e+00)

Variance of the gaussian process: 155.533
RMSE (by Leave One Out): 0.495448
Q2: 0.852037

XIV.6.12 Macro "modelerbuildSimpleGPEstim.C"

XIV.6.12.1 Objective

This macro is the one described in Section V.6.3.1, to create and use a simple gaussian process, whose training
(utf_4D_train.dat) and testing (utf_4D_test.dat) database can both be found in the document folder of
the Uranie installation (${URANIESYS}/share/uranie/docUMENTS). It uses the simple one-by-one approch
described in the [30] for completness.

XIV.6.12.2 Macro Uranie

{
// Load observations
TDataServer *tdsObs = new TDataServer("tdsObs", "observations");
tdsObs->fileDataRead("utf_4D_train.dat");

// Construct the GPBuilder
TGPBuilder *gpb = new TGPBuilder(tdsObs, // observations data

"x1:x2:x3:x4", // list of input variables
"y", // output variable
"matern3/2"); // name of the correlation function

// Search for the optimal hyper-parameters
gpb->findOptimalParameters("ML", // optimisation criterion

100, // screening design size
"neldermead", // optimisation algorithm
500); // max. number of optimisation iterations

// Construct the kriging model
TKriging *krig = gpb->buildGP();

// Display model information
krig->printLog();

// Load the data to estimate
TDataServer *tdsEstim = new TDataServer("tdsEstim", "estimations");
tdsEstim->fileDataRead("utf_4D_test.dat");

// Construction of the launcher

page 620

CHAPTER XIV. USE-CASES IN C++ Macro "modelerbuildSimpleGPEstimWithCov.C"

TLauncher2 *lanceur = new TLauncher2(tdsEstim, // data to estimate
krig, // model used for the estimation
"x1:x2:x3:x4", // list of the input variables
"yEstim:vEstim"); // name given to the model’s outputs

// Launch the estimations
lanceur->solverLoop();

// Display some results
tdsEstim->draw("yEstim:y");

}

XIV.6.12.3 Graph

Figure XIV.69: Graph of the macro "modelerbuildSimpleGPEstim.C"

XIV.6.13 Macro "modelerbuildSimpleGPEstimWithCov.C"

XIV.6.13.1 Objective

This macro is the one described in Section V.6.3.2, to create and use a simple gaussian process, whose training
(utf_4D_train.dat) and testing (utf_4D_test.dat) database can both be found in the document folder of
the Uranie installation (${URANIESYS}/share/uranie/docUMENTS). It uses the global approach, computing
the input covariance matrix and translating it to the prediction covariance matrix.

XIV.6.13.2 Macro Uranie

{
// Load observations
TDataServer *tdsObs = new TDataServer("tdsObs", "observations");
tdsObs->fileDataRead("utf_4D_train.dat");

page 621

Macro "modelerbuildSimpleGPEstimWithCov.C" CHAPTER XIV. USE-CASES IN C++

// Construct the GPBuilder
TGPBuilder *gpb = new TGPBuilder(tdsObs, // observations data

"x1:x2:x3:x4", // list of input variables
"y", // output variable
"matern1/2"); // name of the correlation function

// Search for the optimal hyper-parameters
gpb->findOptimalParameters("ML", // optimisation criterion

100, // screening design size
"neldermead", // optimisation algorithm
500); // max. number of optimisation iterations

// Construct the kriging model
TKriging *krig = gpb->buildGP();

// Display model information
krig->printLog();

// Load the data to estimate
TDataServer *tdsEstim = new TDataServer("tdsEstim", "estimations");
tdsEstim->fileDataRead("utf_4D_test.dat");

// Reducing the database to 1000 first event (prediction cov matrix of a million value !)
int nST=1000;
tdsEstim->exportData("utf_4D_test_red.dat","",Form("tdsEstim__n__iter__<=%d",nST));
tdsEstim->fileDataRead("utf_4D_test_red.dat",false,true); // Reload reduce sample

krig->estimateWithCov(tdsEstim, // data to estimate
"x1:x2:x3:x4",// list of the input variables
"yEstim:vEstim", // name given to the model’s outputs
"y", //name of the true reference if validation database
""); //options

TCanvas *c2=NULL;
// Residuals plots if true information provided
if(tdsEstim->isAttribute("_Residuals_"))
{

c2 = new TCanvas("c2","c2",1200,800);
c2->Divide(2,1);
c2->cd(1);
// Usual residual considering uncorrated input points
tdsEstim->Draw("_Residuals_");
c2->cd(2);
// Corrected residuals, with prediction covariance matrix
tdsEstim->Draw("_uncorrResiduals_");

}

// Retrieve all the prediction covariance coefficient
tdsEstim->getTuple()->SetEstimate(nST * nST); //allocate the correct size
// Get a pointer to all values
tdsEstim->getTuple()->Draw("_CovarianceMatrix_","","goff");
double *cov=tdsEstim->getTuple()->GetV1();

//Put these in a matrix nicely created
TMatrixD Cov(nST,nST);
Cov.Use(0,nST-1,0,nST-1,cov);

//Print it if size is reasonnable
if(nST<10)

Cov.Print();

page 622

CHAPTER XIV. USE-CASES IN C++ Macro "modelerTestKriging.C"

}

XIV.6.13.3 Graph

Figure XIV.70: Graph of the macro "modelerbuildSimpleGPEstimWithCov.C"

XIV.6.14 Macro "modelerTestKriging.C"

XIV.6.14.1 Objective

The idea is to provide a simple example of a kriging usage, and an how to, to produce plots in one dimension to
represent the results. This example is the one taken from [30] that uses a very simple set of six points as training
database:

#TITLE: utf-1D-train.dat
#COLUMN_NAMES: x1|y

6.731290e-01 3.431918e-01
7.427596e-01 9.356860e-01
4.518467e-01 -3.499771e-01
2.215734e-02 2.400531e+00
9.915253e-01 2.412209e+00
1.815769e-01 1.589435e+00

The aim will be to get a kriging model that describes this dataset and to check its consistency over a certain number of
points (here 100 points) which will be the testing database:

#TITLE: utf-1D-test.dat
#COLUMN_NAMES: x1|y

5.469435e-02 2.331524e+00
3.803054e-01 -3.277316e-02
7.047152e-01 6.030177e-01
2.360045e-02 2.398694e+00
9.271965e-01 2.268814e+00
7.868263e-01 1.324318e+00

page 623

Macro "modelerTestKriging.C" CHAPTER XIV. USE-CASES IN C++

7.791920e-01 1.257942e+00
6.107965e-01 -8.514510e-02
1.362316e-01 1.926999e+00
5.709913e-01 -2.758435e-01
8.738804e-01 1.992941e+00
2.251602e-01 1.219826e+00
9.175259e-01 2.228545e+00
5.128368e-01 -4.096161e-01
7.692913e-01 1.170999e+00
7.394406e-01 9.062407e-01
5.364506e-01 -3.772856e-01
1.861864e-01 1.551961e+00
7.573444e-01 1.065237e+00
1.005755e-01 2.141109e+00
9.114685e-01 2.201001e+00
3.628465e-01 7.920271e-02
2.383583e-01 1.103353e+00
7.468092e-01 9.716492e-01
3.126209e-01 4.578112e-01
8.034716e-01 1.466248e+00
6.730402e-01 3.424931e-01
8.021345e-01 1.455015e+00
2.503736e-01 9.966807e-01
9.001793e-01 2.145059e+00
7.019990e-01 5.799112e-01
6.001746e-01 -1.432102e-01
4.925013e-01 -4.126441e-01
5.685795e-01 -2.849419e-01
1.238257e-01 2.007351e+00
2.825838e-01 7.124861e-01
4.025708e-01 -1.574002e-01
8.562999e-01 1.875879e+00
3.214125e-01 3.865241e-01
2.021767e-01 1.418581e+00
6.338581e-01 5.717657e-02
3.042007e-01 5.276410e-01
4.860707e-01 -4.088007e-01
9.645326e-01 2.379243e+00
3.583711e-02 2.378513e+00
2.143110e-01 1.314473e+00
7.299624e-01 8.224203e-01
2.719263e-02 2.393622e+00
3.321495e-01 3.020224e-01
8.642671e-01 1.930341e+00
8.893604e-01 2.086039e+00
1.119469e-01 2.078562e+00
9.859741e-01 2.408725e+00
5.594688e-01 -3.166326e-01
1.904448e-01 1.516930e+00
4.232618e-01 -2.529865e-01
1.402221e-01 1.899932e+00
2.647519e-01 8.691058e-01
1.667035e-01 1.706823e+00
2.332246e-01 1.148786e+00
8.324190e-01 1.700059e+00
4.743443e-01 -3.958790e-01
3.435927e-01 2.154677e-01
9.846049e-01 2.407603e+00
9.705327e-01 2.390043e+00
6.631883e-01 2.662970e-01
6.153726e-01 -5.862472e-02
4.632361e-01 -3.766509e-01

page 624

CHAPTER XIV. USE-CASES IN C++ Macro "modelerTestKriging.C"

6.474053e-01 1.502050e-01
7.161034e-02 2.273461e+00
4.514511e-01 -3.489255e-01
5.976782e-02 2.315661e+00
8.361934e-01 1.729000e+00
5.280981e-01 -3.922313e-01
9.394759e-01 2.313181e+00
2.710088e-01 8.138628e-01
8.161943e-01 1.571375e+00
5.047683e-01 -4.135789e-01
8.427635e-02 2.220534e+00
3.540224e-01 1.400987e-01
4.698548e-03 2.413597e+00
9.124315e-02 2.188105e+00
9.996285e-01 2.414210e+00
4.167139e-01 -2.249546e-01
5.892062e-01 -1.978247e-01
2.929336e-01 6.231119e-01
4.456454e-01 -3.325379e-01
1.148699e-02 2.410532e+00
3.892636e-01 -8.548741e-02
7.188374e-01 7.248622e-01
3.697949e-01 3.323350e-02
6.864519e-01 4.502113e-01
1.586679e-01 1.767741e+00
6.603030e-01 2.445009e-01
6.277168e-01 1.721489e-02
4.305704e-01 -2.817686e-01
1.553435e-01 1.792379e+00
5.476842e-01 -3.512131e-01
8.475444e-01 1.813503e+00
9.527370e-01 2.352313e+00

In this example, two different correlation functions are tested and the obtained results are compared at the end.

XIV.6.14.2 Macro Uranie

void PrintSolutions(TDataServer *tdsObs, TDataServer *tdsEstim, string title)
{

const int nbObs = tdsObs->getNPatterns();
const int nbEst = tdsEstim->getNPatterns();
vector<double> Rxarr(nbEst,0), x_arr(nbEst,0), y_est(nbEst,0), y_rea(nbEst,0), std_var(←↩

nbEst,0);

tdsEstim->computeRank("x1");
tdsEstim->getTuple()->copyBranchData(&Rxarr[0],nbEst,"Rk_x1");
tdsEstim->getTuple()->copyBranchData(&x_arr[0],nbEst,"x1");
tdsEstim->getTuple()->copyBranchData(&y_est[0],nbEst,"yEstim");
tdsEstim->getTuple()->copyBranchData(&y_rea[0],nbEst,"y");
tdsEstim->getTuple()->copyBranchData(&std_var[0],nbEst,"vEstim");

vector<double> xarr(nbEst,0), yest(nbEst,0), yrea(nbEst,0), stdvar(nbEst,0);
int ind;
for (int i=0; i<nbEst; i++)
{
ind = int(Rxarr[i]) - 1;
xarr[ind] = x_arr[i];
yest[ind] = y_est[i];
yrea[ind] = y_rea[i];

page 625

Macro "modelerTestKriging.C" CHAPTER XIV. USE-CASES IN C++

stdvar[ind] = 2*sqrt(fabs(std_var[i]));
}

vector<double> xobs(nbObs,0); tdsObs->getTuple()->copyBranchData(&xobs[0],nbObs,"x1");
vector<double> yobs(nbObs,0); tdsObs->getTuple()->copyBranchData(&yobs[0],nbObs,"y");

TGraph *gobs = new TGraph(nbObs,&xobs[0],&yobs[0]);
gobs->SetMarkerColor(1); gobs->SetMarkerSize(1); gobs->SetMarkerStyle(8);
TGraphErrors *gest = new TGraphErrors(nbEst,&xarr[0],&yest[0],0,&stdvar[0]);
gest->SetLineColor(2); gest->SetLineWidth(1); gest->SetFillColor(2); gest->SetFillStyle ←↩

(3002);
TGraph *grea = new TGraph(nbEst,&xarr[0],&yrea[0]);
grea->SetMarkerColor(4); grea->SetMarkerSize(1); grea->SetMarkerStyle(5); grea->SetTitle(←↩

"Real Values");

TMultiGraph *mg = new TMultiGraph("toto", title.c_str());
mg->Add(gest,"l3"); mg->Add(gobs,"P"); mg->Add(grea,"P");
mg->Draw("A");
mg->GetXaxis()->SetTitle("x_{1}");

TLegend *leg= new TLegend(0.4,0.65,0.65,0.8);
leg->AddEntry(gobs, "Observations", "p");
leg->AddEntry(grea, "Real values", "p");
leg->AddEntry(gest, "Estimated values", "lf");
leg->Draw();

}

void modelerTestKriging()
{

//Create dataserver and read training database
TDataServer *tdsObs = new TDataServer("tdsObs","observations");
tdsObs->fileDataRead("utf-1D-train.dat");
const int nbObs = 6;

// Canvas, divided in 2
TCanvas *Can = new TCanvas("can","can",10,32,1600,700);
TPad *apad = new TPad("apad","apad",0, 0.03, 1, 1);
apad->Draw(); apad->Divide(2,1);

//Name of the plot and correlation functions used
string outplot="GaussAndMatern_1D_AllPoints.png";
string Correl[2] = {"Gauss","Matern3/2"};

//Pointer to needed objects, created in the loop
TGPBuilder *gpb[2];
TKriging *kg[2];
TDataServer *tdsEstim[2];
TLauncher2 *lkrig[2];

stringstream sstr;
//Looping over the two correlation function chosen
for (int imet=0; imet<2; imet++)
{
//Create the TGPBuiler object with chosen option and find optimal parameters
gpb[imet] = new TGPBuilder(tdsObs, "x1", "y", Correl[imet].c_str(), "");
gpb[imet]->findOptimalParameters("LOO", 100, "Subplexe", 1000);

//Get the kriging object
kg[imet] = gpb[imet]->buildGP();

//open the dataserver and read the testing basis

page 626

CHAPTER XIV. USE-CASES IN C++ Macro "modelerTestKriging.C"

sstr.str(""); sstr << "tdsEstim_" << imet;
tdsEstim[imet] = new TDataServer(sstr.str().c_str(),"base de test");
tdsEstim[imet]->fileDataRead("utf-1D-test.dat");

//applied resulting kriging on test basis
lkrig[imet] = new TLauncher2(tdsEstim[imet], kg[imet], "x1", "yEstim:vEstim");
lkrig[imet]->solverLoop();

//do the plot
apad->cd(imet+1);
PrintSolutions(tdsObs, tdsEstim[imet], Correl[imet]);

stringstream sstr; TLatex *lat=new TLatex(); lat->SetNDC(); lat->SetTextSize(0.025);
sstr.str(""); sstr << "RMSE (by Loo) " << kg[imet]->getLooRMSE();
lat->DrawLatex(0.4,0.61,sstr.str().c_str());
sstr.str(""); sstr << "Q2 " << kg[imet]->getLooQ2();
lat->DrawLatex(0.4,0.57,sstr.str().c_str());

}
}

The first function of this macro (called PrintSolutions) is a complex part that will not be detailed, used to represent
the results.

The macro itself starts by reading the training database and storing it in a dataserver. A TGPBuilder is created with
the chosen correlation function and the hyper-parameters are estimation by an optimisation procedure in:

gpb[imet] = new TGPBuilder(tdsObs, "x1", "y", Correl[imet].c_str(), "");
gpb[imet]->findOptimalParameters("LOO", 100, "Subplexe", 1000);

kg[imet] = gpb[imet]->buildGP()

The last line shows how to build and retrieve the newly created kriging object.

Finally, this kriging model is tested against the training database, thanks to a TLauncher2 object, as following:

lkrig[imet] = new TLauncher2(tdsEstim[imet], kg[imet], "x1", "yEstim:vEstim");
lkrig[imet]->solverLoop();

page 627

Macros Optimizer CHAPTER XIV. USE-CASES IN C++

XIV.6.14.3 Graph

Figure XIV.71: Graph of the macro "modelerTestKriging.C"

XIV.7 Macros Optimizer

XIV.7.1 Macro "optimizeFunctionRosenbrock.C"

XIV.7.1.1 Objective

The objective of this macro is to perform a minimisation of a given function rosenbrock with the Migrad method.

XIV.7.1.2 Macro Uranie

{
// Load the function
gROOT->LoadMacro("UserFunctions.C");

// Les variables de l’etude
TAttribute *x = new TAttribute("x", -1.5, 1.5);
x->setDefaultValue(-1.2);
x->setStepValue(0.01);

TAttribute *y = new TAttribute("y", -1.5,1.5);
y->setDefaultValue(1.);
y->setStepValue(0.01);

TDataServer *tdsRosenbrock = new TDataServer("tdsRosenbrock", "Optimize Code externe ←↩
Rosenbrock via TDataServer");

tdsRosenbrock->addAttribute(x);
tdsRosenbrock->addAttribute(y);

// Graph
TCanvas *Canvas = new TCanvas("c1", "Graph for the Macro optimizeFunctionRosenbrock" ←↩

,5,64,1270,667);

// Create an TOptimizer object from TDataServer and an anlystical function

page 628

CHAPTER XIV. USE-CASES IN C++ Macro "optimizeFunctionRosenbrock.C"

TOptimizer * topt = new TOptimizer(tdsRosenbrock, "rosenbrock","","out");
// topt->setMethod(TOptimizer::kSimplex);
// topt->setTolerance(1e-5);
// topt->setPrintLevel(5);
// topt->setMaxIterations(3);
// topt->setMaxFunctionCalls(10);
topt->optimize("same");
tdsRosenbrock->exportData("_tds_rosenbrock_.dat");

}

The Rosenbrock’s function is specified in the following file UserFunctions.C (the file can be found in ${URANIESYS}/share/uranie/macros).
The UserFunctions.C is loaded to get the rosenbrock method:

gROOT->LoadMacro("UserFunctions.C");

The two TAttribute objects are the variables of the study: x and y. The intervals of definition and initial default
values are set. The step value is set to 0.01 for the two variables:

TAttribute *x = new TAttribute("x", -1.5, 1.5);
x->setDefaultValue(-1.2);
x->setStepValue(0.01);

TAttribute *y = new TAttribute("y", -1.5,1.5);
y->setDefaultValue(1.);
y->setStepValue(0.01);

The TOptimizer object is initialised with the TDataServer containing both attributes, the name of the function to
minimise, entry variables and output variable:

TOptimizer * topt = new TOptimizer(tdsRosenbrock, "rosenbronck", "", "out");
topt->optimize("same");

Results are exported in an ASCII file:

tdsRosenbrock->exportData("_tds_rosenbrock_.dat");

XIV.7.1.3 Graph

Figure XIV.72: Graph of the macro "optimizeFunctionRosenbrock.C"

page 629

Macro "optimizeFunctionRosenbrockNewInputOutput.C" CHAPTER XIV. USE-CASES IN C++

XIV.7.2 Macro "optimizeFunctionRosenbrockNewInputOutput.C"

XIV.7.2.1 Objective

The objective of this macro is to perform a minimisation of a given function rosenbrock with the Migrad method. On
top of the objective introduced in Section XIV.7.1.1, the idea is here to do the optimisation introducing new inputs (which
are shifted values of the original ones) and add new output variables given simple mathematical formulae. Warning,
this is slowing down the process as new values have to be computed on the fly, so we strongly recommend to change
the loaded function instead. This functionnality has been introduced for consistency with the code optimisation.

XIV.7.2.2 Macro Uranie

{
// Load the function
gROOT->LoadMacro("UserFunctions.C");

// Les variables de l’etude
TAttribute *x = new TAttribute("x", -1.5, 1.5);
x->setDefaultValue(-1.2);
x->setStepValue(0.01);

TAttribute *y = new TAttribute("y", -1.5,1.5);
y->setDefaultValue(1.);
y->setStepValue(0.01);

TDataServer *tdsRosenbrock = new TDataServer("tdsRosenbrock", "Optimize Code externe ←↩
Rosenbrock via TDataServer");

tdsRosenbrock->addAttribute(x);
tdsRosenbrock->addAttribute(y);

tdsRosenbrock->addAttribute("xshift","x-0.1");
tdsRosenbrock->addAttribute("yshift","y+0.2");

// Graph
TCanvas *Canvas = new TCanvas("c1", "Graph for the Macro ←↩

optimizeFunctionRosenbrockNewInputOutput",5,64,1270,667);

// Create an TOptimizer object from TDataServer and an anlystical function
TOptimizer * topt = new TOptimizer(tdsRosenbrock, "rosenbrock","xshift:yshift","out");
topt->addOutputVariable("out+1:out*out:out*3");
topt->selectCost("out+1");
// topt->setMethod(TOptimizer::kSimplex);
// topt->setTolerance(1e-5);
// topt->setPrintLevel(5);
// topt->setMaxIterations(3);
// topt->setMaxFunctionCalls(10);
topt->optimize("same");
tdsRosenbrock->exportData("_tds_rosenbrock_.dat");

}

The main differences with Section XIV.7.1.2 are gathered in the next few blocks. It starts with the introduction of the
new input attributes, defined through formulae:

tdsRosenbrock->addAttribute("xshift","x-0.1");
tdsRosenbrock->addAttribute("yshift","y+0.2");

page 630

CHAPTER XIV. USE-CASES IN C++ Macro "optimizeCodeRosenbrockKey.C"

The fact that the optimisation should be done on these newly defined variables is precised in the construction of the
optimizer:

TOptimizer * topt = new TOptimizer(tdsRosenbrock, "rosenbronck", "xshift:yshift", "out");

The new output variables are defined through a dedicated method and the variable upon which the optimisation is
performed is specified thanks to the selectCost function:

topt->addOutputVariable("out+1:out*out:out*3");
topt->selectCost("out+1");

The rest is consistent with what’s done in Section XIV.7.1.2.

tdsRosenbrock->exportData("_tds_rosenbrock_.dat");

XIV.7.2.3 Graph

Figure XIV.73: Graph of the macro "optimizeFunctionRosenbrockNewInputOutput.C"

XIV.7.3 Macro "optimizeCodeRosenbrockKey.C"

XIV.7.3.1 Objective

The objective of this macro is to perform an optimisation of the rosenbrock function returned by the rosenbrock
code (described in Section VII.2.1.3) with the values of the two attributes x and y read in an input file with "key=value"
format, input_rosenbrock_with_keys.dat:

#
#
inputfile for the \b rosenbrock code
\date mar jui 3 14:38:43 2007
the two parameters
#

x = -1.20 ;
y = 1.0 ;
a = 10.0 ;
b = 1.0 ;

page 631

Macro "optimizeCodeRosenbrockKey.C" CHAPTER XIV. USE-CASES IN C++

The output file, _output_rosenbrock_with_keys_.dat, is with "key=value" format and looks like:

X = -1.200000e+000 ;
Y = 1.000000e+000 ;
fval = 6.776000e+000 ;
fA = 1.000000e+001 ;
fB = 1.000000e+000 ;

where fA and fB are parameters of the rosenbrock function. X and Y are the values of attributes x and y, fval the
cost variable.

XIV.7.3.2 Macro Uranie

{

// The x attribute of the use case
TAttribute *x = new TAttribute("x", -1.5, 1.5);
x->setDefaultValue(-1.2);
x->setStepValue(0.01);
x->setFileKey("input_rosenbrock_with_keys.dat");

// The y attribute of the use case
TAttribute *y = new TAttribute("y", -1.5,1.5);
y->setDefaultValue(1.);
y->setStepValue(0.01);
y->setFileKey("input_rosenbrock_with_keys.dat");

// Define the DataServer and add the two attributes
TDataServer *tdsRosenbrock = new TDataServer("tdsRosenbrock", "Optimize Code externe ←↩

Rosenbrock via TDataServer");
tdsRosenbrock->addAttribute(x);
tdsRosenbrock->addAttribute(y);

// The output file of the code where values are stored in (key = value) format
TOutputFileKey *fOutputFile = new TOutputFileKey("_output_rosenbrock_with_keys_.dat");
fOutputFile->addAttribute(new TAttribute("fval"));

// Create an TCode object for my code
TCode *myRosenbrockCode = new TCode(tdsRosenbrock, "rosenbrock -k");
// The working directory to launch the code
//myRosenbrockCode->setWorkingDirectory(gSystem->Getenv("PWD") + TString("/ ←↩

tmpLanceurUranie/rosenbrock"));
// Add the output file
myRosenbrockCode->addOutputFile(fOutputFile);

// Graph
TCanvas *Canvas = new TCanvas("c1", "Graph for the Macro optimizeCodeRosenbrockKey" ←↩

,5,64,1270,667);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();
pad->Divide(2,1);
pad->cd(1);

// Create an TOptimizer object from TDataServer and TCode objects
TOptimizer * topt = new TOptimizer(tdsRosenbrock, myRosenbrockCode);
topt->setMethod(TOptimizer::kSimplex);
// topt->setTolerance(1e-5);
// topt->setPrintLevel(5);
// topt->setMaxIterations(3);
// topt->setMaxFunctionCalls(10);

page 632

CHAPTER XIV. USE-CASES IN C++ Macro "optimizeCodeRosenbrockKey.C"

topt->optimize("same");
tdsRosenbrock->exportData("_tds_rosenbrock_.dat");

pad->cd(2);
TF2 *frosenbrok = new TF2("fcnRosenbrock","(y-x*x)*(y-x*x)* [0] + (1.0 -x) * (1.0 -x) ←↩

*[1]",-2.0, 2.0, -2.0,2.0);
frosenbrok->SetParameter(0,10.0);
frosenbrok->SetParameter(1,1.0);
frosenbrok->Draw("cont1z");
tdsRosenbrock->draw("y:x", "", "samel");

tdsRosenbrock->getTuple()->SetMarkerColor(4);
tdsRosenbrock->getTuple()->SetMarkerStyle(8);
tdsRosenbrock->getTuple()->SetMarkerSize(.90);
tdsRosenbrock->Draw("y:x", Form("%s==1", tdsRosenbrock->getIteratorName()), "psame");
tdsRosenbrock->getTuple()->SetMarkerColor(50);
tdsRosenbrock->Draw("y:x", Form("%s==%d", tdsRosenbrock->getIteratorName(), tdsRosenbrock ←↩

->getNPatterns()), "psame");

}

The TAttribute objects x and y are linked to the input file input_rosenbrock_with_keys.dat:

TAttribute *x = new TAttribute("x", -1.5, 1.5);
x->setDefaultValue(-1.2);
x->setStepValue(0.01);
x->setFileKey("input_rosenbrock_with_keys.dat");

TAttribute *y = new TAttribute("y", -1.5,1.5);
y->setDefaultValue(1.);
y->setStepValue(0.01);
y->setFileKey("input_rosenbrock_with_keys.dat");

Instantiating the output file:

TOutputFileKey *fOutputFile = new TOutputFileKey("_output_rosenbrock_with_keys_.dat");

The cost variable is added to the output file as a new TAttribute:

fOutputFile->addAttribute(new TAttribute("fval"));

Instantiating the TCode object, the rosenbrock code is launched with the -k option. The input file searched by the
code will then be with type "key=value":

TCode *myRosenbrockCode = new TCode(tdsRosenbrock, "rosenbrock -v -k");

The TOptimizer object is initialised with the TDataServer containing data and the TCode object. The optimi-
sation is built with the Simplex method:

TOptimizer * topt = new TOptimizer(tdsRosenbrock, myRosenbrockCode);
topt->setMethod(TOptimizer::kSimplex);
topt->optimize("same");

The TDataServer is exported in an ASCII file:

tdsRosenbrock->exportData("_tds_rosenbrock_.dat");

page 633

Macro "optimizeCodeRosenbrockKey.C" CHAPTER XIV. USE-CASES IN C++

XIV.7.3.3 Graph

Figure XIV.74: Graph of the macro "optimizeCodeRosenbrockKey.C"

XIV.7.3.4 Console

Processing optimizeCodeRosenbrockKey.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

** sLibraryName[Minuit2]

** sMethodName[Simplex]

** Problem[kMinimizeCode]

** input :: ivar[0/3] name[x]

** input :: ivar[1/3] name[y]

** output :: ivar[2/3] name[fval]

** TMultiGenCode::init _sCost[fval] _nCost[1]

** _sCost[fval]

********** Print state [0] option[Init]

** name [x] Origin[kAttribute] Value[-1.2]

** name [y] Origin[kAttribute] Value[1]

** name [fval] Origin[kAttribute] Value[1.23457]

********** End Of Print state [0]
<URANIE::INFO>
<URANIE::INFO> *** URANIE INFORMATION ***
<URANIE::INFO> *** File[${SOURCEDIR}/launCHER/souRCE/TCode.cxx] Line[721]
<URANIE::INFO> TCode::init Method
<URANIE::INFO> The launching directory "${RUNNINGDIR}/URANIE/UranieLauncher_1" does not ←↩

exist
<URANIE::INFO> URANIE creates it for you
<URANIE::INFO> *** END of URANIE INFORMATION ***
<URANIE::INFO>

********** Print state [84] option[Final]

** name [x] Origin[kAttribute] Value[0.995289]

page 634

CHAPTER XIV. USE-CASES IN C++ Macro "optimizeCodeRosenbrockKeyNewInputOutput.C"

** name [y] Origin[kAttribute] Value[0.99263]

** name [fval] Origin[kAttribute] Value[6.34168e-05]

********** End Of Print state [84]

XIV.7.4 Macro "optimizeCodeRosenbrockKeyNewInputOutput.C"

XIV.7.4.1 Objective

The objectives of this macro are the same as the ones detailed in Section XIV.7.3.1. On top of these, as for Sec-
tion XIV.7.2.1, the idea is here to do the optimisation introducing new inputs (which are shifted values of the original
ones) and add new output variables given simple mathematical formulae.

XIV.7.4.2 Macro Uranie

{

// The x attribute of the use case
TAttribute *x = new TAttribute("x", -1.5, 1.5);
x->setDefaultValue(-1.2);
x->setStepValue(0.01);

// The y attribute of the use case
TAttribute *y = new TAttribute("y", -1.5,1.5);
y->setDefaultValue(1.);
y->setStepValue(0.01);

// Define the DataServer and add the two attributes
TDataServer *tdsRosenbrock = new TDataServer("tdsRosenbrock", "Optimize Code externe ←↩

Rosenbrock via TDataServer");
tdsRosenbrock->addAttribute(x);
tdsRosenbrock->addAttribute(y);

tdsRosenbrock->addAttribute("xshift","x-0.1");
tdsRosenbrock->getAttribute("xshift")->setFileKey("input_rosenbrock_with_keys.dat","x");
tdsRosenbrock->addAttribute("yshift","y+0.2");
tdsRosenbrock->getAttribute("yshift")->setFileKey("input_rosenbrock_with_keys.dat","y");

// The output file of the code where values are stored in (key = value) format
TOutputFileKey *fOutputFile = new TOutputFileKey("_output_rosenbrock_with_keys_.dat");
fOutputFile->addAttribute(new TAttribute("fval"));

// Create an TCode object for my code
TCode *myRosenbrockCode = new TCode(tdsRosenbrock, "rosenbrock -k");
// The working directory to launch the code
//myRosenbrockCode->setWorkingDirectory(gSystem->Getenv("PWD") + TString("/ ←↩

tmpLanceurUranie/rosenbrock"));
// Add the output file
myRosenbrockCode->addOutputFile(fOutputFile);

// Graph
TCanvas *Canvas = new TCanvas("c1", "Graph for the Macro ←↩

optimizeCodeRosenbrockKeyNewInputOutput",5,64,1270,667);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();
pad->Divide(2,1);
pad->cd(1);

page 635

Macro "optimizeCodeRosenbrockKeyNewInputOutput.C" CHAPTER XIV. USE-CASES IN C++

// Create an TOptimizer object from TDataServer and TCode objects
TOptimizer * topt = new TOptimizer(tdsRosenbrock, myRosenbrockCode);
topt->setMethod(TOptimizer::kSimplex);
topt->addOutputVariable("fval+1:fval*fval:fval*3");
topt->selectCost("fval+1");
topt->setTolerance(1e-3);
// topt->setPrintLevel(5);
// topt->setMaxIterations(3);
// topt->setMaxFunctionCalls(10);

topt->optimize("same");
tdsRosenbrock->exportData("_tds_rosenbrock_.dat");

pad->cd(2);
TF2 * frosenbrok = new TF2("fcnRosenbrock","(y-x*x)*(y-x*x)* [0] + (1.0 -x) * (1.0 -x ←↩

)*[1]",-2.0, 2.0, -2.0,2.0);
frosenbrok->SetParameter(0,10.0);
frosenbrok->SetParameter(1,1.0);
frosenbrok->Draw("cont1z");
tdsRosenbrock->draw("y:x", "", "samel");

tdsRosenbrock->getTuple()->SetMarkerColor(4);
tdsRosenbrock->getTuple()->SetMarkerStyle(8);
tdsRosenbrock->getTuple()->SetMarkerSize(.90);
tdsRosenbrock->Draw("y:x", Form("%s==1", tdsRosenbrock->getIteratorName()), "psame");
tdsRosenbrock->getTuple()->SetMarkerColor(50);
tdsRosenbrock->Draw("y:x", Form("%s==%d", tdsRosenbrock->getIteratorName(), tdsRosenbrock ←↩

->getNPatterns()), "psame");

}

The main differences with Section XIV.7.4.2 are gathered in the next few blocks. It starts with the introduction of
the new input attributes, defined through formulae. The new attributes are connected to the input file thanks to the
setFileKey (and these methods are not called from the original attributes anymore):

tdsRosenbrock->addAttribute("xshift","x-0.1");
tdsRosenbrock->getAttribute("xshift")->setFileKey("input_rosenbrock_with_keys.dat","x");
tdsRosenbrock->addAttribute("yshift","y+0.2");
tdsRosenbrock->getAttribute("yshift")->setFileKey("input_rosenbrock_with_keys.dat","y");

Once settled, the remaining modifications to be done with respect to Section XIV.7.3.2 are the creation of the new
output variables and the change of variable to be used as cost function.

topt->addOutputVariable("fval+1:fval*fval:fval*3");
topt->selectCost("fval+1");

This, as for the use-case discussed in Section XIV.7.2, will lead to new results as shown in Section XIV.7.4.4: the
minimisation is performed on the two new inputs, and the minimimun is found when these values are close to one.
Looking at the original variables, the value toward which they converge is 1.1 and 0.8 respectively for x and y.

page 636

CHAPTER XIV. USE-CASES IN C++ Macro "optimizeCodeRosenbrockKeyNewInputOutput.C"

XIV.7.4.3 Graph

Figure XIV.75: Graph of the macro "optimizeCodeRosenbrockKeyNewInputOutput.C"

XIV.7.4.4 Console

Processing optimizeCodeRosenbrockKeyNewInputOutput.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

** sLibraryName[Minuit2]

** sMethodName[Simplex]

** Problem[kMinimizeCode]

** input :: ivar[0/8] name[x]

** input :: ivar[1/8] name[y]

** input :: ivar[2/8] name[xshift]

** input :: ivar[3/8] name[yshift]

** output :: ivar[4/8] name[fval]

** output :: ivar[5/8] name[fval+1]

** output :: ivar[6/8] name[fval*fval]

** output :: ivar[7/8] name[fval*3]

** TMultiGenCode::init _sCost[fval+1] _nCost[2]

** TMultiGenCode::init Creating the formula for new inputs

** _sCost[fval+1]

********** Print state [0] option[Init]

** name [x] Origin[kAttribute] Value[-1.2]

** name [y] Origin[kAttribute] Value[1]

** name [fval+1] Origin[kAttribute] Value[1.23457]

********** End Of Print state [0]
<URANIE::INFO>
<URANIE::INFO> *** URANIE INFORMATION ***
<URANIE::INFO> *** File[${SOURCEDIR}/launCHER/souRCE/TCode.cxx] Line[721]
<URANIE::INFO> TCode::init Method
<URANIE::INFO> The launching directory "${RUNNINGDIR}/URANIE/UranieLauncher_1" does not ←↩

exist

page 637

Macro "optimizeCodeRosenbrockRow.C" CHAPTER XIV. USE-CASES IN C++

<URANIE::INFO> URANIE creates it for you
<URANIE::INFO> *** END of URANIE INFORMATION ***
<URANIE::INFO>

********** Print state [94] option[Final]

** name [x] Origin[kAttribute] Value[1.10427]

** name [y] Origin[kAttribute] Value[0.808468]

** name [fval+1] Origin[kAttribute] Value[1.00002]

********** End Of Print state [94]

XIV.7.5 Macro "optimizeCodeRosenbrockRow.C"

XIV.7.5.1 Objective

The objective of this macro is to perform optimisation of the rosenbrock function returned by the rosenbrock code
(described in Section VII.2.1.3) with the values of the two attributes x and y read in an input file with "key=value" format,
input_rosenbrock_with_keys.dat:

#
#
inputfile for the \b rosenbrock code
\date mar jui 3 14:38:43 2007
the two parameters
#

x = -1.20 ;
y = 1.0 ;
a = 10.0 ;
b = 1.0 ;

The output file, _output_rosenbrock_with_values_rows_.dat, is with "values in rows" format and looks
like

#COLUMN_NAMES: x | y | fval | pA | pB

-1.200000e+000 1.000000e+000 6.776000e+000 1.000000e+001 1.000000e+000

where pA and pB are parameters of the rosenbrock function. X and Y are the values of attributes x and y, fval the
cost variable.

XIV.7.5.2 Macro Uranie

{

// The x attribute of the use case
TAttribute *x = new TAttribute("x", -1.5, 1.5);
x->setDefaultValue(-1.2);
x->setStepValue(0.01);
x->setFileKey("input_rosenbrock_with_keys.dat");

// The y attribute of the use case
TAttribute *y = new TAttribute("y", -1.5,1.5);
y->setDefaultValue(1.);
y->setStepValue(0.01);
y->setFileKey("input_rosenbrock_with_keys.dat");

// Define the DataServer and add the two attributes

page 638

CHAPTER XIV. USE-CASES IN C++ Macro "optimizeCodeRosenbrockRow.C"

TDataServer *tdsRosenbrock = new TDataServer("tdsRosenbrock", "Optimize Code externe ←↩
Rosenbrock via TDataServer");

tdsRosenbrock->addAttribute(x);
tdsRosenbrock->addAttribute(y);

// The output file of the code where values are in row
TOutputFileRow *fOutputFile = new TOutputFileRow("_output_rosenbrock_with_values_rows_. ←↩

dat");
fOutputFile->addAttribute(new TAttribute("fval"), 3);

// Create an TCode object for my code
TCode *myRosenbrockCode = new TCode(tdsRosenbrock, "rosenbrock -k");
// The working directory to launch the code
//myRosenbrockCode->setWorkingDirectory(gSystem->Getenv("PWD") + TString("/ ←↩

tmpLanceurUranie/rosenbrock"));
// Add the output file
myRosenbrockCode->addOutputFile(fOutputFile);

// Graph
TCanvas *Canvas = new TCanvas("c1", "Graph for the Macro optimizeCodeRosenbrockRow" ←↩

,5,64,1270,667);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();
pad->Divide(2,1);
pad->cd(1);

// Create an TOptimizer object from TDataServer and TCode objects
TOptimizer * topt = new TOptimizer(tdsRosenbrock, myRosenbrockCode);
topt->setMethod(TOptimizer::kSimplex);
// topt->setTolerance(1e-5);
// topt->setPrintLevel(5);
// topt->setMaxIterations(3);
// topt->setMaxFunctionCalls(10);

topt->optimize("same");
tdsRosenbrock->exportData("_tds_rosenbrock_.dat");

pad->cd(2);
TF2 * frosenbrok = new TF2("fcnRosenbrock","(y-x*x)*(y-x*x)* [0] + (1.0 -x) * (1.0 -x ←↩

)*[1]",-2.0, 2.0, -2.0,2.0);
frosenbrok->SetParameter(0,10.0);
frosenbrok->SetParameter(1,1.0);
frosenbrok->Draw("cont1z");
tdsRosenbrock->draw("y:x", "", "samel");

tdsRosenbrock->getTuple()->SetMarkerColor(4);
tdsRosenbrock->getTuple()->SetMarkerStyle(8);
tdsRosenbrock->getTuple()->SetMarkerSize(.90);
tdsRosenbrock->Draw("y:x", Form("%s==1", tdsRosenbrock->getIteratorName()), "psame");
tdsRosenbrock->getTuple()->SetMarkerColor(50);
tdsRosenbrock->Draw("y:x", Form("%s==%d", tdsRosenbrock->getIteratorName(), tdsRosenbrock ←↩

->getNPatterns()), "psame");

}

The TAttribute objects x and y are linked to the input file input_rosenbrock_with_keys.dat:

TAttribute *x = new TAttribute("x", -1.5, 1.5);
x->setDefaultValue(-1.2);
x->setStepValue(0.01);
x->setFileKey("input_rosenbrock_with_keys.dat");

page 639

Macro "optimizeCodeRosenbrockRow.C" CHAPTER XIV. USE-CASES IN C++

TAttribute *y = new TAttribute("y", -1.5,1.5);
y->setDefaultValue(1.);
y->setStepValue(0.01);
y->setFileKey("input_rosenbrock_with_keys.dat");

Instantiating the output file:

TOutputFileRow *fOutputFile = new TOutputFileRow("_output_rosenbrock_with_values_rows_.dat" ←↩
);

The cost variable is added to the output file as a new TAttribute:

fOutputFile->addAttribute(new TAttribute("fval"));

Instantiating the TCode object, the rosenbrock code is launched with the -k option. The input file searched by the
code will then be with type "key=value":

TCode *myRosenbrockCode = new TCode(tdsRosenbrock, "rosenbrock -v -k");

The TOptimizer object is initialised with the TDataServer containing data and the TCode object. The optimi-
sation is built with the Simplex method:

TOptimizer * topt = new TOptimizer(tdsRosenbrock, myRosenbrockCode);
topt->setMethod(TOptimizer::kSimplex);
topt->optimize("same");

The TDataServer is exported in an ASCII file:

tdsRosenbrock->exportData("_tds_rosenbrock_.dat");

XIV.7.5.3 Graph

Figure XIV.76: Graph of the macro "optimizeCodeRosenbrockRow.C"

XIV.7.5.4 Console

page 640

CHAPTER XIV. USE-CASES IN C++ Macro "optimizeCodeRosenbrockKeyRowRecreate.C"

Processing optimizeCodeRosenbrockRow.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

** sLibraryName[Minuit2]

** sMethodName[Simplex]

** Problem[kMinimizeCode]

** input :: ivar[0/3] name[x]

** input :: ivar[1/3] name[y]

** output :: ivar[2/3] name[fval]

** TMultiGenCode::init _sCost[fval] _nCost[1]

** _sCost[fval]

********** Print state [0] option[Init]

** name [x] Origin[kAttribute] Value[-1.2]

** name [y] Origin[kAttribute] Value[1]

** name [fval] Origin[kAttribute] Value[1.23457]

********** End Of Print state [0]
<URANIE::INFO>
<URANIE::INFO> *** URANIE INFORMATION ***
<URANIE::INFO> *** File[${SOURCEDIR}/launCHER/souRCE/TCode.cxx] Line[721]
<URANIE::INFO> TCode::init Method
<URANIE::INFO> The launching directory "${RUNNINGDIR}/URANIE/UranieLauncher_1" does not ←↩

exist
<URANIE::INFO> URANIE creates it for you
<URANIE::INFO> *** END of URANIE INFORMATION ***
<URANIE::INFO>

********** Print state [84] option[Final]

** name [x] Origin[kAttribute] Value[0.995289]

** name [y] Origin[kAttribute] Value[0.99263]

** name [fval] Origin[kAttribute] Value[6.34168e-05]

********** End Of Print state [84]

XIV.7.6 Macro "optimizeCodeRosenbrockKeyRowRecreate.C"

XIV.7.6.1 Objective

The objective of this macro is to perform optimisation of the rosenbrock function returned by the rosenbrock code
(described in Section VII.2.1.3) with the values of the two attributes x and y each defined in two input files, one with
"key=value" format, input_rosenbrock_with_keys.dat:

#
#
inputfile for the \b rosenbrock code
\date mar jui 3 14:38:43 2007
the two parameters
#

x = -1.20 ;
y = 1.0 ;
a = 10.0 ;
b = 1.0 ;

the other with "values in rows" format, input_rosenbrock_with_values_rows.dat:

-1.20 1.0

page 641

Macro "optimizeCodeRosenbrockKeyRowRecreate.C" CHAPTER XIV. USE-CASES IN C++

Only the option given to the rosenbrock code will determine the input file effectively used. The output file, _output_
rosenbrock_with_keys_.dat, is with "key=value" format and looks like:

X = -1.200000e+000 ;
Y = 1.000000e+000 ;
fval = 6.776000e+000 ;
fA = 1.000000e+001 ;
fB = 1.000000e+000 ;

where fA and fB are parameters of the rosenbrock function. X and Y are the values of attributes x and y, fval the
cost variable.

XIV.7.6.2 Macro Uranie

{

// The x attribute of the use case
TAttribute *x = new TAttribute("x", -1.5, 1.5);
x->setDefaultValue(-1.2);
x->setStepValue(0.01);
x->setFileKey("input_rosenbrock_with_keys.dat");
x->setFileKey("input_rosenbrock_with_values_rows.dat","x","%e",TAttributeFileKey::kNewRow ←↩

);

// The y attribute of the use case
TAttribute *y = new TAttribute("y", -1.5,1.5);
y->setDefaultValue(1.);
y->setStepValue(0.01);
y->setFileKey("input_rosenbrock_with_keys.dat");
y->setFileKey("input_rosenbrock_with_values_rows.dat","y","%e",TAttributeFileKey::kNewRow ←↩

);

// Define the DataServer and add the two attributes
TDataServer *tdsRosenbrock = new TDataServer("tdsRosenbrock", "Optimize Code externe ←↩

Rosenbrock via TDataServer");
tdsRosenbrock->addAttribute(x);
tdsRosenbrock->addAttribute(y);

// The output file of the code where values are stored in (key = value) format
TOutputFileKey *fOutputFile = new TOutputFileKey("_output_rosenbrock_with_keys_.dat");
fOutputFile->addAttribute(new TAttribute("fval"));

// Create an TCode object for my code
TCode *myRosenbrockCode = new TCode(tdsRosenbrock, "rosenbrock -r");
// Add the output file
myRosenbrockCode->addOutputFile(fOutputFile);

// Graph
TCanvas *Canvas = new TCanvas("c1", "Graph for the Macro ←↩

optimizeCodeRosenbrockKeyRowRecreate",5,64,1270,667);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();
pad->Divide(2,1);
pad->cd(1);

// Create an TOptimizer object from TDataServer and TCode objects
TOptimizer * topt = new TOptimizer(tdsRosenbrock, myRosenbrockCode);
topt->setMethod(TOptimizer::kSimplex);
// topt->setTolerance(1e-5);
// topt->setPrintLevel(5);
// topt->setMaxIterations(3);

page 642

CHAPTER XIV. USE-CASES IN C++ Macro "optimizeCodeRosenbrockKeyRowRecreate.C"

// topt->setMaxFunctionCalls(10);

topt->optimize("same");
tdsRosenbrock->exportData("_tds_rosenbrock_.dat");

pad->cd(2);
TF2 * frosenbrok = new TF2("fcnRosenbrock","(y-x*x)*(y-x*x)* [0] + (1.0 -x) * (1.0 -x ←↩

)*[1]",-2.0, 2.0, -2.0,2.0);
frosenbrok->SetParameter(0,10.0);
frosenbrok->SetParameter(1,1.0);
frosenbrok->Draw("cont1z");
tdsRosenbrock->draw("y:x", "", "samel");

tdsRosenbrock->getTuple()->SetMarkerColor(4);
tdsRosenbrock->getTuple()->SetMarkerStyle(8);
tdsRosenbrock->getTuple()->SetMarkerSize(.90);
tdsRosenbrock->Draw("y:x", Form("%s==1", tdsRosenbrock->getIteratorName()), "psame");
tdsRosenbrock->getTuple()->SetMarkerColor(50);
tdsRosenbrock->Draw("y:x", Form("%s==%d", tdsRosenbrock->getIteratorName(), tdsRosenbrock ←↩

->getNPatterns()), "psame");

}

The TAttribute objects x and y are linked to two input files input_rosenbrock_with_keys.dat with
"key=value" format and input_rosenbrock_with_values_rows.dat with "values in rows" format:

TAttribute *x = new TAttribute("x", -1.5, 1.5);
x->setDefaultValue(-1.2);
x->setStepValue(0.01);
x->setFileKey("input_rosenbrock_with_keys.dat");
x->setFileKey("input_rosenbrock_with_values_rows.dat","x","%e",TAttributeFileKey::kNewRow);

TAttribute *y = new TAttribute("y", -1.5,1.5);
y->setDefaultValue(1.);
y->setStepValue(0.01);
y->setFileKey("input_rosenbrock_with_keys.dat");
y->setFileKey("input_rosenbrock_with_values_rows.dat","y","%e",TAttributeFileKey::kNewRow);

Instantiating the output file:

TOutputFileKey *fOutputFile = new TOutputFileKey("_output_rosenbrock_with_keys_.dat");

The cost variable is added to the output file as a new TAttribute:

fOutputFile->addAttribute(new TAttribute("fval"));

Instantiating the TCode object, the rosenbrock code is launched with the -k option. The input file searched by the
code will then be with type "key=value":

TCode *myRosenbrockCode = new TCode(tdsRosenbrock, "rosenbrock -v -k");

The TOptimizer object is initialised with the TDataServer containing data and the TCode object. The optimi-
sation is built with the Simplex method:

TOptimizer * topt = new TOptimizer(tdsRosenbrock, myRosenbrockCode);
topt->setMethod(TOptimizer::kSimplex);
topt->optimize("same");

The TDataServer is exported in an ASCII file:

tdsRosenbrock->exportData("_tds_rosenbrock_.dat");

page 643

Macro "optimizeCodeRosenbrockKeyRowRecreate.C" CHAPTER XIV. USE-CASES IN C++

XIV.7.6.3 Graph

Figure XIV.77: Graph of the macro "optimizeCodeRosenbrockKeyRowRecreate.C"

XIV.7.6.4 Console

Processing optimizeCodeRosenbrockKeyRowRecreate.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

** sLibraryName[Minuit2]

** sMethodName[Simplex]

** Problem[kMinimizeCode]

** input :: ivar[0/3] name[x]

** input :: ivar[1/3] name[y]

** output :: ivar[2/3] name[fval]

** TMultiGenCode::init _sCost[fval] _nCost[1]

** _sCost[fval]

********** Print state [0] option[Init]

** name [x] Origin[kAttribute] Value[-1.2]

** name [y] Origin[kAttribute] Value[1]

** name [fval] Origin[kAttribute] Value[1.23457]

********** End Of Print state [0]
<URANIE::INFO>
<URANIE::INFO> *** URANIE INFORMATION ***
<URANIE::INFO> *** File[${SOURCEDIR}/launCHER/souRCE/TCode.cxx] Line[721]
<URANIE::INFO> TCode::init Method
<URANIE::INFO> The launching directory "${RUNNINGDIR}/URANIE/UranieLauncher_1" does not ←↩

exist
<URANIE::INFO> URANIE creates it for you
<URANIE::INFO> *** END of URANIE INFORMATION ***
<URANIE::INFO>

********** Print state [84] option[Final]

** name [x] Origin[kAttribute] Value[0.995289]

page 644

CHAPTER XIV. USE-CASES IN C++ Macro "optimizeCodeRosenbrockRowRecreate.C"

** name [y] Origin[kAttribute] Value[0.99263]

** name [fval] Origin[kAttribute] Value[6.34168e-05]

********** End Of Print state [84]

XIV.7.7 Macro "optimizeCodeRosenbrockRowRecreate.C"

XIV.7.7.1 Objective

The objective of this macro is to perform optimisation of the rosenbrock function returned by the rosenbrock code
(described in Section VII.2.1.3) with the values of the two attributes x and y read in an input file with "values in rows"
format, input_rosenbrock_with_values_rows.dat, written on the fly:

-1.20 1.0

The output file, _output_rosenbrock_with_keys_.dat, is with "key=value" format and looks like:

X = -1.200000e+000 ;
Y = 1.000000e+000 ;
fval = 6.776000e+000 ;
fA = 1.000000e+001 ;
fB = 1.000000e+000 ;

where fA and fB are parameters of the rosenbrock function. X and Y are the values of attributes x and y, fval the
cost variable.

XIV.7.7.2 Macro Uranie

{

// The x attribute of the use case
TAttribute *x = new TAttribute("x", -1.5, 1.5);
x->setDefaultValue(-1.2);
x->setStepValue(0.01);
x->setFileKey("input_rosenbrock_with_values_rows.dat","x","%e",TAttributeFileKey::kNewRow ←↩

);

// The y attribute of the use case
TAttribute *y = new TAttribute("y", -1.5,1.5);
y->setDefaultValue(1.);
y->setStepValue(0.01);
y->setFileKey("input_rosenbrock_with_values_rows.dat","y","%e",TAttributeFileKey::kNewRow ←↩

);

// Define the DataServer and add the two attributes
TDataServer *tdsRosenbrock = new TDataServer("tdsRosenbrock", "Optimize Code externe ←↩

Rosenbrock via TDataServer");
tdsRosenbrock->addAttribute(x);
tdsRosenbrock->addAttribute(y);

// The output file of the code where values are stored in (key = value) format
TOutputFileKey *fOutputFile = new TOutputFileKey("_output_rosenbrock_with_keys_.dat");
fOutputFile->addAttribute(new TAttribute("fval"));

// Create an TCode object for my code
TCode *myRosenbrockCode = new TCode(tdsRosenbrock, "rosenbrock -r");

page 645

Macro "optimizeCodeRosenbrockRowRecreate.C" CHAPTER XIV. USE-CASES IN C++

// The working directory to launch the code
//myRosenbrockCode->setWorkingDirectory(gSystem->Getenv("PWD") + TString("/ ←↩

tmpLanceurUranie/rosenbrock"));
// Add the output file
myRosenbrockCode->addOutputFile(fOutputFile);

// Graph
TCanvas *Canvas = new TCanvas("c1", "Graph for the Macro ←↩

optimizeCodeRosenbrockRowRecreate",5,64,1270,667);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();
pad->Divide(2,1);
pad->cd(1);

// Create an TOptimizer object from TDataServer and TCode objects
TOptimizer * topt = new TOptimizer(tdsRosenbrock, myRosenbrockCode);
topt->setMethod(TOptimizer::kSimplex);
// topt->setTolerance(1e-5);
// topt->setPrintLevel(5);
// topt->setMaxIterations(3);
// topt->setMaxFunctionCalls(10);

topt->optimize();
tdsRosenbrock->exportData("_tds_rosenbrock_.dat");

pad->cd(2);
TF2 * frosenbrok = new TF2("fcnRosenbrock","(y-x*x)*(y-x*x)* [0] + (1.0 -x) * (1.0 -x ←↩

)*[1]",-2.0, 2.0, -2.0,2.0);
frosenbrok->SetParameter(0,10.0);
frosenbrok->SetParameter(1,1.0);
frosenbrok->Draw("cont1z");
tdsRosenbrock->draw("y:x", "", "samel");

tdsRosenbrock->getTuple()->SetMarkerColor(4);
tdsRosenbrock->getTuple()->SetMarkerStyle(8);
tdsRosenbrock->getTuple()->SetMarkerSize(.90);
tdsRosenbrock->Draw("y:x", Form("%s==1", tdsRosenbrock->getIteratorName()), "psame");
tdsRosenbrock->getTuple()->SetMarkerColor(50);
tdsRosenbrock->Draw("y:x", Form("%s==%d", tdsRosenbrock->getIteratorName(), tdsRosenbrock ←↩

->getNPatterns()), "psame");

}

The TAttribute objects x and y are linked to the input file input_rosenbrock_with_values_rows.dat:

TAttribute *x = new TAttribute("x", -1.5, 1.5);
x->setDefaultValue(-1.2);
x->setStepValue(0.01);
x->setFileKey("input_rosenbrock_with_values_rows.dat","x","%e",TAttributeFileKey::kNewRow);

TAttribute *y = new TAttribute("y", -1.5,1.5);
y->setDefaultValue(1.);
y->setStepValue(0.01);
y->setFileKey("input_rosenbrock_with_values_rows.dat","y","%e",TAttributeFileKey::kNewRow);

Instantiating the output file:

TOutputFileKey *fOutputFile = new TOutputFileKey("_output_rosenbrock_with_keys_.dat");

The cost variable is added to the output file as a new TAttribute:

fOutputFile->addAttribute(new TAttribute("fval"));

page 646

CHAPTER XIV. USE-CASES IN C++ Macro "optimizeCodeRosenbrockRowRecreate.C"

Instantiating the TCode object, the rosenbrock code is launched with the -r option. The input file searched by the
code will then be with type "values in rows":

TCode *myRosenbrockCode = new TCode(tdsRosenbrock, "rosenbrock -v -r");

The TOptimizer object is initialised with the TDataServer containing data and the TCode object. The optimi-
sation is built with the Simplex method:

TOptimizer * topt = new TOptimizer(tdsRosenbrock, myRosenbrockCode);
topt->setMethod(TOptimizer::kSimplex);
topt->optimize("same");

The TDataServer is exported in an ASCII file:

tdsRosenbrock->exportData("_tds_rosenbrock_.dat");

XIV.7.7.3 Graph

Figure XIV.78: Graph of the macro "optimizeCodeRosenbrockRowRecreate.C"

XIV.7.7.4 Console

Processing optimizeCodeRosenbrockRowRecreate.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

** sLibraryName[Minuit2]

** sMethodName[Simplex]

** Problem[kMinimizeCode]

** input :: ivar[0/3] name[x]

** input :: ivar[1/3] name[y]

** output :: ivar[2/3] name[fval]

page 647

Macro "optimizeCodeRosenbrockRowRecreateOutputDataServer.C"CHAPTER XIV. USE-CASES IN C++

** TMultiGenCode::init _sCost[fval] _nCost[1]

** _sCost[fval]

********** Print state [0] option[Init]

** name [x] Origin[kAttribute] Value[-1.2]

** name [y] Origin[kAttribute] Value[1]

** name [fval] Origin[kAttribute] Value[1.23457]

********** End Of Print state [0]
<URANIE::INFO>
<URANIE::INFO> *** URANIE INFORMATION ***
<URANIE::INFO> *** File[${SOURCEDIR}/launCHER/souRCE/TCode.cxx] Line[721]
<URANIE::INFO> TCode::init Method
<URANIE::INFO> The launching directory "${RUNNINGDIR}/URANIE/UranieLauncher_1" does not ←↩

exist
<URANIE::INFO> URANIE creates it for you
<URANIE::INFO> *** END of URANIE INFORMATION ***
<URANIE::INFO>

********** Print state [84] option[Final]

** name [x] Origin[kAttribute] Value[0.995289]

** name [y] Origin[kAttribute] Value[0.99263]

** name [fval] Origin[kAttribute] Value[6.34168e-05]

********** End Of Print state [84]

XIV.7.8 Macro "optimizeCodeRosenbrockRowRecreateOutputDataServer.C"

XIV.7.8.1 Objective

The objective of this macro is to perform optimisation of the rosenbrock function returned by the rosenbrock code
(described in Section VII.2.1.3) with the values of the two attributes x and y read in an input file with "values in rows"
format, input_rosenbrock_with_values_rows.dat:

-1.20 1.0

written on the fly. The output file, _output_rosenbrock_with_values_rows_.dat, is with "values in rows"
format (and instanced as a TOutputFileDataServer) looks like:

#COLUMN_NAMES: x | y | fval | pA | pB

-1.200000e+000 1.000000e+000 6.776000e+000 1.000000e+001 1.000000e+000

where pA and pB are parameters of the rosenbrock function. X and Y are the values of attributes x and y, fval the
cost variable.

XIV.7.8.2 Macro Uranie

{

TString sIn = TString("input_rosenbrock_with_values_rows.dat");

// Define the DataServer and add the two attributes
TDataServer *tdsRosenbrock = new TDataServer("tdsRosenbrock", "Optimize Code externe ←↩

Rosenbrock via TDataServer");
tdsRosenbrock->addAttribute(new TAttribute("x", -1.5, 1.5));
tdsRosenbrock->addAttribute(new TAttribute("y", -1.5, 1.5));

// The x attribute of the use case
tdsRosenbrock->getAttribute("x")->setDefaultValue(-1.2);

page 648

CHAPTER XIV. USE-CASES IN C++Macro "optimizeCodeRosenbrockRowRecreateOutputDataServer.C"

tdsRosenbrock->getAttribute("x")->setStepValue(0.01);
tdsRosenbrock->getAttribute("x")->setFileKey(sIn,"x","",TAttributeFileKey::kNewRow);

// The y attribute of the use case
tdsRosenbrock->getAttribute("y")->setDefaultValue(1.);
tdsRosenbrock->getAttribute("y")->setStepValue(0.01);
tdsRosenbrock->getAttribute("y")->setFileKey(sIn,"y","",TAttributeFileKey::kNewRow);

// The output file of the code where values are in row
TOutputFileDataServer *fOutputFile = new TOutputFileDataServer(" ←↩

_output_rosenbrock_with_values_rows_.dat");
fOutputFile->addAttribute(new TAttribute("fval"));

// Create an TCode object for my code
TCode *myRosenbrockCode = new TCode(tdsRosenbrock, "rosenbrock -r");
// The working directory to launch the code

// Add the output file
myRosenbrockCode->addOutputFile(fOutputFile);

// Graph
TCanvas *Canvas = new TCanvas("c1", "Graph for the Macro ←↩

optimizeCodeRosenbrockRowRecreateOutputDataServer",5,64,1270,667);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();
pad->Divide(2,1);
pad->cd(1);

// Create an TOptimizer object from TDataServer and TCode objects
TOptimizer * topt = new TOptimizer(tdsRosenbrock, myRosenbrockCode);

topt->setMethod(TOptimizer::kSimplex);
//topt->setTolerance(0.1);
topt->setMaxIterations(130);

topt->optimize("same");
tdsRosenbrock->exportData("_tds_rosenbrock_.dat");

pad->cd(2);
TF2 * frosenbrok = new TF2("fcnRosenbrock","(y-x*x)*(y-x*x)* [0] + (1.0 -x) * (1.0 -x ←↩

)*[1]",-2.0, 2.0, -2.0,2.0);
frosenbrok->SetParameter(0,10.0);
frosenbrok->SetParameter(1,1.0);
frosenbrok->Draw("cont1z");
tdsRosenbrock->draw("y:x", "", "samel");

tdsRosenbrock->getTuple()->SetMarkerColor(4);
tdsRosenbrock->getTuple()->SetMarkerStyle(8);
tdsRosenbrock->getTuple()->SetMarkerSize(.90);
tdsRosenbrock->Draw("y:x", Form("%s==1", tdsRosenbrock->getIteratorName()), "psame");
tdsRosenbrock->getTuple()->SetMarkerColor(50);
tdsRosenbrock->Draw("y:x", Form("%s==%d", tdsRosenbrock->getIteratorName(), tdsRosenbrock ←↩

->getNPatterns()), "psame");

}

The TAttribute objects x and y are linked to the input file input_rosenbrock_with_values_rows.dat:

TDataServer *tdsRosenbrock = new TDataServer("tdsRosenbrock", "Optimize Code external ←↩
Rosenbrock via TDataServer");

tdsRosenbrock->addAttribute(new TAttribute("x", -1.5, 1.5));
tdsRosenbrock->addAttribute(new TAttribute("y", -1.5, 1.5));

page 649

Macro "optimizeCodeRosenbrockRowRecreateOutputDataServer.C"CHAPTER XIV. USE-CASES IN C++

tdsRosenbrock->getAttribute("x")->setDefaultValue(-1.2);
tdsRosenbrock->getAttribute("x")->setStepValue(0.01);
tdsRosenbrock->getAttribute("x")->setFileKey(sJDDReference,"x","",TAttributeFileKey:: ←↩

kNewRow);

tdsRosenbrock->getAttribute("y")->setDefaultValue(1.);
tdsRosenbrock->getAttribute("y")->setStepValue(0.01);
tdsRosenbrock->getAttribute("y")->setFileKey(sJDDReference,"y","",TAttributeFileKey:: ←↩

kNewRow);

Instantiating the output file:

TOutputFileDataServer *fOutputFile = new TOutputFileDataServer(" ←↩
_output_rosenbrock_with_values_rows_.dat");

The cost variable is added to the output file as a new TAttribute:

fOutputFile->addAttribute(new TAttribute("fval"));

Instantiating the TCode object, the rosenbrock code is launched with the -r option. The input file searched by the
code will then be with type "values in rows":

TCode *myRosenbrockCode = new TCode(tdsRosenbrock, "rosenbrock -v -r");

The TOptimizer object is initialised with the TDataServer containing data and the TCode object. The optimi-
sation is built with the Simplex method:

TOptimizer * topt = new TOptimizer(tdsRosenbrock, myRosenbrockCode);
topt->setMethod(TOptimizer::kSimplex);
topt->optimize("same");

The TDataServer is exported in an ASCII file:

tdsRosenbrock->exportData("_tds_rosenbrock_.dat");

page 650

CHAPTER XIV. USE-CASES IN C++Macro "optimizeCodeRosenbrockRowRecreateOutputDataServer.C"

XIV.7.8.3 Graph

Figure XIV.79: Graph of the macro "optimizeCodeRosenbrockRowRecreateOutputDataServer.C"

XIV.7.8.4 Console

Processing optimizeCodeRosenbrockRowRecreateOutputDataServer.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

** sLibraryName[Minuit2]

** sMethodName[Simplex]

** Problem[kMinimizeCode]

** input :: ivar[0/3] name[x]

** input :: ivar[1/3] name[y]

** output :: ivar[2/3] name[fval]

** TMultiGenCode::init _sCost[fval] _nCost[1]

** _sCost[fval]

********** Print state [0] option[Init]

** name [x] Origin[kAttribute] Value[-1.2]

** name [y] Origin[kAttribute] Value[1]

** name [fval] Origin[kAttribute] Value[1.23457]

********** End Of Print state [0]
<URANIE::INFO>
<URANIE::INFO> *** URANIE INFORMATION ***
<URANIE::INFO> *** File[${SOURCEDIR}/launCHER/souRCE/TCode.cxx] Line[721]
<URANIE::INFO> TCode::init Method
<URANIE::INFO> The launching directory "${RUNNINGDIR}/URANIE/UranieLauncher_1" does not ←↩

exist
<URANIE::INFO> URANIE creates it for you
<URANIE::INFO> *** END of URANIE INFORMATION ***
<URANIE::INFO>

********** Print state [84] option[Final]

** name [x] Origin[kAttribute] Value[0.995289]

page 651

Example of optimisation with a code that can compute several values at each runCHAPTER XIV. USE-CASES IN C++

** name [y] Origin[kAttribute] Value[0.99263]

** name [fval] Origin[kAttribute] Value[6.34168e-05]

********** End Of Print state [84]

XIV.7.9 Example of optimisation with a code that can compute several values at each run

XIV.7.9.1 Objective

Warning As Uranie does not provide any external code that is able to compute several output values for sev-
eral input sets, the following code is just given as an example to illustrate the behaviour of the TOptimizer
class.

This part introduces the logic of the upcoming examples in Section XIV.7.10 and Section XIV.7.11. We consider here
that the myCode external code depends on three parameters, a, b and c, and we want to find the values of these
parameters that best fit a reference set of values.

XIV.7.9.2 Macro Uranie

{

TDataServer * tds = new TDataServer(); x1 [1]
tds->addAttribute(new TAttribute("a", -5.0, 5.0));

tds->addAttribute(new TAttribute("b", -1.0, 1.0));

tds->addAttribute(new TAttribute("c", -5.0, 5.0));

// The reference input file x2 [2]
TString sJDDReference = gSystem->pwd();

sJDDReference += TString("/myCode_param.in");

tds->getAttribute("a")->setFileKey(sJDDReference,"a");

tds->getAttribute("b")->setFileKey(sJDDReference,"b");

tds->getAttribute("c")->setFileKey(sJDDReference,"c");

tds->getAttribute("a")->setDefaultValue(0.200);

tds->getAttribute("a")->setStepValue(0.01);

tds->getAttribute("b")->setDefaultValue(0.200);

tds->getAttribute("b")->setStepValue(0.01);

tds->getAttribute("c")->setDefaultValue(0.200);

tds->getAttribute("c")->setStepValue(0.01);

// The output file of the code x3 [3]
TOutputFileRow *fout = new TOutputFileRow("myCode_output.dat");

// The attribute in the output file

fout->addAttribute(new TAttribute("yhat"));

TCode *mycode = new TCode (tds, "myCode >> /dev/null"); x4 [4]
mycode->addOutputFile(fout);

// Read the reference dataserver, that contains the "ystar" attribute

TDataServer *tdsref = new TDataServer("TDSRef", "Objectives values"); x5 [5]
tdsref->fileDataRead("myCode_ref.dat");

page 652

CHAPTER XIV. USE-CASES IN C++ Macro "optimizeRosenbrockMulti.C"

// Definition of the optimizer

TOptimizer * topt = new TOptimizer(tds, mycode); x6 [6]
topt->addObjective("obj1", tdsref, "ystar", fout, "yhat"); x7 [7]
topt->optimize(); x8 [8]

}

Optimisation of a code that can compute several values at each run

x1 Definition of the dataserver and creation of the parameters to find as new attributes;x2 Definition of the input file of the code (myCode_param.in), and definition for each parameter of its name in the
input file, default value and step value;x3 Definition of the output file of the code where to find the computed output "yhat", which is a vector of values;x4 Definition of the code;x5 Creation of the dataserver that contains the reference values, and read the values from file "myCode_ref.
dat";x6 Definition of the TOptimizer object from the dataserver and the code;x7 Addition of an objective named "obj1", where the values of "yhat" retrieved from output file "myCode_output.
dat" (fout) will be compared to the values of "ystar" contained in the dataserver tdsref;x8 Run of the optimisation process.

XIV.7.10 Macro "optimizeRosenbrockMulti.C"

XIV.7.10.1 Objective

Considering the rosenbrock code example. We have generated a set of values with parameters a and b fixed, and
stored both input and output values in the file rosenbrock_ref.dat:

#NAME: testRosenbrock
#TITLE: Rosenbrock
#DATE: mar sep 25 15:30:20 CEST 2012
#COLUMN_NAMES: x1| x2| y

-1.350076223e+00 3.365490640e-01 1.767170212e+01
1.183157479e+00 -6.425784534e-01 1.258177769e+01
-9.634946792e-01 -1.301159335e+00 2.262238374e+01
1.522053698e+00 -4.413296049e-01 2.336439261e+01
-5.921963897e-01 -1.189104788e+00 1.218314329e+01
7.477007261e-01 4.940760535e-01 1.399771741e-01
1.461164459e+00 9.121608682e-01 4.911363513e+00
3.793243287e-01 1.623933752e+00 7.342092216e+00
-1.713026222e+00 -4.397660890e-01 4.887720411e+01
1.228036214e+00 1.425142762e-01 5.698252451e+00
-1.327069995e+00 1.133228437e+00 1.201323326e+01
1.465765779e+00 -4.783690687e-01 2.113471528e+01
-2.659000948e-01 -3.717979765e-01 3.792427072e+00
1.326644911e+00 -6.113681370e-02 1.016286658e+01
-5.986060012e-01 -1.611296639e+00 1.674935948e+01
-8.026301529e-01 3.762660855e-02 7.602799958e+00

page 653

Macro "optimizeRosenbrockMulti.C" CHAPTER XIV. USE-CASES IN C++

XIV.7.10.2 Creation of the function to minimise

The rosenbrock code is only able to take one set of parameters (a,b) at each call, and returns only one value each
time. In order for Uranie to find the parameters that best fit the results above, it is necessary to add a level of "code"
that will be able to compute a set of outputs from a set of inputs. This new "code" will be the Uranie macro below:

{

// Definition of the reference dataserver

TDataServer *tdsMulti = new TDataServer("tdsMulti", "Objectives values"); ←↩x1 [1]
tdsMulti->fileDataRead("rosenbrock_ref.dat");

TString sinputfile ="input_rosenbrock_with_keys.dat";

tdsMulti->getAttribute("x1")->setFileKey(sinputfile, "x");

tdsMulti->getAttribute("x2")->setFileKey(sinputfile, "y");

// Definition of the output file of the code ←↩ x2 [2]
TOutputFileRow *fout = new TOutputFileRow("_output_rosenbrock_with_values_rows_.dat");

fout->addAttribute(new TAttribute("yhat"), 3);

// Definition of the code ←↩ x3 [3]
TCode *mycode = new TCode(tdsMulti, "rosenbrock -k >> /dev/null");

mycode->addOutputFile(fout);

// Launcher on the TDS Ref ←↩ x4 [4]
TLauncher * tl = new TLauncher(tdsMulti, mycode);

tl->setDrawProgressBar(kFALSE);

tl->run();

tdsMulti->exportData("_rosenbrock_multi_.dat","x1:x2:yhat"); ←↩x5 [5]
}

Creation of a macro able to compute a set of outputs from a set of inputs

x1 Creation of the dataserver that will store the generated values, and addition of the attributes x1 and x2 that will
be read in the input file "input_rosenbrock_with_keys.dat";x2 Definition of the output file of the code, "_output_rosenbrock_with_values_rows_.dat", and
definition of the output attribute, that will be called "yhat", and that is present at the 3rd column of the file;x3 Definition of the code to run and its output file;x4 Creation of a launcher to run the code, and execution of the computation;x5 Export the results of the macro, i.e. the set of outputs generated for the Rosenbrock code. The selected output
variables are x1, x2 and yhat.

XIV.7.10.3 Macro Uranie

Now that we have an external code (the ROOT macro just defined above), we can use the same optimisation scheme
than the one described in Section XIV.7.9, but the code to run will be the ROOT macro execution:

page 654

CHAPTER XIV. USE-CASES IN C++ Macro "optimizeRosenbrockMulti.C"

{

// Definition of the dataserver
TDataServer * tds = new TDataServer();

// Definition of the attributes
TString sJDDReference = "input_rosenbrock_with_keys.dat";
tds->addAttribute(new TAttribute("a", 0.0, 5.0));
tds->getAttribute("a")->setFileKey(sJDDReference,"a");
tds->getAttribute("a")->setDefaultValue(1.0);
tds->getAttribute("a")->setStepValue(0.1);
tds->addAttribute(new TAttribute("b", 0.0, 5.0));
tds->getAttribute("b")->setFileKey(sJDDReference,"b");
tds->getAttribute("b")->setDefaultValue(2.0);
tds->getAttribute("b")->setStepValue(0.1);

// Definition of the output file of the code
TOutputFileRow *fout = new TOutputFileRow("_rosenbrock_multi_.dat");
fout->addAttribute(new TAttribute("yhat"), 3);

// OS abstraction
string to_null =
string(gSystem->GetBuildArch()) == "win64" ? " > NUL" : " >> /dev/null";

// Definition of the code
TCode *mycode = new TCode(tds, "root -b -l -q rosenbrock_multi.C" + to_null);
mycode->addOutputFile(fout);
mycode->addInputFile("rootlogon.C");
mycode->addInputFile("rosenbrock_ref.dat");
mycode->addInputFile("rosenbrock_multi.C");

// Definition of the reference dataserver
TDataServer *tdsref = new TDataServer("tdsref", "Objectives values");
tdsref->fileDataRead("rosenbrock_ref.dat");

// Definition of the optimizer
TOptimizer *topt = new TOptimizer(tds, mycode);
topt->addObjective("obj1", tdsref, "y", fout, "yhat");
topt->optimize();

TCanvas *c = new TCanvas();
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();
tds->draw("b:a","","lp");

}

Creation of the dataserver that will store the searched parameters values, and addition of the attributes a and b that
will be read in the input file "input_rosenbrock_with_keys.dat". Note that these definitions introduce the
domains of research of a and b as the interval [0 ; 5], the start values as 1. for a and 2. for b, and the step value as 0.1.

// Definition of the dataserver
TDataServer * tds = new TDataServer();

Definition of the output file of the code, "_rosenbrock_multi_.dat" (generated by the macro rosenbrock_
multi.C), and definition of the output attribute, "yhat":

// Definition of the output file of the code
TOutputFileRow *fout = new TOutputFileRow("_rosenbrock_multi_.dat");
fout->addAttribute(new TAttribute("yhat"), 3);

page 655

Macro "optimizeRosenbrockMulti.C" CHAPTER XIV. USE-CASES IN C++

Definition of the code to run (the root command), its output file, and the files it needs to be able and run the computation.
Note that ROOT is run with options "-l" not to display splash screen, and "-q" to exit after execution (otherwise the macro
execution would fail):

// Definition of the code
TCode *mycode = new TCode(tds, "root -l -q rosenbrock_multi.C >> /dev/null");
mycode->addOutputFile(fout);
mycode->addInputFile("rootlogon.C");
mycode->addInputFile("rosenbrock_ref.dat");
mycode->addInputFile("rosenbrock_multi.C");

Creation of the dataserver tdsref for the reference values, and importation of these values:

// Definition of the reference dataserver
TDataServer *tdsref = new TDataServer("tdsref", "Objectives values");
tdsref->fileDataRead("rosenbrock_ref.dat");

Definition of the optimizer object, addition of an objective from the "y" attribute of tdsref and the "yhat" attribute read
from the file fout, and run of the optimisation process:

// Definition of the optimizer
TOptimizer *topt = new TOptimizer(tds, mycode);
topt->addObjective("obj1", tdsref, "y", fout, "yhat");
topt->optimize();

Plot of the evolution of searched parameters a and b throw iterations:

TCanvas *c = new TCanvas();
tds->draw("b:a","","lp");

XIV.7.10.4 Graph

We can see in the graphic below that the parameters a and b converge from the point (1.;2.) to the point (3.;2.), where
the values used to generate the data stored in the rosenbrock_ref.dat file.

page 656

CHAPTER XIV. USE-CASES IN C++ Macro "optimizeRosenbrockMulti.C"

Figure XIV.80: Evolution of searched parameters a and b throw iterations

XIV.7.10.5 Console

Processing optimizeRosenbrockMulti.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

** addObjective ystar(y) in TDS (tdsref) yhat(yhat) in the output file(_rosenbrock_multi_. ←↩
dat)

** sLibraryName[Minuit2]

** sMethodName[Migrad]

** Problem[kSumOfSquare]

** _ninput [2]

** _noutput [1]

** Attribute[yhat]-- Del

** Attribute[b]

** Attribute[a]

** indx[0] Name[obj1]

** list of Objectives size(1) _dSumOfWeight(0)

** Objective i[0/1] Name[obj1] weight(1)

** End Of list of Objectives _dSumOfWeight[1]

** _sCriteria [obj1]

*** TMultiGenSumOfSquares::init

*** TMultiGenSumOfSquares::clean

*** End Of TMultiGenSumOfSquares::init

page 657

Macro "optimizeRosenbrockError.C" CHAPTER XIV. USE-CASES IN C++

** _sCost[obj1]

********** Print state [0] option[Init]

** name [a] Origin[kAttribute] Value[1]

** name [b] Origin[kAttribute] Value[2]

** name [obj1] Origin[kAttribute] Value[1.23457]

********** End Of Print state [0]
<URANIE::INFO>
<URANIE::INFO> *** URANIE INFORMATION ***
<URANIE::INFO> *** File[${SOURCEDIR}/launCHER/souRCE/TCode.cxx] Line[721]
<URANIE::INFO> TCode::init Method
<URANIE::INFO> The launching directory "${RUNNINGDIR}/URANIE/UranieLauncher_1" does not ←↩

exist
<URANIE::INFO> URANIE creates it for you
<URANIE::INFO> *** END of URANIE INFORMATION ***
<URANIE::INFO>

********** Print state [53] option[Final]

** name [a] Origin[kAttribute] Value[2.99971]

** name [b] Origin[kAttribute] Value[1.99974]

** name [obj1] Origin[kAttribute] Value[3.69704e-06]

********** End Of Print state [53]

XIV.7.11 Macro "optimizeRosenbrockError.C"

XIV.7.11.1 Objective

If we consider now that the external code (the Root macro in our case) cannot return the computed values anymore, but
only an error (the quadratic error in our case) between the reference values and the estimated values on the reference
TDataServer, we are back in the function optimisation situation, where the function to minimise is the error function,
and its input parameters the parameters of the function.

XIV.7.11.2 Creation of the function to minimise

To get such a case, we just modify the rosenbrock_multi.C macro to become the rosenbrock_error.C
code below:

{

// Definition of the reference dataserver

TDataServer *tdsError = new TDataServer("tdsError", "Objectives values"); x1 [1]
tdsError->fileDataRead("rosenbrock_ref.dat");

TString sinputfile ="input_rosenbrock_with_keys.dat";

tdsError->getAttribute("x1")->setFileKey(sinputfile, "x");

tdsError->getAttribute("x2")->setFileKey(sinputfile, "y");

// Definition of the output file of the code x2 [2]
TOutputFileRow *fout = new TOutputFileRow("_output_rosenbrock_with_values_rows_.dat");

fout->addAttribute(new TAttribute("yhat"), 3);

// Definition of the code x3 [3]
TCode *mycode = new TCode(tdsError, "rosenbrock -k >> /dev/null");

mycode->addOutputFile(fout);

page 658

CHAPTER XIV. USE-CASES IN C++ Macro "optimizeRosenbrockError.C"

// Launcher on the TDS Ref x4 [4]
TLauncher * tl = new TLauncher(tdsError, mycode);

tl->setDrawProgressBar(kFALSE);

tl->run();

// Export the reference values for the (a,b) parameters x5 [5]
tdsError->exportData("_output_rosenbrock_references_.dat","x1:x2:yhat:y");

// Compute the L1, L2 and LMax norms for the (a,b) parameters

tdsError->addAttribute("squareDiff", "(yhat-y)^2."); x6 [6]
tdsError->computeStatistic("squareDiff");

Double_t normL2 = tdsError->getAttribute("squareDiff")->getMean(); x7 [7]
ofstream outFile("_rosenbrock_error_.dat",ios::out); x8 [8]
outFile << "normL2 = " << normL2 << ";" << endl;

outFile << endl;

outFile.close();

}

Creation of a macro able to compute a set of outputs from a set of inputs

x1 Creation of the dataserver that will store the generated values, and addition of the attributes x1 and x2 that will
be read in the input file "input_rosenbrock_with_keys.dat";x2 Definition of the output file of the code, "_output_rosenbrock_with_values_rows_.dat", and
definition of the output attribute, that will be called "yhat", and that is present at the 3rd column of the file;x3 Definition of the code to run and its output file;x4 Creation of a launcher to run the code, and execution of the computation;x5 Export the results of the macro, i.e. the set of outputs generated for the Rosenbrock code, in the file "_output_
rosenbrock_references_.dat". The selected output variables are x1, x2, y and yhat.x6 Compute a new attribute that will be used to generate the norms of the error, squareDiff which is the vector
of square differences between reference and computed vectors. Then compute the statistics for this attribute.x7 Create the scalar value of the L2 norms of the error, thanks to the attributes previously defined.x8 Export the results of the macro, i.e. the set of outputs generated for the rosenbrock code. The selected
output variables are x1, x2 and yhat.

XIV.7.11.3 Macro Uranie

We can now use this macro as an external code we want to minimise the output:

{

// Definition of the dataserver
TDataServer * tds = new TDataServer();

// Definition of the attributes
TString sJDDReference = "input_rosenbrock_with_keys.dat";

page 659

Macro "optimizeRosenbrockError.C" CHAPTER XIV. USE-CASES IN C++

tds->addAttribute(new TAttribute("a", 0.0, 5.0));
tds->getAttribute("a")->setFileKey(sJDDReference,"a");
tds->getAttribute("a")->setDefaultValue(1.0);
tds->getAttribute("a")->setStepValue(0.1);
tds->addAttribute(new TAttribute("b", 0.0, 5.0));
tds->getAttribute("b")->setFileKey(sJDDReference,"b");
tds->getAttribute("b")->setDefaultValue(2.0);
tds->getAttribute("b")->setStepValue(0.1);

// Definition of the output file of the code
TOutputFileKey *fout = new TOutputFileKey("_rosenbrock_error_.dat");
fout->addAttribute(new TAttribute("normL2"));

// OS abstraction
string to_null =
string(gSystem->GetBuildArch()) == "win64" ? " > NUL" : " >> /dev/null";

// Definition of the code
TCode *mycode = new TCode(tds, "root -b -l -q rosenbrock_error.C" + to_null);
mycode->addOutputFile(fout);
mycode->addInputFile("rootlogon.C");
mycode->addInputFile("rosenbrock_ref.dat");
mycode->addInputFile("rosenbrock_error.C");

// Definition of the optimizer
TOptimizer *topt = new TOptimizer(tds, mycode);
topt->setTolerance(1e-5);
topt->optimize();

TCanvas *c = new TCanvas();
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();
tds->draw("b:a","","lp");

}

Creation of the dataserver that will store the searched parameters values, and addition of the attributes a and b that
will be read in the input file "input_rosenbrock_with_keys.dat".

// Definition of the dataserver
TDataServer * tds = new TDataServer();

// Definition of the attributes
TString sJDDReference = "input_rosenbrock_with_keys.dat"

Definition of the output file of the code, "_rosenbrock_error_.dat" (generated by the macro rosenbrock_
error.C), and definition of the output attribute that will be got them from this file, "normL2";

// Definition of the output file of the code
TOutputFileKey *fout = new TOutputFileKey("_rosenbrock_error_.dat");
fout->addAttribute(new TAttribute("normL2"));

Definition of the code to run (the root command), its output file, and the files it needs to be able to run the computation.
Note that ROOT is run with options "-l" not to display splash screen, and "-q" to exit after execution (otherwise the
macro execution would fail).

// Definition of the code
TCode *mycode = new TCode(tds, "root -l -q rosenbrock_error.C >> /dev/null");

Definition of the optimizer object, setting of the tolerance to 1e-5, and run of the optimisation process:

page 660

CHAPTER XIV. USE-CASES IN C++ Macro "optimizeRosenbrockError.C"

// Definition of the optimizer
TOptimizer *topt = new TOptimizer(tds, mycode);
topt->setTolerance(1e-5);
topt->optimize();

The remaining lines are dealing with the plotting of the evolution of searched parameters a and b throw iterations.

XIV.7.11.4 Graph

We can see in the graphic below that the parameters a and b converge from the point (1.;2.) to the point (3.;2.), where
the values used to generate the data stored in the rosenbrock_ref.dat file.

Figure XIV.81: Evolution of searched parameters a and b throw iterations

XIV.7.11.5 Console

Processing optimizeRosenbrockError.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

** sLibraryName[Minuit2]

** sMethodName[Migrad]

** Problem[kMinimizeCode]

** input :: ivar[0/3] name[a]

** input :: ivar[1/3] name[b]

** output :: ivar[2/3] name[normL2]

page 661

Macros Relauncher CHAPTER XIV. USE-CASES IN C++

** TMultiGenCode::init _sCost[normL2] _nCost[1]

** _sCost[normL2]

********** Print state [0] option[Init]

** name [a] Origin[kAttribute] Value[1]

** name [b] Origin[kAttribute] Value[2]

** name [normL2] Origin[kAttribute] Value[1.23457]

********** End Of Print state [0]
<URANIE::INFO>
<URANIE::INFO> *** URANIE INFORMATION ***
<URANIE::INFO> *** File[${SOURCEDIR}/launCHER/souRCE/TCode.cxx] Line[721]
<URANIE::INFO> TCode::init Method
<URANIE::INFO> The launching directory "${RUNNINGDIR}/URANIE/UranieLauncher_1" does not ←↩

exist
<URANIE::INFO> URANIE creates it for you
<URANIE::INFO> *** END of URANIE INFORMATION ***
<URANIE::INFO>

********** Print state [68] option[Final]

** name [a] Origin[kAttribute] Value[3]

** name [b] Origin[kAttribute] Value[2.00001]

** name [normL2] Origin[kAttribute] Value[2.75242e-10]

********** End Of Print state [68]

XIV.8 Macros Relauncher

The idea of this section is to show the basic usage of many of the classes defined in Chapter VIII, applied either
on the flowrate functions or the flowrate code, whose purpose and behaviour have been already introduced
in Section IV.1.2.1. All the following examples will load a tiny set of points which is gathered in the file called
flowrateUniformDesign.dat (already introduced in Section XIV.2.4.1).

XIV.8.1 Macro "relauncherFunctionFlowrateCInt.C"

XIV.8.1.1 Objective

The goal of this macro is to show how to handle (in the most simple way) a C++-written function, compliant with
the ROOT (CINT) format. This function has been presented, at least its equation (see Equation IV.1) and would be
interfaced through the TCIntEval class in the Relauncher module (which means that we’ll use the function database
from ROOT’s catalog, see Section I.2.5 for more explanations). As this class is usually considered not thread-safe, it
can only be used with a TSequentialRun runner.

XIV.8.1.2 Macro

void flowrateModel(double *x, double *y)
{

double drw = x[0], dr = x[1];
double dtu = x[2], dtl = x[3];
double dhu = x[4], dhl = x[5];
double dl = x[6], dkw = x[7];

double dnum = 2.0 * TMath::Pi() * dtu * (dhu -dhl);
double dlnronrw = TMath::Log(dr / drw);
double dden = dlnronrw * (1.0 + (2.0 * dl * dtu) / (dlnronrw * drw * drw * dkw) + ←↩

dtu / dtl);

page 662

CHAPTER XIV. USE-CASES IN C++ Macro "relauncherFunctionFlowrateCInt.C"

y[0] = dnum / dden;
}

void relauncherFunctionFlowrateCInt()
{

// Create the TDataServer
TDataServer *tds = new TDataServer("foo","test");
tds->fileDataRead("flowrateUniformDesign.dat");

// Get the attributes
TAttribute *rw = tds->getAttribute("rw");
TAttribute *r = tds->getAttribute("r");
TAttribute *tu = tds->getAttribute("tu");
TAttribute *tl = tds->getAttribute("tl");
TAttribute *hu = tds->getAttribute("hu");
TAttribute *hl = tds->getAttribute("hl");
TAttribute *l = tds->getAttribute("l");
TAttribute *kw = tds->getAttribute("kw");

// Create the output attribute
TAttribute *yhat = new TAttribute("yhat");

// Constructing the code
TCIntEval mycode("flowrateModel");
mycode.setInputs(8, rw, r, tu, tl, hu, hl, l, kw); // Adding the input attributes
mycode.addOutput(yhat); // Adding the output attributes

// Create the sequential runner
TSequentialRun run(&mycode);
run.startSlave(); //Start the master (necessary even for a sequential)
if (run.onMaster())
{

TLauncher2 lanceur(tds, &run);

// resolution
lanceur.solverLoop();
run.stopSlave(); // Stop the slaves (necessary even for a sequential)

}

// Draw the result
TCanvas *can = new TCanvas("pouet","foo",1);
tds->Draw("yhat:rw","","colZ");

}

The first part of the macro is the definition of the flowrateModel function, already discussed throughout this doc-
umentation. The dataserver object is then created and filled using the database file and pointers to the corresponding
input attributes are created, along with the new attribute for the output provided by the function. The following part is
then specific to the Relauncher organisation: a TCIntEval object is created with the function as only argument. Both
the input and output attributes are provided (here in a contracted way for input, but it could have been done one-by-one,
as for output).

// Constructing the code
TCIntEval mycode(flowrateModel);
mycode.setInputs(8, rw, r, tu, tl, hu, hl, l, kw); // Adding the input attributes
mycode.addOutput(yhat); // Adding the output attributes

page 663

Macro "relauncherFunctionFlowrateCJit.C" CHAPTER XIV. USE-CASES IN C++

The following part is the heart of the relauncher strategy: the assessor is provided to the chosen runner, which should
always start the slaves (even in the case of a sequential one like here). On the main CPU, the master is created as
well (with the dataserver and the runner) and the resolution is requested.

// Create the sequential runner
TSequentialRun run(&mycode);
run.startSlave(); //Start the master (necessary even for a sequential)
if (run.onMaster())
{

TLauncher2 lanceur(tds, &run);

// resolution
lanceur.solverLoop();
run.stopSlave(); // Stop the slaves (necessary even for a sequential)

}

Once this is done, the slaves are stopped and the results is displayed for cross-check in the following subsection.

XIV.8.1.3 Graph

Figure XIV.82: Representation of the output as a function of the first input with a colZ option

XIV.8.2 Macro "relauncherFunctionFlowrateCJit.C"

XIV.8.2.1 Objective

The goal of this macro is to show how to handle the C++-written function using a pointer to the function (and not the
name as for the macro in Section XIV.8.1). This function has been presented, at least its equation (see Equation IV.1)
and would be interface through the TCJitEval class in the Relauncher module. A special discussion will be held in
the next few lines about the way the compilation is done.

page 664

CHAPTER XIV. USE-CASES IN C++ Macro "relauncherFunctionFlowrateCJit.C"

XIV.8.2.2 Macro

#include "TCanvas.h"
#include "TMath.h"
#include "TSystem.h"
#include "TDataServer.h"
#include "TSequentialRun.h"
#include "TAttribute.h"
#include "TLauncher2.h"
#include "TCJitEval.h"

using namespace URANIE::DataServer;
using namespace URANIE::Relauncher;

void flowrateModel(double *x, double *y)
{
double drw = x[0], dr = x[1];
double dtu = x[2], dtl = x[3];
double dhu = x[4], dhl = x[5];
double dl = x[6], dkw = x[7];

double dnum = 2.0 * TMath::Pi() * dtu * (dhu -dhl);
double dlnronrw = TMath::Log(dr / drw);
double dden = dlnronrw * (1.0 + (2.0 * dl * dtu) / (dlnronrw * drw * drw * dkw) + ←↩

dtu / dtl);

y[0] = dnum / dden;
}

// void relauncherFunctionFlowrateCJit() // For ACLIC (meaning CINT) compilation
int main() // For standalone compilation
{

// Create the TDataServer
TDataServer *tds = new TDataServer("foo","test");
tds->fileDataRead("flowrateUniformDesign.dat");

// Get the attributes
TAttribute *rw = tds->getAttribute("rw");
TAttribute *r = tds->getAttribute("r");
TAttribute *tu = tds->getAttribute("tu");
TAttribute *tl = tds->getAttribute("tl");
TAttribute *hu = tds->getAttribute("hu");
TAttribute *hl = tds->getAttribute("hl");
TAttribute *l = tds->getAttribute("l");
TAttribute *kw = tds->getAttribute("kw");

// Create the output attribute
TAttribute *yhat = new TAttribute("yhat");

// Constructing the code
TCJitEval mycode(flowrateModel);
mycode.setInputs(8, rw, r, tu, tl, hu, hl, l, kw); // Adding the input attribute
mycode.addOutput(yhat); // Adding the output attribute

// Create the sequential runner
TSequentialRun run(&mycode);
run.startSlave(); //Start the master (necessary even for a sequential)
if (run.onMaster())
{
TLauncher2 lanceur(tds, &run);

page 665

Macro "relauncherFunctionFlowrateCJit.C" CHAPTER XIV. USE-CASES IN C++

// resolution
lanceur.solverLoop();
run.stopSlave(); // Stop the slaves (necessary even for a sequential)

}

// Export the data
tds->exportData("_outputFile_functionflowrate_cjit_.dat");

}

The very first part of the macro is slightly different from Section XIV.8.1.2 as it is now compulsory to write explicitly
the include line for the pre-processors. The use of namespaces is declared along, but this time only because this is
convenient not to recall these long names every time.

#include "TCanvas.h"
#include "TMath.h"
#include "TSystem.h"
#include "TDataServer.h"
#include "TSequentialRun.h"
#include "TAttribute.h"
#include "TLauncher2.h"
#include "TCJitEval.h"

using namespace URANIE::DataServer;
using namespace URANIE::Relauncher;

The definition of the flowrateModel function is then made right before entering the main function. At this level a
break is needed to explain the risen antagonism between the two possible compilation and the way to call them. This
issue is entirely described by the following two lines:

// void relauncherFunctionFlowrateCJit() // For ACLIC (meaning CINT) compilation
int main() // For standalone compilation

Let’s talk about the two cases:

• ACLIC: one should remove the second line and put the first one instead (after commenting it out of course). The
compilation is then done by calling:

root -l relauncherFunctionFlowrateCJit.C+

– PROS: this will give you the hand at the end of execution, leaving the display opened to handle plots for instance.

– CONS: this will create several useless files and will need non-trivial manipulation if extra headers and libraries are
needed.

• Standalone: leaving the macro as it is, the compilation on Linux is done by writing a line such as:

g++ -o CJitTest relauncherFunctionFlowrateCJit.C ‘root-config --cflags --libs‘ - ←↩
L$URANIESYS/lib -lUranieDataServer -lUranieRelauncher -I$URANIESYS/include/

An equivalent command on Windows would be:

cl /Fe%cd%\CJitTest /Tp relauncherFunctionFlowrateCJit.C /I%ROOTSYS%\include %ROOTSYS%\lib ←↩
\lib*.lib %URANIESYS%\lib\libUranieDataServer.lib %URANIESYS%\lib\libUranieRelauncher. ←↩
lib

– PROS: pure C++ compilation resulting in a single executable file (here CJitTest). It’s easy to include more headers
and libraries if your code needs them.

page 666

CHAPTER XIV. USE-CASES IN C++ Macro "relauncherCJitFunctionThreadTest.C"

– CONS: this will not leave the display opened, unless you do so through a TApplication (ROOT-class).

Whatever the chosen solution, the only difference with previous macro is the assessor creation:

TCJitEval mycode(flowrateModel);

The rest it completely transparent and leads to the creation of the following plot.

XIV.8.2.3 Graph

Figure XIV.83: Representation of the output as a function of the first input with a colZ option

XIV.8.3 Macro "relauncherCJitFunctionThreadTest.C"

XIV.8.3.1 Objective

The goal of this macro is to show how to handle thread-safe compiled function (or code) that would contain TDataServer
objects (this is not particularly recommended, but has been requested to us). This example is only written in C++ as
the CJit interface only works for this, but the idea is the same if one has a code and use the python interface. This will
be further discussed below. The function is pointless, a pure illustrative toy and the results is not important as long as
one sees that in one case, the macro runs smoothly while on the other hand, it crashes.

XIV.8.3.2 Macro

void multiply(double *x, double *y)
{

// New dataserver reading all points in flowrate
URANIE::DataServer::TDataServer test("test","notindir");
test.keepFinalTuple(false); // Remove the tuple from ROOT internal list
test.fileDataRead("flowrateUniformDesign.dat",false);

page 667

Macro "relauncherCJitFunctionThreadTest.C" CHAPTER XIV. USE-CASES IN C++

// Dummy functions with a loop to slow down the function
double max=-1000000;
for(int i=0; i<test.getNPatterns(); i++)
{

double val = test.getValue("ystar",i);
max = ((val>=max) ? val : max);

}
y[0] = max * x[0];

}

void relauncherCJitFunctionThreadTest()
{

/* This macro can be used in two modes:

*/
bool threaded=true;

// If thread-safe, call this method that will take out the dataserver from ROOT ←↩
internal list

if(threaded)
ROOT::EnableThreadSafety(); // part of the solution

// input and output attributes
URANIE::DataServer::TUniformDistribution x("multiplier",1,10);
URANIE::DataServer::TAttribute MultMean("MultMean");

// Interface to the compiled function above
URANIE::Relauncher::TCJitEval eval(multiply);
eval.addInput(&x);
eval.addOutput(&MultMean);

// Threaded runner
URANIE::Relauncher::TThreadedRun run(&eval,4);
run.startSlave();

if(run.onMaster())
{

// Global dataserver
URANIE::DataServer::TDataServer tds("pouet","pouet_notindir");
tds.addAttribute(&x);

// Doe for the multiplier
URANIE::Sampler::TSampling sam(&tds,"lhs",24);
sam.generateSample();

// Run the code
URANIE::Relauncher::TLauncher2 launch(&tds, &run);
launch.solverLoop();
tds.getTuple()->SetScanField(-1);
tds.scan();

run.stopSlave();

}
}

The very first part of the macro is a function that would be applied to all points of our design-of-experiments. The
general context is simple: let’s assume one wants to find the maximum value of a variable in a given dataset, and let’s
assume that this maximum should have to be scaled by some factor. We create the multiply function to do so, as

page 668

CHAPTER XIV. USE-CASES IN C++ Macro "relauncherCJitFunctionThreadTest.C"

done here:

void multiply(double *x, double *y)
{

// New dataserver reading all points in flowrate
URANIE::DataServer::TDataServer test("test","notindir");
test.keepFinalTuple(false); // Remove the tuple from ROOT internal list
test.fileDataRead("flowrateUniformDesign.dat",false);

// Dummy functions with a loop to slow down the function
double max=-1000000;
for(int i=0; i<test.getNPatterns(); i++)
{

double val = test.getValue("ystar",i);
max = ((val>=max) ? val : max);

}
y[0] = max * x[0];

}

In this function the dataset is always the same (flowrateUniformDesign.dat) and the multiplier is the only in-
put attribute. The maximum of the dataset is found by creating a TDataServer object, by calling the fileDataRead
method to read the dataset and by looping over the events (this is not at all the best way to do it, but it is a toy model to
show what problems can arise when a TDataServer object is created in an evaluator use in multi-thread approach).
Few important points in this function to prevent from race condition (not thread-safe behaviour):

• the TDataServer object is created statistically so that at the end of the function it is automatically destroyed;

• the line below is used to tell the TDataServer object not to write his data tree in the ROOT internal list and not to
dump it in the archive file when the object is destroyed

test.keepFinalTuple(false);

• the line below is used to tell the fileDataRead method not to create the archive ROOT file once the dataset is
read (thanks to the optional boolean set to false here)

test.fileDataRead("flowrateUniformDesign.dat",false);

The main function starts then with a block that allows to test the main point here: the method develop by ROOT to
prevent the internal list to store object which would lead to race conditions. This block is commented to explain how to
run the use-case macro discuss here. The important part is, if one wants to run the macro properly, to call

ROOT::EnableThreadSafety();

Once this is done, then the macro can be briefly described in the few key steps

1. create the input (multiplier) and output (MultMean) attribute;

2. create the interface to the multiply function;

3. create the interface for the runner;

4. create the TDataServer object that would contain the multiplier and the results. This object is created within
the onMaster() part because otherwise there would have been as many dataserver object as there are
threads.

5. create a sampler and a design-of-experiments to read 24 times the given dataset;

page 669

Macro "relauncherCodeFlowrateSequential.C" CHAPTER XIV. USE-CASES IN C++

6. run the computations

At the end, once the macro is launched by using the command below, the

root -b -q relauncherCJitFunctionThreadTest.C

XIV.8.3.3 Console

Processing relauncherCJitFunctionThreadTest.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

**
* Row * pouet__n_ * multiplie * MultMean. *
**
* 0 * 2 * 9.4179988 * 1551.8978 *
* 1 * 1 * 8.1562084 * 1343.9800 *
* 2 * 0 * 4.1412811 * 682.40030 *
* 3 * 3 * 6.5650956 * 1081.7964 *
* 4 * 5 * 4.7243584 * 778.47978 *
* 5 * 4 * 7.0461633 * 1161.0667 *
* 6 * 6 * 2.5976785 * 428.04546 *
* 7 * 8 * 5.3607876 * 883.35059 *
* 8 * 7 * 7.4193739 * 1222.5644 *
* 9 * 9 * 5.6692661 * 934.18168 *
* 10 * 10 * 1.0476136 * 172.62578 *
* 11 * 11 * 3.5864637 * 590.97748 *
* 12 * 12 * 1.5680924 * 258.39027 *
* 13 * 13 * 4.8760831 * 803.48098 *
* 14 * 14 * 6.0024502 * 989.08374 *
* 15 * 15 * 9.0195417 * 1486.2400 *
* 16 * 16 * 9.9852106 * 1645.3630 *
* 17 * 17 * 3.1396825 * 517.35689 *
* 18 * 18 * 2.4617970 * 405.65491 *
* 19 * 19 * 6.7059225 * 1105.0019 *
* 20 * 20 * 3.9170611 * 645.45333 *
* 21 * 21 * 7.9536348 * 1310.5999 *
* 22 * 22 * 8.6398795 * 1423.6793 *
* 23 * 23 * 2.1125191 * 348.10091 *
**

XIV.8.4 Macro "relauncherCodeFlowrateSequential.C"

XIV.8.4.1 Objective

The goal of this macro is to show how to handle a code with a sequential runner. The flowrate code is provided
with Uranie and has been also used and discussed throughout these macros.

XIV.8.4.2 Macro

page 670

CHAPTER XIV. USE-CASES IN C++ Macro "relauncherCodeFlowrateSequential.C"

{

// Create the TDataServer
TDataServer *tds = new TDataServer("foo","test");
tds->fileDataRead("flowrateUniformDesign.dat");

// Get the attributes
TAttribute *rw = tds->getAttribute("rw");
TAttribute *r = tds->getAttribute("r");
TAttribute *tu = tds->getAttribute("tu");
TAttribute *tl = tds->getAttribute("tl");
TAttribute *hu = tds->getAttribute("hu");
TAttribute *hl = tds->getAttribute("hl");
TAttribute *l = tds->getAttribute("l");
TAttribute *kw = tds->getAttribute("kw");

// Create the output attribute
TAttribute *yhat = new TAttribute("yhat");
TAttribute *d = new TAttribute("d");

// Set the reference input file and the key for each input attributes
TFlatScript fin("flowrate_input_with_values_rows.in");
fin.setInputs(8, rw, r, tu, tl, hu, hl, l, kw);

// The output file of the code
TFlatResult fout("_output_flowrate_withRow_.dat");
fout.setOutputs(2, yhat, d);// Passing the attributes to the output file

// Constructing the code
TCodeEval mycode("flowrate -s -r");
mycode.setOldTmpDir();
mycode.addInputFile(&fin); // Adding the input file
mycode.addOutputFile(&fout); // Adding the output file

// Create the sequential runner
TSequentialRun run(&mycode);
run.startSlave(); //Start the master (necessary even for a sequential)
if (run.onMaster())
{

TLauncher2 lanceur(tds, &run);

// resolution
lanceur.solverLoop();
run.stopSlave(); // Stop the slaves (necessary even for a sequential)

}

// Draw the result
TCanvas *can = new TCanvas("pouet","foo",1);
tds->Draw("yhat:rw","","colZ");

}

Here again, a comparison is drawn with the first Relauncher macro (see Section XIV.8.1.2) and only the differences
are pointed out. The first obvious one, in the very first steps in defining the dataserver and the attributes, is that there
are two output attributes. The second one (called ’d’) will not be used here. The second (and only other difference)
with respect to the CINT function code, is the assessor creation shown below:

// Set the reference input file and the key for each input attributes
TFlatScript fin("flowrate_input_with_values_rows.in");

page 671

Macro "relauncherCodeFlowrateSequential_ConstantVar.C" CHAPTER XIV. USE-CASES IN C++

fin.setInputs(8, rw, r, tu, tl, hu, hl, l, kw);

// The output file of the code
TFlatResult fout("_output_flowrate_withRow_.dat");
fout.setOutputs(2, yhat, d);// Passing the attributes to the output file

// Constructing the code
TCodeEval mycode("flowrate -s -r");
mycode.setOldTmpDir();
mycode.addInputFile(&fin); // Adding the input file
mycode.addOutputFile(&fout); // Adding the output file

The first three lines create the input file instance. It is here a TFlatScript object which can basically be compared to
a DataServer (or Salome-table) format of the Launcher module for its organisation (particularly with vectors and strings)
but without the compulsory header: the order in which you introduce the attribute is then of uttermost importance. The
second block of lines is creating the output file object from the TFlatResult class (the same remark applies to this
object).

Finally the assessor itself is created as an instance of the TCodeEval class. The only argument is the command to
be run, and it needs at least one input and output file. Apart from that, the runner is created and the rest is crystal
clear, leading to the following plot.

XIV.8.4.3 Graph

Figure XIV.84: Representation of the output as a function of the first input with a colZ option

XIV.8.5 Macro "relauncherCodeFlowrateSequential_ConstantVar.C"

XIV.8.5.1 Objective

The goal of this macro is to show how to set one of the evaluator’s input attribute to a constant value, with a sequential
runner. The flowrate code is provided with Uranie and has been also used and discussed throughout these macros.

page 672

CHAPTER XIV. USE-CASES IN C++Macro "relauncherCodeFlowrateSequential_ConstantVar.C"

XIV.8.5.2 Macro

{
// Create the TDataServer
TDataServer *tds = new TDataServer("foo","test");

// Define the attribute that should be considered as constant
TAttribute r("r");

// Add the study attributes (min, max and nominal values)
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

// The reference input file
TString sIn = TString("flowrate_input_with_keys.in");

int nS=15;
// Generate the Design of Experiments
TSampling *sampling = new TSampling(tds, "lhs", nS);
sampling->generateSample();

// Create the input files
TKeyScript inputFile(sIn.Data());
inputFile.addInput(tds->getAttribute("rw"),"Rw");
inputFile.addInput(&r,"R"); // Add the constant attribute as an input
inputFile.addInput(tds->getAttribute("tu"),"Tu");
inputFile.addInput(tds->getAttribute("tl"),"Tl");
inputFile.addInput(tds->getAttribute("hu"),"Hu");
inputFile.addInput(tds->getAttribute("hl"),"Hl");
inputFile.addInput(tds->getAttribute("l"),"L");
inputFile.addInput(tds->getAttribute("kw"),"Kw");

// Create the output attribute
TAttribute *yhat = new TAttribute("yhat");
TAttribute *d = new TAttribute("d");

// Create the output files
TKeyResult outputFile("_output_flowrate_withKey_.dat");
outputFile.addOutput(yhat, "yhat");
outputFile.addOutput(d, "d");

// Create the user’s evaluation function
TCodeEval eval("flowrate -s -k");
eval.addInputFile(&inputFile);
eval.addOutputFile(&outputFile);

// Create the sequential runner
TSequentialRun run(&eval);
run.startSlave(); //Start the master (necessary even for a sequential)
if (run.onMaster())
{

TLauncher2 lanceur(tds, &run);
// State to the master : r is constant with value 108
// By default the value is not kept in the tds.
// The third argument says : yes, keep it for bookkeeping
lanceur.addConstantValue(&r,108,true);

page 673

Macro "relauncherCodeFlowrateSequential_ConstantVar.C" CHAPTER XIV. USE-CASES IN C++

// resolution
lanceur.solverLoop();
run.stopSlave(); // Stop the slaves (necessary even for a sequential)

}

tds->scan("*");

}

Here again, a comparison is drawn with the first Relauncher macro (see Section XIV.8.4.2) and only the differences are
pointed out. The first obvious one, in the very first steps in defining the dataserver and the attributes, is that instead of
reading a database-file, we are generating a design-of-experiments with one big specificity: all the input attributes are
properly defined, but r.

// Define the attribute that should be considered as constant
TAttribute r("r");

// Add the study attributes (min, max and nominal values)
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
//

A simple design-of-experiments is generated and all the input attributes are provided to the input file of the assessor,
event the constant one r.

// Create the input files
TKeyScript inputFile(sIn.Data());
inputFile.addInput(tds->getAttribute("rw"),"Rw");
inputFile.addInput(&r,"R"); // Add the constant attribute as an input
inputFile.addInput(tds->getAttribute("tu"),"Tu");
//...

The rest is fairly common, up to the TMaster-inheriting object specification: the addConstantValue method is
called to specify that r is about to be constant for all ongoing estimation, and it provides it value. The last argument
states that the value under consideration should be stored in the ntuple of the dataserver object, as shown in the next
section (from the scan method).

TLauncher2 lanceur(tds, &run);
// State to the master: r is constant with value 108
// By default the value is not kept in the tds.
// The third argument says: yes, keep it for bookkeeping
lanceur.addConstantValue(&r,108,true);

XIV.8.5.3 Console

*** ←↩

* Row * foo__n * rw.rw * tu.tu * tl.tl * hu.hu * hl.hl * l.l * kw.kw * yhat.y ←↩
* d.d * r.r *

*** ←↩

* 0 * 0 * 0.1495 * 111790 * 73.820 * 990.90 * 779.83 * 1474.3 * 11220. * 112.01 ←↩
* 3588.9 * 108 *

* 1 * 1 * 0.1394 * 104140 * 95.150 * 1101.5 * 707.21 * 1422.7 * 11493. * 193.62 ←↩
* 6597.5 * 108 *

* 2 * 2 * 0.0557 * 95387. * 84.809 * 1056.2 * 752.94 * 1184.6 * 11967. * 29.880 ←↩
* 330.58 * 108 *

page 674

CHAPTER XIV. USE-CASES IN C++ Macro "relauncherCodeFlowrateThreaded.C"

* 3 * 3 * 0.0836 * 74144. * 103.17 * 1051.6 * 819.27 * 1587.4 * 11031. * 35.400 ←↩
* 2431.1 * 108 *

* 4 * 4 * 0.0586 * 65396. * 72.161 * 1003.1 * 710.34 * 1327.5 * 10484. * 24.990 ←↩
* 5757 * 108 *

* 5 * 5 * 0.1203 * 92149. * 65.263 * 1031.6 * 797.34 * 1265.5 * 11638. * 97.386 ←↩
* 1084.8 * 108 *

* 6 * 6 * 0.1319 * 67464. * 93.378 * 1039.4 * 722.54 * 1514.3 * 10996. * 125.33 ←↩
* 2362.4 * 108 *

* 7 * 7 * 0.1059 * 80448. * 112.87 * 1027.1 * 794.32 * 1555.4 * 11846 * 62.403 ←↩
* 1116.3 * 108 *

* 8 * 8 * 0.0784 * 100260 * 105.79 * 1072.7 * 767.70 * 1304.1 * 10152. * 45.867 ←↩
* 521.41 * 108 *

* 9 * 9 * 0.0697 * 105158 * 82.544 * 1020.4 * 726.05 * 1640.3 * 10380. * 28.412 ←↩
* 2802.5 * 108 *

* 10 * 10 * 0.1252 * 89522. * 100.65 * 1006.2 * 742.35 * 1123.9 * 10743. * 123.70 ←↩
* 2676.1 * 108 *

* 11 * 11 * 0.1165 * 73139. * 69.083 * 1108.5 * 809.59 * 1199.0 * 10620. * 112.27 ←↩
* 4991.3 * 108 *

* 12 * 12 * 0.0992 * 86004. * 112.12 * 1069.4 * 763.84 * 1345.2 * 9951.0 * 69.808 ←↩
* 414.71 * 108 *

* 13 * 13 * 0.0718 * 113775 * 90.580 * 1079.1 * 782.95 * 1416.6 * 10076. * 34.135 ←↩
* 1016.8 * 108 *

* 14 * 14 * 0.0902 * 83779. * 80.244 * 1090.6 * 734.33 * 1644.2 * 11443 * 63.236 ←↩
* 2922.3 * 108 *

*** ←↩

XIV.8.6 Macro "relauncherCodeFlowrateThreaded.C"

XIV.8.6.1 Objective

The goal of this macro is to show how to handle a code run on several threads. In order to this, the usual sequential
runner will be removed and another runner will be called to do the job. The flowrate code is provided with Uranie
and has been also used and discussed throughout these macros.

XIV.8.6.2 Macro

{

TAttribute *rw = new TAttribute("rw");
TAttribute *r = new TAttribute("r");
TAttribute *tu = new TAttribute("tu");
TAttribute *tl = new TAttribute("tl");
TAttribute *hu = new TAttribute("hu");
TAttribute *hl = new TAttribute("hl");
TAttribute *l = new TAttribute("l");
TAttribute *kw = new TAttribute("kw");

// Create the output attribute
TAttribute *yhat = new TAttribute("yhat");
TAttribute *d = new TAttribute("d");

// Set the reference input file and the key for each input attributes
TFlatScript fin("flowrate_input_with_values_rows.in");
fin.setInputs(8, rw, r, tu, tl, hu, hl, l, kw);

// The output file of the code

page 675

Macro "relauncherCodeFlowrateThreaded.C" CHAPTER XIV. USE-CASES IN C++

TFlatResult fout("_output_flowrate_withRow_.dat");
fout.setOutputs(2, yhat, d);// Passing the attributes to the output file

// Constructing the code
TCodeEval mycode("flowrate -s -r");
mycode.setOldTmpDir();
mycode.addInputFile(&fin); // Adding the input file
mycode.addOutputFile(&fout); // Adding the output file

// Fix the number of threads
int nthread = 3;
// Create the Threaded runner
TThreadedRun run(&mycode, nthread);
run.startSlave(); // Start the master
if (run.onMaster())
{

// Create the TDataServer
TDataServer *tds = new TDataServer("foo","test");
mycode.addAllInputs(tds);
tds->fileDataRead("flowrateUniformDesign.dat", kFALSE, kTRUE);

TLauncher2 lanceur(tds, &run);

// resolution
lanceur.solverLoop();
run.stopSlave(); // Stop the slaves (necessary even for a sequential)

// Draw the result
TCanvas *can = new TCanvas("pouet","foo",1);
tds->Draw("yhat:rw","","colZ"); }

}

The only difference when comparing this macro to the previous one (see Section XIV.8.4.2) is the runner creation:

// Fix the number of threads
int nthread = 3;
// Create the Threaded runner
TThreadedRun run(&mycode, nthread);

The TSequentialRun object becomes a TThreadedRun object whose construction request on top of the asses-
sor, the number of threads to be used. Apart from that, the master is created and the rest is crystal clear, leading to
the following plot.

page 676

CHAPTER XIV. USE-CASES IN C++ Macro "relauncherCodeFlowrateMPI.C"

XIV.8.6.3 Graph

Figure XIV.85: Representation of the output as a function of the first input with a colZ option

XIV.8.7 Macro "relauncherCodeFlowrateMPI.C"

XIV.8.7.1 Objective

The goal of this macro is to show how to handle a code run on several threads with another memory paradigm: when
the TThreadedRun instance is relying on shared memory (leading to possible thread-safe problem, as discussed
in Section VIII.4.2), the MPI implementation is based on the separation of the memory. The communication is made
through messages. In order to this, the usual sequential runner will be removed and another runner will be called to
do the job. The flowrate code is provided with Uranie and has been also used and discussed throughout these
macros.

XIV.8.7.2 Macro

using namespace URANIE::DataServer;
using namespace URANIE::Relauncher;
using namespace URANIE::MpiRelauncher;

void relauncherCodeFlowrateMPI()
{

TAttribute *rw = new TAttribute("rw");
TAttribute *r = new TAttribute("r");
TAttribute *tu = new TAttribute("tu");
TAttribute *tl = new TAttribute("tl");
TAttribute *hu = new TAttribute("hu");
TAttribute *hl = new TAttribute("hl");
TAttribute *l = new TAttribute("l");
TAttribute *kw = new TAttribute("kw");

page 677

Macro "relauncherCodeFlowrateMPI.C" CHAPTER XIV. USE-CASES IN C++

// Create the output attribute
TAttribute *yhat = new TAttribute("yhat");
TAttribute *d = new TAttribute("d");

// Set the reference input file and the key for each input attributes
TFlatScript fin("flowrate_input_with_values_rows.in");
fin.setInputs(8, rw, r, tu, tl, hu, hl, l, kw);

// The output file of the code
TFlatResult fout("_output_flowrate_withRow_.dat");
fout.setOutputs(2, yhat, d);

// Instanciation de mon code
TCodeEval mycode("flowrate -s -r");
//mycode.setOldTmpDir();
mycode.addInputFile(&fin);
mycode.addOutputFile(&fout);

// Create the MPI runner
TMpiRun run(&mycode);
run.startSlave();
if (run.onMaster())
{

// Define the DataServer
TDataServer tds("tdsflowrate", "Design of Experiments for Flowrate");
mycode.addAllInputs(&tds);
tds.fileDataRead("flowrateUniformDesign.dat", kFALSE, kTRUE);

TLauncher2 lanceur(&tds, &run);

// resolution
lanceur.solverLoop();

tds.exportData("_output_testFlowrateMPI_.dat");

run.stopSlave();
}

delete rw;
delete r;
delete tl;
delete tu;
delete hl;
delete hu;
delete l;
delete kw;
delete yhat;
delete d;

}

Here the first difference when comparing this macro to the previous one (see Section XIV.8.6.2) is the runner creation:

// Create the MPI runner
TMpiRun run(&mycode);

The TThreadedRun object becomes a TMpiRun object whose construction only requests a pointer to the assessor.
Apart from that, the code is very similar, the only difference being the way to call this macro. It should not be run with
the usual command:

root -l relauncherCodeFlowrateMPI.C

page 678

CHAPTER XIV. USE-CASES IN C++ Macro "relauncherCodeFlowrateMpiStandalone.C"

Instead, the command line should start with the mpirun command as such:

mpirun -np N root -l -b -q relauncherCodeFlowrateMPI.C

where the N part should be replaced by the number of requested threads. Once run, this macro also leads to the
following plots.

XIV.8.7.3 Graph

Figure XIV.86: Representation of the output as a function of the first input with a colZ option

XIV.8.8 Macro "relauncherCodeFlowrateMpiStandalone.C"

XIV.8.8.1 Objective

The goal of this macro is to show how to handle a code run on several threads with another memory paradigm: when
the TThreadedRun instance is relying on shared memory (leading to possible thread-safe problem, as discussed
in Section VIII.4.2), the MPI implementation is based on the separation of the memory. The communication is made
through messages. In order to this, the usual sequential runner will be removed and another runner will be called to
do the job. The flowrate code is provided with Uranie and has been also used and discussed throughout these
macros.

Warning
This macro is different from the one discussed previously in Section XIV.8.7 as here, one wants to handle
MPI through standalone compilation (so C++ without using the ROOT interface)

page 679

Macro "relauncherCodeFlowrateMpiStandalone.C" CHAPTER XIV. USE-CASES IN C++

XIV.8.8.2 Macro

#include "TAttribute.h"
#include "TCodeEval.h"
#include "TFlatScript.h"
#include "TDataServer.h"
#include "TFlatResult.h"
#include "TMpiRun.h"
#include "TLauncher2.h"

void usage(const char *scmd)
{

printf("\n");
printf("Usage: %s initType Type \n", scmd);
printf("\n");
printf(" Specific method to test standalone MPI distribution with reoptimizer dummy ←↩

case.\n");
printf("\t initType : The MPI initialisation chosen (explicit <-> 0 or implicit ←↩

<-> 1) \n");
printf("\n");

}

int main(int argc, char **argv)
{

int initType=0; // explicit <-> 0 or implicit <-> 1
if(argc>1)
{

for (int iarg=1; iarg<argc; iarg++)
{

if(string(argv[iarg]) == "initType") { initType=atof(argv[iarg+1]); iarg++;}
else
{

cout<<"==="<< ←↩
endl;

cout<<"Don’t know the following option ? "<<string(argv[iarg])<<endl;
usage("mpirun -np N ./${EXECNAME}");
cout<<"==="<< ←↩

endl;
return 0;

}
}

}

// variables
URANIE::DataServer::TAttribute *rw = new URANIE::DataServer::TAttribute("rw");
URANIE::DataServer::TAttribute *r = new URANIE::DataServer::TAttribute("r");
URANIE::DataServer::TAttribute *tu = new URANIE::DataServer::TAttribute("tu");
URANIE::DataServer::TAttribute *tl = new URANIE::DataServer::TAttribute("tl");
URANIE::DataServer::TAttribute *hu = new URANIE::DataServer::TAttribute("hu");
URANIE::DataServer::TAttribute *hl = new URANIE::DataServer::TAttribute("hl");
URANIE::DataServer::TAttribute *l = new URANIE::DataServer::TAttribute("l");
URANIE::DataServer::TAttribute *kw = new URANIE::DataServer::TAttribute("kw");

// Create the output attribute
URANIE::DataServer::TAttribute *yhat = new URANIE::DataServer::TAttribute("yhat");
URANIE::DataServer::TAttribute *d = new URANIE::DataServer::TAttribute("d");

// Set the reference input file and the key for each input attributes
URANIE::Relauncher::TFlatScript fin("flowrate_input_with_values_rows.in");
fin.setInputs(8, rw, r, tu, tl, hu, hl, l, kw);

page 680

CHAPTER XIV. USE-CASES IN C++ Macro "relauncherCodeFlowrateMpiStandalone.C"

// The output file of the code
URANIE::Relauncher::TFlatResult fout("_output_flowrate_withRow_.dat");
fout.setOutputs(2, yhat, d);

// Instanciation de mon code
URANIE::Relauncher::TCodeEval mycode("flowrate -s -r");
//mycode.setOldTmpDir();
mycode.addInputFile(&fin);
mycode.addOutputFile(&fout);

// Create a runner
URANIE::MpiRelauncher::TMpiRun *run=NULL;
if(initType==0)
{

MPI_Init(&argc, &argv);
run = new URANIE::MpiRelauncher::TMpiRun(&mycode);

}
else if(initType==1)

run = new URANIE::MpiRelauncher::TMpiRun(&mycode, &argc, &argv);

run->startSlave();
if(run->onMaster())
{

// Create the TDS
URANIE::DataServer::TDataServer tds("launchFlowrate", "launching flowrate with mpi" ←↩

);
mycode.addAllInputs(&tds);

tds.fileDataRead("flowrateUniformDesign.dat", kFALSE, kTRUE);

URANIE::Relauncher::TLauncher2 lanceur(&tds, run);

// resolution
lanceur.solverLoop();

std::stringstream outname; outname<<"_output_testFlowrateMPIStandalone_"<<initType ←↩
<<"_.dat";

tds.exportData(outname.str().c_str());

run->stopSlave();
}

delete run;

return 0;
}

Here there are few differences the most obvious one being the proper C++ structure:

• there are several includes that has to be included on top the macro in order to provided the needed headers;

• the main function has to follow a classical form int main(int argc, char **argv) which allows to mod-
ify parameters on the fly once compiled (as for the initType integer here through a dedicated loop). The conse-
quence of this signature will be discussed later on;

• a usage function has been written in order to provide interactive guidelines on how to deal with this code.

Apart from this, from the variable definition to the assessor description, the structure is similar to the one discussed
previously (see Section XIV.8.6.2). Once this point is reached there are two ways to construct the runner:

page 681

Macro "relauncherCodeFlowrateMpiStandalone.C" CHAPTER XIV. USE-CASES IN C++

• with the classical constructor. In this case, as one is not running a ROOT session, the constructor will not found the
interactive command parameters and the MPI_Init will not automatically be called, thus meaning that one needs
to call this method with the proper parameters as done below:

MPI_Init(&argc, &argv);
run = new URANIE::MpiRelauncher::TMpiRun(&mycode);

• with the new constructor provided with v4.6.0 whose argument are the usual assessor and the interactive parameters:

run = new URANIE::MpiRelauncher::TMpiRun(&mycode, &argc, &argv);

The final difference is the fact that this code has to be properly compiled, using MPI-complient compilor in order to be
able to produce an executable that will be run later on. This can be done like this:

mpicc -o relaunStand relauncherCodeFlowrateMpiStandalone.C ‘echo $URANIECPPFLAG ←↩
$URANIELDFLAG‘ -lstdc++

where mpicc is the c++ mpi-complient compilor, the argument after -o is the executable name, then one can see the
input file while the rest is provinding all compiling and linking flag in order to reach the goal. Finally, instead of using
the classical root -l command, one will use this line

mpirun -np N ./relaunStand initType XX

where the N part should be replaced by the number of requested threads (always strickly greater than 1) and XX should
be replaced either by 0 or 1 depending on whether one wants to use the classical TMpiRun constructor. Once run,
this macro also leads to the following plots (both initialisation are shown).

XIV.8.8.3 Graph

Figure XIV.87: Representation of the output as a function of the first input with a colZ option when using either the
classical or dedicated constructor

page 682

CHAPTER XIV. USE-CASES IN C++ Macro "relauncherCodeFlowrateSequentialFailure.C"

XIV.8.9 Macro "relauncherCodeFlowrateSequentialFailure.C"

XIV.8.9.1 Objective

The goal of this macro is to show how to handle when a code is returning an error status. Up to version v4.5.0, the
input configuration was simply discarded while from any version now, there are discarded but they can be retrieved
and store in a dedicated TDataServer object. The code used here is the usual flowrate model which has been
modified to return a non zero exit status without producing an output file.

XIV.8.9.2 Macro

{
// Create the TDataServer
TDataServer *tds = new TDataServer("foo","test");
tds->fileDataRead("flowrateUniformDesign.dat");

// Get the attributes
TAttribute *rw = tds->getAttribute("rw");
TAttribute *r = tds->getAttribute("r");
TAttribute *tu = tds->getAttribute("tu");
TAttribute *tl = tds->getAttribute("tl");
TAttribute *hu = tds->getAttribute("hu");
TAttribute *hl = tds->getAttribute("hl");
TAttribute *l = tds->getAttribute("l");
TAttribute *kw = tds->getAttribute("kw");

// Create the output attribute
TAttribute *yhat = new TAttribute("yhat");
TAttribute *d = new TAttribute("d");

// Set the reference input file and the key for each input attributes
TFlatScript fin("flowrate_input_with_values_rows.in");
fin.setInputs(8, rw, r, tu, tl, hu, hl, l, kw);

// The output file of the code
TFlatResult fout("_output_flowrate_withRow_.dat");
fout.setOutputs(2, yhat, d);// Passing the attributes to the output file

// Constructing the code
TCodeEval mycode("flowrate -s -rf");
mycode.addInputFile(&fin); // Adding the input file
mycode.addOutputFile(&fout); // Adding the output file

// Create the sequential runner
TSequentialRun run(&mycode);
run.startSlave(); //Start the master (necessary even for a sequential)

if (run.onMaster())
{

TLauncher2 lanceur(tds, &run);

// Store the wrong calculation
TDataServer error("WrongComputations","pouet");
lanceur.setSaveError(&error);

// resolution
lanceur.solverLoop();
run.stopSlave(); // Stop the slaves (necessary even for a sequential)

page 683

Macro "relauncherCodeFlowrateSequentialFailure.C" CHAPTER XIV. USE-CASES IN C++

// dump all wrong configurations
error.getTuple()->SetScanField(-1);
error.scan("*");

}

// Draw the result
TCanvas *can = new TCanvas("pouet","foo",1);
tds->Draw("hu:hl");

}

Here there are very few differences with the one already introduced in Section XIV.8.4.2. The first one is obviously the
command line which is called using "-rf" argument, the f being introduced for failure.

TCodeEval mycode("flowrate -s -rf");

The second difference is the creation of the failure dataserver object in which all wrong configurations will be stored.
Once created, it is simply passed to the launcher object through the dedicated method setSaveError:

// Store the wrong calculation
TDataServer error("WrongComputations","pouet");
lanceur.setSaveError(&error)

Once done the code is run and two things are looked at: the fact that in a peculiar area of the input space there are
no data anymore (by construction, as shown in Figure XIV.88) and the fact that all configurations are now stored in a
dedicated TDataServer object which one can dump on screen with the command line below to obtain the second
part of the console output seen in Section XIV.8.9.4

// dump all wrong configurations
error.getTuple()->SetScanField(-1);
error.scan("*");

The first part of the console output shown in Section XIV.8.9.4 is a perfect illustration of the way the relauncher module
is discussion failure: the first part is stating that a non-zero return value has been detected

Command cd ${RUNNINGDIR}/URA_XXXXXX ; flowrate -s -rf has returned non-zero exit code (255) ←↩
.

If any different from 127 (usually for unknown command) and 139 (usually for SIGSEV), the ←↩
exit code meaning is "command" dependent.

The second part is letting the user know that no output file has been found (a second reason to consider this configu-
ration as a failure).

Cannot open :: ${RUNNINGDIR}/URA_XXXXXX/_output_flowrate_withRow_.dat

This pattern is repeated every time a configuration is wrong.

page 684

CHAPTER XIV. USE-CASES IN C++ Macro "relauncherCodeFlowrateSequentialFailure.C"

XIV.8.9.3 Graph

Figure XIV.88: Representation of the output data point when the code is asked to fail on purpose.

XIV.8.9.4 Console

Processing relauncherCodeFlowrateSequentialFailure.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

Command cd ${RUNNINGDIR}/URA_XXXXXX ; flowrate -s -rf has returned non-zero exit code (255) ←↩
.

If any different from 127 (usually for unknown command) and 139 (usually for SIGSEV), the ←↩
exit code meaning is "command" dependent.

Cannot open :: ${RUNNINGDIR}/URA_XXXXXX/_output_flowrate_withRow_.dat
Command cd ${RUNNINGDIR}/URA_XXXXXX ; flowrate -s -rf has returned non-zero exit code (255) ←↩

.
If any different from 127 (usually for unknown command) and 139 (usually for SIGSEV), the ←↩

exit code meaning is "command" dependent.
Cannot open :: ${RUNNINGDIR}/URA_XXXXXX/_output_flowrate_withRow_.dat
Command cd ${RUNNINGDIR}/URA_XXXXXX ; flowrate -s -rf has returned non-zero exit code (255) ←↩

.
If any different from 127 (usually for unknown command) and 139 (usually for SIGSEV), the ←↩

exit code meaning is "command" dependent.
Cannot open :: ${RUNNINGDIR}/URA_XXXXXX/_output_flowrate_withRow_.dat
Command cd ${RUNNINGDIR}/URA_XXXXXX ; flowrate -s -rf has returned non-zero exit code (255) ←↩

.
If any different from 127 (usually for unknown command) and 139 (usually for SIGSEV), the ←↩

exit code meaning is "command" dependent.
Cannot open :: ${RUNNINGDIR}/URA_XXXXXX/_output_flowrate_withRow_.dat

page 685

Macro "relauncherCodeMultiTypeKey.C" CHAPTER XIV. USE-CASES IN C++

Command cd ${RUNNINGDIR}/URA_XXXXXX ; flowrate -s -rf has returned non-zero exit code (255) ←↩
.

If any different from 127 (usually for unknown command) and 139 (usually for SIGSEV), the ←↩
exit code meaning is "command" dependent.

Cannot open :: ${RUNNINGDIR}/URA_XXXXXX/_output_flowrate_withRow_.dat

** ←↩

* Row * WrongComp * rw.rw * r.r * tu.tu * tl.tl * hu.hu * hl ←↩
.hl * l.l * kw.kw * ystar.yst *

** ←↩

* 0 * 4 * 0.0633 * 100 * 115600 * 80.73 * 1075.71 * ←↩
751.43 * 1600 * 11106.43 * 28.33 *

* 1 * 5 * 0.0633 * 16733.33 * 80580 * 80.73 * 1058.57 * ←↩
785.71 * 1680 * 12045 * 24.6 *

* 2 * 8 * 0.0767 * 100 * 115600 * 80.73 * 1075.71 * ←↩
751.43 * 1520 * 10793.57 * 42.44 *

* 3 * 12 * 0.09 * 16733.33 * 63070 * 116 * 1075.71 * ←↩
751.43 * 1120 * 11419.29 * 83.77 *

* 4 * 23 * 0.1233 * 16733.33 * 63070 * 63.1 * 1041.43 * ←↩
785.71 * 1680 * 12045 * 86.73 *

** ←↩

XIV.8.10 Macro "relauncherCodeMultiTypeKey.C"

XIV.8.10.1 Objective

The objective of this macro is to test the case where vectors and strings are produced as outputs, using the code
described in Section XIV.4.22.1, with a Key format, obtained by doing:

multitype -mtKey

The resulting output file, named _output_multitype_mt_Key_.dat looks like:

w1 = nine
v1 = -0.512095
v1 = 0.039669
v1 = -1.3834
v1 = 1.37667
v1 = 0.220672
v1 = 0.633267
v1 = 1.37027
v1 = -0.765636
v2 = 14.1981
v2 = 14.0855
v2 = 10.7848
v2 = 9.45476
v2 = 9.17308
v2 = 6.60804
v2 = 10.0711
v2 = 14.1761
v2 = 10.318
v2 = 12.5095
v2 = 15.6614
v2 = 10.3452
v2 = 9.41101
v2 = 7.47887
f1 = 32.2723

page 686

CHAPTER XIV. USE-CASES IN C++ Macro "relauncherCodeMultiTypeKey.C"

w2 = eight

XIV.8.10.2 Macro Uranie

{

// Create the TDataServer and create the seed attribute
TDataServer *tds = new TDataServer("foo", "multitype usecase");
tds->addAttribute(new TUniformDistribution("seed",0,100000));

//Create DOE
TSampling *tsam = new TSampling(tds,"lhs",100);
tsam->generateSample();

// Create output attribute pointers
TAttribute *w1 = new TAttribute("w1", TAttribute::kString);
TAttribute *w2 = new TAttribute("w2", TAttribute::kString);
TAttribute *v1 = new TAttribute("v1", TAttribute::kVector);
TAttribute *v2 = new TAttribute("v2", TAttribute::kVector);
TAttribute *f1 = new TAttribute("f1");

// Create the input files
TFlatScript inputFile("multitype_input.dat");
inputFile.setInputs(1, tds->getAttribute("seed"), "seed");

// Create the output files
TKeyResult outputFile("_output_multitype_mt_Key_.dat");
outputFile.addOutput(w1, "w1");
outputFile.addOutput(v1, "v1");
outputFile.addOutput(v2, "v2");
outputFile.addOutput(f1, "f1");
outputFile.addOutput(w2, "w2");

// Create the user’s evaluation function
TCodeEval eval("multitype -mtKey");
eval.addInputFile(&inputFile); // Add the input file
eval.addOutputFile(&outputFile); // Add the output file

//Create the runner
TSequentialRun runner(&eval);

// Start the slaves
runner.startSlave();
if (runner.onMaster())
{

// Create the launcher
TLauncher2 lanceur(tds, &runner);
lanceur.solverLoop();

// Stop the slave processes
runner.stopSlave();

}

//Produce control plot
TCanvas *Can = new TCanvas("Can","Can",10,10,1000,800);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw(); pad->cd();
tds->drawPairs("w1:v1:v2:f1:w2");

page 687

Macro "relauncherCodeMultiTypeKeyEmptyVectors.C" CHAPTER XIV. USE-CASES IN C++

}

The beginning of the code is pretty common to many other macros: creating a dataserver and input attributes (here the
only one is the seed, needed for the random generator to produce vectors and strings). A sampling object is created
as well to produce a 100-points design-of-experiments and the output attributes are created, as such:

// Create output attribute pointers
TAttribute *w1 = new TAttribute("w1", TAttribute::kString);
TAttribute *w2 = new TAttribute("w2", TAttribute::kString);
TAttribute *v1 = new TAttribute("v1", TAttribute::kVector);
TAttribute *v2 = new TAttribute("v2", TAttribute::kVector);
TAttribute *f1 = new TAttribute("f1");

This is where the specificity of the vector and string is precised. It will be passed on to the rest of the code automatically.
The rest is common to many relauncher job (for instance Section XIV.8.4) with the only difference being that the output
file is a key type one. It results in the following plots.

XIV.8.10.3 Graph

Figure XIV.89: Graph of the macro "relauncherCodeMultiTypeKey.C"

XIV.8.11 Macro "relauncherCodeMultiTypeKeyEmptyVectors.C"

XIV.8.11.1 Objective

The objective of this macro is to test the case where vectors and strings are produced as outputs, using the code
described in Section XIV.4.22.1, with a Key format, obtained by doing:

multitype -mtKey -empty

page 688

CHAPTER XIV. USE-CASES IN C++ Macro "relauncherCodeMultiTypeKeyEmptyVectors.C"

Unlike what’s done to in Section XIV.8.10, the "-empty" allows the code to generate empty vectors and not only vectors
whose size would be between 1 and 15 elements. The resulting output file used is a key-format one in a condensate
form, named _output_multitype_mt_Key_condensate_.dat looks like:

w1 = nine
v1 = [-0.512095,0.039669,-1.3834,1.37667,0.220672,0.633267,1.37027,-0.765636]
v2 = [←↩

14.1981,14.0855,10.7848,9.45476,9.17308,6.60804,10.0711,14.1761,10.318,12.5095,15.6614,10.3452,9.41101,7.47887 ←↩
]

f1 = 32.2723
w2 = eight

XIV.8.11.2 Macro Uranie

{

// Create the TDataServer and create the seed attribute
TDataServer *tds = new TDataServer("foo", "multitype usecase");
tds->addAttribute(new TUniformDistribution("seed",0,100000));

//Create DOE
TSampling *tsam = new TSampling(tds,"lhs",100);
tsam->generateSample();

// Create output attribute pointers
TAttribute *w1 = new TAttribute("w1", TAttribute::kString);
TAttribute *w2 = new TAttribute("w2", TAttribute::kString);
TAttribute *v1 = new TAttribute("v1", TAttribute::kVector);
TAttribute *v2 = new TAttribute("v2", TAttribute::kVector);
TAttribute *f1 = new TAttribute("f1");

// Create the input files
TFlatScript inputFile("multitype_input.dat");
inputFile.setInputs(1, tds->getAttribute("seed"), "seed");

// Create the output files
TKeyResult outputFile("_output_multitype_mt_Key_condensate_.dat");
outputFile.addOutput(w1, "w1");
outputFile.addOutput(v1, "v1");
outputFile.addOutput(v2, "v2");
outputFile.addOutput(f1, "f1");
outputFile.addOutput(w2, "w2");
outputFile.setVectorProperties("[",",","]");

// Create the user’s evaluation function
TCodeEval eval("multitype -mtKey -empty");
eval.addInputFile(&inputFile); // Add the input file
eval.addOutputFile(&outputFile); // Add the output file

//Create the runner
TSequentialRun runner(&eval);

// Start the slaves
runner.startSlave();
if (runner.onMaster())
{

// Create the launcher
TLauncher2 lanceur(tds, &runner);
lanceur.solverLoop();

page 689

Macro "relauncherCodeMultiTypeKeyEmptyVectors.C" CHAPTER XIV. USE-CASES IN C++

// Stop the slave processes
runner.stopSlave();

}

//Produce control plot
TCanvas *Can = new TCanvas("Can","Can",10,10,1000,800);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw(); pad->Divide(1,2);
pad->cd(1);
tds->getTuple()->SetLineColor(2); tds->getTuple()->SetLineWidth(2);
tds->Draw("size__v1");
pad->cd(2);
tds->Draw("size__v2");

}

The beginning of the code is pretty common to the macro already discussed in Section XIV.8.10.2. Apart from the
command difference discussed in the objective above through the "-empty" argument, the main difference with previous
macro is the way the output file is declared. Despite from changing the name, the vector properties are set by calling
the setVectorProperties method to emphasize how to read the information.

// Create the output files
TKeyResult outputFile("_output_multitype_mt_Key_condensate_.dat");
outputFile.addOutput(w1, "w1");
outputFile.addOutput(v1, "v1");
outputFile.addOutput(v2, "v2");
outputFile.addOutput(f1, "f1");
outputFile.addOutput(w2, "w2");
outputFile.setVectorProperties("[",",","]");

Apart from this, the code is smooth and the final results one can be interested in the size of the vectors produced
when empty vectors are allowed. This is produced though the following lines, and the resulting plots are shown in
Figure XIV.90.

//Produce control plot
TCanvas *Can = new TCanvas("Can","Can",10,10,1000,800);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw(); pad->Divide(1,2);
pad->cd(1);
tds->getTuple()->SetLineColor(2); tds->getTuple()->SetLineWidth(2);
tds->Draw("size__v1");
pad->cd(2);
tds->Draw("size__v2");

If the output file was not properly formatted, then one can have issues with this specific case (empty vectors). The
consequences are shown in Section XIV.8.12.

page 690

CHAPTER XIV. USE-CASES IN C++Macro "relauncherCodeMultiTypeKeyEmptyVectorsAsFailure.C"

XIV.8.11.3 Graph

Figure XIV.90: Graph of the macro "relauncherCodeMultiTypeKeyEmptyVectors.C"

XIV.8.12 Macro "relauncherCodeMultiTypeKeyEmptyVectorsAsFailure.C"

XIV.8.12.1 Objective

The objective of this macro is to test the case where vectors and strings are produced as outputs, using the code
described in Section XIV.4.22.1, with a Key format, obtained by doing:

multitype -mtKey -empty

Unlike what’s done to in Section XIV.8.10, the "-empty" allows the code to generate empty vectors and not only vec-
tors whose size would be between 1 and 15 elements. The resulting output file used is a key-format in a very row
form, meaning that evey new element of the vectors are written as a new key-line. This file, named _output_
multitype_mt_Key_.dat could looks like this:

w1 = nine
v1 = -0.512095
v1 = 0.039669
v1 = -1.3834
v1 = 1.37667
v1 = 0.220672
v1 = 0.633267
v1 = 1.37027
v1 = -0.765636
v2 = 14.1981
v2 = 14.0855
v2 = 10.7848
v2 = 9.45476

page 691

Macro "relauncherCodeMultiTypeKeyEmptyVectorsAsFailure.C"CHAPTER XIV. USE-CASES IN C++

v2 = 9.17308
v2 = 6.60804
v2 = 10.0711
v2 = 14.1761
v2 = 10.318
v2 = 12.5095
v2 = 15.6614
v2 = 10.3452
v2 = 9.41101
v2 = 7.47887
f1 = 32.2723
w2 = eight

XIV.8.12.2 Macro Uranie

{
// Create the TDataServer and create the seed attribute
TDataServer *tds = new TDataServer("foo", "multitype usecase");
tds->addAttribute(new TUniformDistribution("seed",0,100000));

//Create DOE
TSampling *tsam = new TSampling(tds,"lhs",100);
tsam->generateSample();

// Create output attribute pointers
TAttribute *w1 = new TAttribute("w1", TAttribute::kString);
TAttribute *w2 = new TAttribute("w2", TAttribute::kString);
TAttribute *v1 = new TAttribute("v1", TAttribute::kVector);
TAttribute *v2 = new TAttribute("v2", TAttribute::kVector);
TAttribute *f1 = new TAttribute("f1");

// Create the input files
TFlatScript inputFile("multitype_input.dat");
inputFile.setInputs(1, tds->getAttribute("seed"), "seed");

// Create the output files
TKeyResult outputFile("_output_multitype_mt_Key_.dat");
outputFile.addOutput(w1, "w1");
outputFile.addOutput(v1, "v1");
outputFile.addOutput(v2, "v2");
outputFile.addOutput(f1, "f1");
outputFile.addOutput(w2, "w2");

// Create the user’s evaluation function
TCodeEval eval("multitype -mtKey -empty");
eval.addInputFile(&inputFile); // Add the input file
eval.addOutputFile(&outputFile); // Add the output file

//Create the runner
TSequentialRun runner(&eval);

// Start the slaves
runner.startSlave();
if (runner.onMaster())
{

// Create the launcher
TLauncher2 lanceur(tds, &runner);

// Store the wrong calculation

page 692

CHAPTER XIV. USE-CASES IN C++Macro "relauncherCodeMultiTypeKeyEmptyVectorsAsFailure.C"

TDataServer error("WrongComputations","pouet");
lanceur.setSaveError(&error);

lanceur.solverLoop();

// dump all wrong configurations
cout<<"\nFailed configurations: "<<endl;
error.getTuple()->SetScanField(-1);
error.scan("*");

// Stop the slave processes
runner.stopSlave();

}
//Produce control plot
TCanvas *Can = new TCanvas("Can","Can",10,10,1000,800);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw(); pad->cd();
tds->drawPairs("w1:v1:v2:f1:w2");

}

The beginning of the code is pretty common to the macro already discussed in Section XIV.8.10.2. Apart from the
command difference discussed in the objective above through the "-empty" argument, the main difference with previous
macro is the failure dataserver declaration and the output console that would be discussed later-on. The former is done
through the following lines:

// Store the wrong calculation
TDataServer error("WrongComputations","pouet");
lanceur.setSaveError(&error);

Once the code is run, the configuration leading to empty vectors are gathered in the failure dataserver and dumped on
screen through the following lines:

// dump all wrong configurations
error.getTuple()->SetScanField(-1);
error.scan("*");

The final part is the way to represent the results: as for the use-case macro discussed in Section XIV.8.10, all data
are plotted in a pair plot and this is summarised in Figure XIV.91. From this picture one should really pay attention
to the number of entries to spot that some configuration are missing. Luckily when looking at the console in Sec-
tion XIV.8.12.4. This time (unlike the failure in Section XIV.8.9) the code is returning a zero output status (because the
code actually worked fine) but as from time to time one the two vectors is empty, no entry is written in the output whose
format is too simple (as it consist only in dumping vector elements by elements) this is why the only message is the
fact that, from time to time, one vector information is missing.

page 693

Macro "relauncherCodeMultiTypeKeyEmptyVectorsAsFailure.C"CHAPTER XIV. USE-CASES IN C++

XIV.8.12.3 Graph

Figure XIV.91: Graph of the macro "relauncherCodeMultiTypeKeyEmptyVectorsAsFailure.C"

XIV.8.12.4 Console

Processing relauncherMultiTypeKeyEmptyVectorsAsFailure.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

TKeyResult(_output_multitype_mt_Key_.dat): v1 Not found
TKeyResult(_output_multitype_mt_Key_.dat): v2 Not found
TKeyResult(_output_multitype_mt_Key_.dat): v1 Not found
TKeyResult(_output_multitype_mt_Key_.dat): v2 Not found
TKeyResult(_output_multitype_mt_Key_.dat): v1 Not found
TKeyResult(_output_multitype_mt_Key_.dat): v2 Not found
TKeyResult(_output_multitype_mt_Key_.dat): v1 Not found
TKeyResult(_output_multitype_mt_Key_.dat): v1 Not found
TKeyResult(_output_multitype_mt_Key_.dat): v2 Not found
TKeyResult(_output_multitype_mt_Key_.dat): v2 Not found
TKeyResult(_output_multitype_mt_Key_.dat): v1 Not found
TKeyResult(_output_multitype_mt_Key_.dat): v1 Not found
TKeyResult(_output_multitype_mt_Key_.dat): v1 Not found
TKeyResult(_output_multitype_mt_Key_.dat): v2 Not found

Failed configurations:

* Row * WrongComp * seed.seed *

page 694

CHAPTER XIV. USE-CASES IN C++ Macro "relauncherCodeReadMultiType.C"

* 0 * 9 * 93759.29 *
* 1 * 33 * 74051.957 *
* 2 * 35 * 71909.957 *
* 3 * 50 * 4183.9188 *
* 4 * 54 * 41806.234 *
* 5 * 57 * 28298.703 *
* 6 * 66 * 64903.722 *
* 7 * 69 * 47690.947 *
* 8 * 73 * 89415.222 *
* 9 * 79 * 30656.411 *
* 10 * 84 * 31627.094 *
* 11 * 86 * 63698.481 *
* 12 * 89 * 13461.926 *
* 13 * 99 * 52994.014 *

XIV.8.13 Macro "relauncherCodeReadMultiType.C"

XIV.8.13.1 Objective

The objective of this macro is to test the case where vectors and strings are used as inputs, using the code described
in Section XIV.4.22.2, with a Key format, obtained by doing:

multitype -ReadmtKey

The input values will be read from a database which is produced with the multitype -mt code, as no sampling is
available yet to produce vectors and strings. The database file is readmultitype_sampling.dat which looks
like this:

#NAME: foo
#TITLE: TDS for flowrate
#DATE: Mon Oct 3 23:50:34 2016
#COLUMN_NAMES: v1| w1| v2| w2| f1| foo__n__iter__
#COLUMN_TYPES: V|S|V|S|D|D

-6.901933299378e-02,-1.292435959913e-01,4.558876683004e-01,5.638486368789e ←↩
-01,-4.767582766745e-02,7.102109543136e-03,2.819049677902e-01,-2.019788081790e ←↩
+00,-2.604401028584e+00,-1.617682380292e+00,2.894560949798e-02,-3.493905850261e-01 six ←↩
1.142449011404e+01,7.318948216271e+00,1.502260859231e+01,6.041193793062e ←↩
+00,6.729445145907e+00,1.128096968597e+01 zero 3.425632316777e+01 0.000000000000e+00

-6.923200061823e-01,-4.798721931875e-01,-1.329893204384e+00,1.292933726829e+00 zero ←↩
1.249911290435e+01,6.309239169117e+00,1.596653626442e+01,5.500878012739e ←↩
+00,1.322535550082e+01,7.070984389647e+00,1.708574150702e+00,1.265915339220e+01 two ←↩
4.295175025115e+01 1.000000000000e+00

5.773813268848e-01,-3.512405673973e-01,-6.870089014992e-01,1.273074555211e-01 nine ←↩
1.242682578759e+01,1.109680842701e+01,1.670410641828e+01,7.296321908492e ←↩
+00,8.732800753443e+00,1.262906549132e+01,8.882310687564e+00,1.104280818003e+01 five ←↩
5.591437936893e+01 2.000000000000e+00

5.518508915499e-01,2.438158138873e-01,1.111784497742e+00,-1.517566514667e+00,7.146879916125 ←↩
e-01,2.328439269321e+00,-1.251913839951e+00,8.876684186954e-01,-1.383023165632e ←↩
+00,-8.192089693621e-01,-1.079524713568e-01,6.595650273375e-01,-2.275345802432e ←↩
-03,1.304354557600e+00 nine 1.021975159505e+01,4.995433740783e+00,1.108628156181e ←↩
+01,1.041110604995e+01,1.111365770153e+01,6.365695806343e+00,6.374053973239e ←↩
+00,6.854423942510e+00,7.144262333164e+00 two 4.093776591421e+01 3.000000000000e+00

2.403942476958e-01,6.868091212609e-01,-1.561012830108e+00,1.937806684989e ←↩
+00,-1.465851888061e+00,5.367279844359e-02,-1.263005327899e+00,-1.132259472701e+00 two ←↩
7.382048319627e+00,5.874867917970e+00,1.158191378461e+01,1.073321314846e+01 six ←↩
6.980549752305e+01 4.000000000000e+00

page 695

Macro "relauncherCodeReadMultiType.C" CHAPTER XIV. USE-CASES IN C++

2.220485143391e+00,-5.787212569267e-01,8.843648237689e-01,2.020662891124e+00,1.066403357312 ←↩
e+00,-5.817432767992e-01,3.063023900800e-01,-7.393588637933e-01 two 2.049656723853e ←↩
+00,9.679003878866e+00,7.338089623518e+00,1.235630702472e+01,1.509238505697e ←↩
+01,1.034077492413e+01,1.116077550501e+01,7.179221834787e+00,1.582041236432e ←↩
+01,9.204085091129e+00,4.707490792498e+00,1.618155764288e+01 five 3.507773555061e+01 ←↩
5.000000000000e+00

8.908373817765e-01,-2.446355046704e-01,-1.900125532005e+00 seven 1.351254851860e ←↩
+01,9.297087139459e+00,1.130966904782e+01,1.219245848701e+01,1.012996566249e ←↩
+01,7.150071600452e+00,1.097549218518e+01,1.443074761657e+01 five 4.464560504112e+01 ←↩
6.000000000000e+00

-2.514644600888e+00,1.633579305804e+00 one 1.229098312451e+01,1.013486836958e ←↩
+01,1.243386772880e+01,1.071783135260e+01,1.453735777922e+01,7.995593455015e ←↩
+00,9.753966962919e+00,5.924583770352e+00,6.187713988125e+00,1.061975242996e ←↩
+01,6.650425922126e+00 four 4.553396475968e+01 7.000000000000e+00

-1.347811599520e+00,-1.259450135534e+00,1.812553405758e+00 five 7.717018655412e ←↩
+00,1.053283796180e+01,7.404059210327e+00 eight 6.695868880279e+01 8.000000000000e+00

-1.258360863204e-01,-9.000566818602e-01,7.039146852797e-01,1.015917277706e ←↩
+00,-2.397650482929e-01 four 4.346717386417e+00,1.033024889324e+01,7.183787459050e ←↩
+00,8.742095837835e+00,1.277095440277e+01,8.685683828779e+00,9.321006265935e ←↩
+00,6.353438157123e+00,8.552570119034e+00 six 4.381313066586e+01 9.000000000000e+00

For every pattern, an input file is created with the Key condensate format, as the other key format is not practical (and
usable). This input file looks like this:

w1 = nine
v1 = [-0.512095,0.039669,-1.3834,1.37667,0.220672,0.633267,1.37027,-0.765636]
v2 = [←↩

14.1981,14.0855,10.7848,9.45476,9.17308,6.60804,10.0711,14.1761,10.318,12.5095,15.6614,10.3452,9.41101,7.47887 ←↩
]

f1 = 32.2723
w2 = eight

The resulting output file, named _output_multitype_readmt_Key_.dat looks like:

thev1 = -0.2397650482929
thev2 = 9.321006265935

XIV.8.13.2 Macro Uranie

{
//inputs
TDataServer tds("foo","TDS for flowrate");
tds.fileDataRead("readmultitype_sampling.dat");

// Input attribute
TAttribute *w1 = tds.getAttribute("w1");
TAttribute *w2 = tds.getAttribute("w2");
TAttribute *v1 = tds.getAttribute("v1");
TAttribute *v2 = tds.getAttribute("v2");
TAttribute *f1 = tds.getAttribute("f1");

// output attribute
TAttribute *thev1 = new TAttribute("thev1");
TAttribute *thev2 = new TAttribute("thev2");
gSystem->Exec("multitype -mtKey");
// Create the output files

TKeyScript inputFile("_output_multitype_mt_Key_condensate_.dat");
inputFile.setInputs(5, w1, "w1", v1, "v1", v2, "v2", f1, "f1", w2, "w2");

page 696

CHAPTER XIV. USE-CASES IN C++ Macro "relauncherCodeReadMultiType.C"

// Create the output files
TKeyResult outputFile("_output_multitype_readmt_Key_.dat");
outputFile.addOutput(thev1, "thev1");
outputFile.addOutput(thev2, "thev2");

// Create the user’s evaluation function
TCodeEval eval("multitype -ReadmtKey");
eval.addInputFile(&inputFile);
eval.addOutputFile(&outputFile);

TSequentialRun runner(&eval);
//TThreadedRun runner(&eval,2);

runner.startSlave();
if (runner.onMaster())
{

// Create the launcher
TLauncher2 lanceur(&tds, &runner);
lanceur.solverLoop();

// Stop the slave processes
runner.stopSlave();

}

tds.Scan("thev1:thev2");

}

The code is pretty straightforward, the fact that input attributes are vectors and strings is explained in the input file
readmultitype_sampling.dat. One line is added to be sure that an example of input file is present (the file
_output_multitype_mt_Key_condensate_.dat) by calling:

gSystem->Exec("multitype -mtKey");

The rest is very common and a screenshot of the result displayed in console is provided in the following subsection.

XIV.8.13.3 Console

Processing relauncherCodeReadMultiType.C...

* Row * thev1 * thev2 *

* 0 * 0.2819049 * 11.424490 *
* 1 * -0.692320 * 15.966536 *
* 2 * -12345678 * 12.629065 *
* 3 * -0.819208 * 11.086281 *
* 4 * -1.561012 * -12345678 *
* 5 * 0.8843648 * 10.340774 *
* 6 * -12345678 * 7.1500716 *
* 7 * 1.6335793 * 14.537357 *
* 8 * -12345678 * -12345678 *
* 9 * -0.239765 * 9.3210062 *

page 697

Macro "relauncherComposeMultitypeAndReadMultiType.C" CHAPTER XIV. USE-CASES IN C++

XIV.8.14 Macro "relauncherComposeMultitypeAndReadMultiType.C"

XIV.8.14.1 Objective

The objective of this macro is to to combine two different assessor in a chain, so that output attributes of the first
assessor is the input attributes of the second one. This example combined the multitype code to produce vectors
and strings as outputs (as explained in Section XIV.4.22.1) and use these vectors and strings as inputs, using the code
described in Section XIV.4.22.2.

XIV.8.14.2 Macro Uranie

{
//inputs
TDataServer tds("foo","TDS for multitype");
tds.fileDataRead("multitype_sampling.dat");

//output attributes...
// ... for code 1
TAttribute *w1 = new TAttribute("w1", URANIE::DataServer::TAttribute::kString);
TAttribute *w2 = new TAttribute("w2", URANIE::DataServer::TAttribute::kString);
TAttribute *v1 = new TAttribute("v1", URANIE::DataServer::TAttribute::kVector);
TAttribute *v2 = new TAttribute("v2", URANIE::DataServer::TAttribute::kVector);
TAttribute *f1 = new TAttribute("f1");

// ... for code 2
TAttribute *thev1 = new TAttribute("thev1");
TAttribute *thev2 = new TAttribute("thev2");

// ==
// ========================== Code 1 ================================
// ==

// Create the input files
TFlatScript inputFile1("multitype_input.dat");
inputFile1.setInputs(1, tds.getAttribute("seed"), "seed");

// Create the output files
TKeyResult outputFile1("_output_multitype_mt_Key_.dat");
outputFile1.addOutput(w1, "w1");
outputFile1.addOutput(v1, "v1");
outputFile1.addOutput(v2, "v2");
outputFile1.addOutput(f1, "f1");
outputFile1.addOutput(w2, "w2");

// Create the user’s evaluation function
TCodeEval eval1("multitype -mtKey");
eval1.addInputFile(&inputFile1);
eval1.addOutputFile(&outputFile1);

// ==
// ========================== Code 2 ================================
// ==

// Create the output files
TKeyScript inputFile2("_output_multitype_mt_Key_condensate_.dat");
inputFile2.setInputs(5, w1, "w1", v1, "v1", v2, "v2", f1, "f1", w2, "w2");

// Create the output files
TKeyResult outputFile2("_output_multitype_readmt_Key_.dat");

page 698

CHAPTER XIV. USE-CASES IN C++ Macro "relauncherComposeMultitypeAndReadMultiType.C"

outputFile2.addOutput(thev1, "thev1");
outputFile2.addOutput(thev2, "thev2");

// Create the user’s evaluation function
TCodeEval eval2("multitype -ReadmtKey");
eval2.addInputFile(&inputFile2);
eval2.addOutputFile(&outputFile2);

// ==
// ======================= Composition ==============================
// ==

// Create the composition
TComposeEval eval;
// Add the code one-by-one, in the right order
eval.addEval(&eval1);
eval.addEval(&eval2);

// Create the runner by providing the TComposeEval
TSequentialRun runner(&eval);

runner.startSlave();
if (runner.onMaster())
{

// Create the launcher
TLauncher2 lanceur(&tds, &runner);
lanceur.solverLoop();

// Stop the slave processes
runner.stopSlave();

tds.exportData("pouet.dat");

}

tds.Scan("thev1:thev2");

}

The code looks very much as the one in two previous examples. First a sample of 10 seed values are read from an
input file. Then, output attributes are defined for the first code, as in Section XIV.8.10.2.

TAttribute *w1 = new TAttribute("w1", URANIE::DataServer::TAttribute::kString);
TAttribute *w2 = new TAttribute("w2", URANIE::DataServer::TAttribute::kString);
TAttribute *v1 = new TAttribute("v1", URANIE::DataServer::TAttribute::kVector);
TAttribute *v2 = new TAttribute("v2", URANIE::DataServer::TAttribute::kVector);
TAttribute *f1 = new TAttribute("f1");

The output attributes are defined for the first code, as in in Section XIV.8.13.2.

TAttribute *thev1 = new TAttribute("thev1");
TAttribute *thev2 = new TAttribute("thev2");

The assessor are then defined with input and output files and the composition is finally done: it is an assessor in in
which we store the other assessors that should be run, in the correct order, as follows:

TComposeEval eval;
// Add the code one-by-one, in the right order
eval.addEval(&eval1);
eval.addEval(&eval2);

page 699

Macro "relauncherCodeFlowrateSequential_TemporaryVar.C"CHAPTER XIV. USE-CASES IN C++

The rest is very common and a screenshot of the result displayed in console is provided in the following subsection.

XIV.8.14.3 Console

Processing relauncherComposeMultitypeAndReadMultiType.C...

* Row * thev1 * thev2 *

* 0 * 0.2819049 * 11.424490 *
* 1 * -0.692320 * 15.966536 *
* 2 * -12345678 * 12.629065 *
* 3 * -0.819208 * 11.086281 *
* 4 * -1.561012 * -12345678 *
* 5 * 0.8843648 * 10.340774 *
* 6 * -12345678 * 7.1500716 *
* 7 * 1.6335793 * 14.537357 *
* 8 * -12345678 * -12345678 *
* 9 * -0.239765 * 9.3210062 *

XIV.8.15 Macro "relauncherCodeFlowrateSequential_TemporaryVar.C"

XIV.8.15.1 Objective

The goal of this macro is to show how to hide one of the evaluator’s attribute and not to store it in the final dataserver.
This is considered when a composition is done for instance, in which many variables might be intermediate needed
ones, resulting from an assessor and used as input to one of the following, but of no interest to the user at the end.
The flowrate code is provided with Uranie and has been also used and discussed throughout these macros.

XIV.8.15.2 Macro

void IncreaseD(double *x, double *y)
{

y[0] = x[0] + 1;
}

void relauncherCodeFlowrateSequential_TemporaryVar()
{

// Create the TDataServer
TDataServer *tds = new TDataServer("foo","test");

// Define the attribute that should be considered as constant
TAttribute r("r");

// Add the study attributes (min, max and nominal values)
tds->addAttribute(new TUniformDistribution("rw", 0.05, 0.15));
tds->addAttribute(new TUniformDistribution("tu", 63070.0, 115600.0));
tds->addAttribute(new TUniformDistribution("tl", 63.1, 116.0));
tds->addAttribute(new TUniformDistribution("hu", 990.0, 1110.0));
tds->addAttribute(new TUniformDistribution("hl", 700.0, 820.0));
tds->addAttribute(new TUniformDistribution("l", 1120.0, 1680.0));
tds->addAttribute(new TUniformDistribution("kw", 9855.0, 12045.0));

// The reference input file
TString sIn = TString("flowrate_input_with_keys.in");

page 700

CHAPTER XIV. USE-CASES IN C++Macro "relauncherCodeFlowrateSequential_TemporaryVar.C"

int nS=15;
// Generate the Design of Experiments
TSampling *sampling = new TSampling(tds, "lhs", nS);
sampling->generateSample();

// Create the input files
TKeyScript inputFile(sIn.Data());
inputFile.addInput(tds->getAttribute("rw"),"Rw");
inputFile.addInput(&r,"R");
inputFile.addInput(tds->getAttribute("tu"),"Tu");
inputFile.addInput(tds->getAttribute("tl"),"Tl");
inputFile.addInput(tds->getAttribute("hu"),"Hu");
inputFile.addInput(tds->getAttribute("hl"),"Hl");
inputFile.addInput(tds->getAttribute("l"),"L");
inputFile.addInput(tds->getAttribute("kw"),"Kw");

// Create the output attributes
TAttribute *yhat = new TAttribute("yhat");
TAttribute *d = new TAttribute("d");

// Create the output files
TKeyResult outputFile("_output_flowrate_withKey_.dat");
outputFile.addOutput(yhat, "yhat");
outputFile.addOutput(d, "d");

// Create the user’s evaluation function
TCodeEval eval1("flowrate -s -k");
eval1.addInputFile(&inputFile);
eval1.addOutputFile(&outputFile);

// Create a second evaluation function that uses d to change it slightly
TAttribute *incd = new TAttribute("incd");
TCIntEval eval2("IncreaseD");
eval2.addInput(d);
eval2.addOutput(incd);

// Create the composition
TComposeEval eval;
// Add the code one-by-one, in the right order
eval.addEval(&eval1);
eval.addEval(&eval2);

// Create the sequential runner
TSequentialRun run(&eval);
run.startSlave(); //Start the master (necessary even for a sequential)
if (run.onMaster())
{

TLauncher2 lanceur(tds, &run);
// State to the master : d is an output attribute and I’m interested in its value
// but I don’t want to keep it in the end. It might be usefull for another evaluator
lanceur.addTemporary(d);
lanceur.addConstantValue(&r,108);

// resolution
lanceur.solverLoop();
run.stopSlave(); // Stop the slaves (necessary even for a sequential)

}

tds->scan("*");

page 701

Macro "relauncherCodeFlowrateSequential_TemporaryVar.C"CHAPTER XIV. USE-CASES IN C++

}

Here again, a comparison is drawn with the macro in which we set an attribute to a constant value (see Section XIV.8.5),
so only the differences are pointed out. The very first one is contained in the beginning lines: a new dummy function,
so that we can have a composition of two assessors, this function only adding one to the provided parameter.

void IncreaseD(double *x, double *y)
{

y[0] = x[0] + 1;
}

The rest is exactly as for Section XIV.8.5, up to the interface with the newy create function:

// Create a second evaluation function that uses d to change it slightly
TAttribute *incd = new TAttribute("incd");
TCIntEval eval2("IncreaseD");
eval2.addInput(d);
eval2.addOutput(incd);

// Create the composition
TComposeEval eval;
// Add the code one-by-one, in the right order
eval.addEval(&eval1);
eval.addEval(&eval2);

A new output attribute is created, called incd for increased d, and the dummy function is defined as taking d as input
and incd as output. Then the composition is done by chaining flowrate with the new dummy function. The rest is fairly
common, up to the TMaster-inheriting object specification: the addTemporary method is called to specify that d
is read from the output of flowrate and can be pass to the rest of the chain, but it will not be kept in the final dataserver.
The addConstantValue is also used just changing the final parameters to show that if nothing is specified, then
the value of r is not stored and this might be tricky for bookkeeping. The results is shown in the next section (from the
scan method) and can be compared to Section XIV.8.5.3 for consistency check.

TLauncher2 lanceur(tds, &run);
// State to the master: d is an output attribute and I’m interested in its value
// but I don’t want to keep it in the end. It might be usefull for another evaluator
lanceur.addTemporary(d);
lanceur.addConstantValue(&r,108);

XIV.8.15.3 Console

** ←↩

* Row * foo__n * rw.rw * tu.tu * tl.tl * hu.hu * hl.hl * l.l * kw.kw * yhat.y ←↩
* incd.i *

** ←↩

* 0 * 0 * 0.1495 * 111790 * 73.820 * 990.90 * 779.83 * 1474.3 * 11220. * 112.01 ←↩
* 3589.9 *

* 1 * 1 * 0.1394 * 104140 * 95.150 * 1101.5 * 707.21 * 1422.7 * 11493. * 193.62 ←↩
* 6598.5 *

* 2 * 2 * 0.0557 * 95387. * 84.809 * 1056.2 * 752.94 * 1184.6 * 11967. * 29.880 ←↩
* 331.58 *

* 3 * 3 * 0.0836 * 74144. * 103.17 * 1051.6 * 819.27 * 1587.4 * 11031. * 35.400 ←↩
* 2432.1 *

* 4 * 4 * 0.0586 * 65396. * 72.161 * 1003.1 * 710.34 * 1327.5 * 10484. * 24.990 ←↩
* 5758 *

page 702

CHAPTER XIV. USE-CASES IN C++ Macros Reoptimizer

* 5 * 5 * 0.1203 * 92149. * 65.263 * 1031.6 * 797.34 * 1265.5 * 11638. * 97.386 ←↩
* 1085.8 *

* 6 * 6 * 0.1319 * 67464. * 93.378 * 1039.4 * 722.54 * 1514.3 * 10996. * 125.33 ←↩
* 2363.4 *

* 7 * 7 * 0.1059 * 80448. * 112.87 * 1027.1 * 794.32 * 1555.4 * 11846 * 62.403 ←↩
* 1117.3 *

* 8 * 8 * 0.0784 * 100260 * 105.79 * 1072.7 * 767.70 * 1304.1 * 10152. * 45.867 ←↩
* 522.41 *

* 9 * 9 * 0.0697 * 105158 * 82.544 * 1020.4 * 726.05 * 1640.3 * 10380. * 28.412 ←↩
* 2803.5 *

* 10 * 10 * 0.1252 * 89522. * 100.65 * 1006.2 * 742.35 * 1123.9 * 10743. * 123.70 ←↩
* 2677.1 *

* 11 * 11 * 0.1165 * 73139. * 69.083 * 1108.5 * 809.59 * 1199.0 * 10620. * 112.27 ←↩
* 4992.3 *

* 12 * 12 * 0.0992 * 86004. * 112.12 * 1069.4 * 763.84 * 1345.2 * 9951.0 * 69.808 ←↩
* 415.71 *

* 13 * 13 * 0.0718 * 113775 * 90.580 * 1079.1 * 782.95 * 1416.6 * 10076. * 34.135 ←↩
* 1017.8 *

* 14 * 14 * 0.0902 * 83779. * 80.244 * 1090.6 * 734.33 * 1644.2 * 11443 * 63.236 ←↩
* 2923.3 *

** ←↩

XIV.9 Macros Reoptimizer

XIV.9.1 Macro "reoptimizeHollowBarCode.C"

XIV.9.1.1 Objective

The objective of the macro is to optimize the section of the hollow bar defined in Section IX.2.2 using the NLopt solvers
(reducing it to a single-criterion optimisation as already explained in Section IX.3. This can be done with different
solvers, the results being achieved within more or less time and following the requested constraints with more or less
accuracy (depending on the hypothesis embedded by the chosen solver).

XIV.9.1.2 Macro Uranie

{

using namespace URANIE::DataServer;
using namespace URANIE::Relauncher;
using namespace URANIE::Reoptimizer;

// variables
TAttribute x("x", 0.0, 1.0),

y("y", 0.0, 1.0),
thick("thick"), // thickness
sect("sect"), // section of the pipe
dist("dist"); // distortion

// Creating the TCodeEval, dumping output of the dummy python in an output file
string python_exec = "python3";
if(string(gSystem->GetBuildArch()) == "win64")

python_exec.pop_back();
TCodeEval code((python_exec +" bar.py > bartoto.dat").data());

page 703

Macro "reoptimizeHollowBarCode.C" CHAPTER XIV. USE-CASES IN C++

// Pass the python script itself as a input file. x and y will be modified in bar.py ←↩
directly

TKeyScript inputfile("bar.py");
inputfile.addInput(&x,"x");
inputfile.addInput(&y,"y");
code.addInputFile(&inputfile);

// precise the name of the output file in which to read the three output variables
TFlatResult outputfile("bartoto.dat");
outputfile.addOutput(&thick);
outputfile.addOutput(§);
outputfile.addOutput(&dist);
code.addOutputFile(&outputfile);

// Create a runner
TSequentialRun runner(&code);
runner.startSlave(); // Usual Relauncher construction

if(runner.onMaster())
{

// Create the TDS
TDataServer tds("vizirDemo", "Param de l’opt vizir pour la barre");
tds.addAttribute(&x);
tds.addAttribute(&y);

// Choose a solver
TNloptCobyla solv;
//TNloptBobyqa solv;
//TNloptPraxis solv;
//TNloptNelderMead solv;
///TNloptSubplexe solv;

// Create the single-objective constrained optimizer
TNlopt opt(&tds, &runner, &solv);

// add the objective
opt.addObjective(§); // minimizing the section

// and the constrains
TLesserFit constrDist(14);
opt.addConstraint(&dist,&constrDist); // on the distortion (dist < 14)
TGreaterFit positiv(0.4);
opt.addConstraint(&thick,&positiv); // and on the thickness (thick > 0.4)

// Starting point and maximum evaluation
vector<double> point{0.9 , 0.2};
opt.setStartingPoint(point.size(),&point[0]);
opt.setMaximumEval(1000);

opt.solverLoop(); // running the optimization

// Stop the slave processes
runner.stopSlave();

// solution
tds.getTuple()->Scan("*","","colsize=9 col=:::5:4");

}

}

page 704

CHAPTER XIV. USE-CASES IN C++ Macro "reoptimizeHollowBarCode.C"

The variables are defined as follow:

// variables
TAttribute x("x", 0.0, 1.0),
y("y", 0.0, 1.0),
thick("thick"), // thickness
sect("sect"), // section of the pipe
dist("dist"); // distortion

where the first two are the input ones while the last ones are computed using the provided code (as explained in
Section IX.2.2). This code is configured through these lines:

// Creating the TCodeEval, dumping output of the dummy python in an output file
TCodeEval code("python bar.py > bartoto.dat");

// Pass the python script itself as a input file. x and y will be modified in bar.py ←↩
directly

TKeyScript inputfile("bar.py");
inputfile.addInput(&x,"x");
inputfile.addInput(&y,"y");
code.addInputFile(&inputfile);

// precise the name of the output file in which to read the three output variables
TFlatResult outputfile("bartoto.dat");
outputfile.addOutput(&thick);
outputfile.addOutput(§);
outputfile.addOutput(&dist);
code.addOutputFile(&outputfile);

The usual Relauncher construction is followed, using a TSequentialRun runner and the solver is chosen in these
lines:

// Choose a solver
TNloptCobyla solv;
//TNloptBobyqa solv;
//TNloptPraxis solv;
//TNloptNelderMead solv;
///TNloptSubplexe solv;

Combining the runner, solver and dataserver, the master object is created and the objective and constraint are defined
(keeping in mind that only single-criterion problems are implemented when dealing with NLopt, so the distortion criteria
is downgraded to a constraint). This is done in

// Create the single-objective constrained optimizer
TNlopt opt(&tds, &runner, &solv);

// add the objective
opt.addObjective(§); // minimizing the section

// and the constrains
TLesserFit constrDist(14);
opt.addConstraint(&dist,&constrDist); // on the distortion (dist < 14)
TGreaterFit positiv(0.4);
opt.addConstraint(&thick,&positiv); // and on the thickness (thick > 0.4)

Finally the starting point is set along with the maximal number of evaluation just before starting the loop.

// Starting point and maximum evaluation
vector<double> point{0.9 , 0.2};
opt.setStartingPoint(point.size(),&point[0]);
opt.setMaximumEval(1000);

page 705

Macro "reoptimizeHollowBarCodeMultiStart.C" CHAPTER XIV. USE-CASES IN C++

opt.solverLoop(); // running the optimisation

XIV.9.1.3 Console

This macro leads to the following result

Processing reoptimizeHollowBarCode.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

|....:....|....:....|....:....|....:....
|***
* Row * vizirDemo * x.x * y.y * thick * sect * dist.dist *

* 0 * 0 * 0.5173156 * 0.1173173 * 0.399 * 0.25 * 13.999986 *

XIV.9.2 Macro "reoptimizeHollowBarCodeMultiStart.C"

XIV.9.2.1 Objective

The objective of the macro is to optimize the section of the hollow bar defined in Section IX.2.2 using the NLopt solvers
(reducing it to a single-criterion optimisation as already explained in Section IX.3. It is largely based on the previous
macro, the main change being the fact that we allow different starting points.

XIV.9.2.2 Macro Uranie

{

using namespace URANIE::DataServer;
using namespace URANIE::Relauncher;
using namespace URANIE::Reoptimizer;

// variables
TAttribute x("x", 0.0, 1.0),
y("y", 0.0, 1.0),
thick("thick"), // thickness
sect("sect"), // section of the pipe
dist("dist"); // distortion

// Creating the TCodeEval, dumping output of the dummy python in an output file
string python_exec = "python3";
if(string(gSystem->GetBuildArch()) == "win64")

python_exec.pop_back();
TCodeEval code((python_exec + " bar.py > bartoto.dat").data());

// Pass the python script itself as a input file. x and y will be modified in bar.py ←↩
directly

TKeyScript inputfile("bar.py");
inputfile.addInput(&x,"x");
inputfile.addInput(&y,"y");

page 706

CHAPTER XIV. USE-CASES IN C++ Macro "reoptimizeHollowBarCodeMultiStart.C"

code.addInputFile(&inputfile);

// precise the name of the output file in which to read the three output variables
TFlatResult outputfile("bartoto.dat");
outputfile.addOutput(&thick);
outputfile.addOutput(§);
outputfile.addOutput(&dist);
code.addOutputFile(&outputfile);

// Create a runner
TSequentialRun runner(&code);
runner.startSlave(); // Usual Relauncher construction

if(runner.onMaster())
{

// Create the TDS
TDataServer tds("vizirDemo", "Param de l’opt vizir pour la barre");
tds.addAttribute(&x);
tds.addAttribute(&y);

// Choose a solver
TNloptCobyla solv;
//TNloptBobyqa solv;
//TNloptPraxis solv;
//TNloptNelderMead solv;
///TNloptSubplexe solv;

// Create the single-objective constrained optimizer
TNlopt opt(&tds, &runner, &solv);

// add the objective
opt.addObjective(§); // minimizing the section

// and the constrains
TLesserFit constrDist(14);
opt.addConstraint(&dist,&constrDist); // on the distortion (dist < 14)
TGreaterFit positiv(0.4);
opt.addConstraint(&thick,&positiv); // and on the thickness (thick > 0.4)

// Starting points
vector<double> p1{0.9 , 0.2}, p2{0.7 , 0.1}, p3{0.5 , 0.4};
opt.setStartingPoint(p1.size(),&p1[0]);
opt.setStartingPoint(p2.size(),&p2[0]);
opt.setStartingPoint(p3.size(),&p3[0]);

// Set maximum evaluation
opt.setMaximumEval(1000);

opt.solverLoop(); // running the optimization

// Stop the slave processes
runner.stopSlave();

// solution
tds.getTuple()->Scan("*","","colsize=9 col=:::5:4");

}

}

As stated previously, the purpose of this macro is to use different starting points for optimisation fully based on the

page 707

Macro "reoptimizeHollowBarCodevizir.C" CHAPTER XIV. USE-CASES IN C++

macro shown in Section XIV.9.1. The only difference is highlighted here:

// Starting points
vector<double> p1{0.9 , 0.2}, p2{0.7 , 0.1}, p3{0.5 , 0.4};
opt.setStartingPoint(p1.size(),&p1[0]);
opt.setStartingPoint(p2.size(),&p2[0]);
opt.setStartingPoint(p3.size(),&p3[0]);

The results of this is that optimisation is performed three times, using the three starting points provided. Here it is done
sequentially, but obviously, the main idea is that it is a convenient way to parallelise these optimisation. This could be
done for instance, simply by changing the runner line from

TSequentialRun runner(&code);

to, for instance in our case with 3 starting points

TThreadedRun runner(&code,4);

XIV.9.2.3 Console

This macro leads to the following result

Processing reoptimizeHollowBarCodeMS.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

|....:....|....:....|....:....|....:....|....:....0050
|....:....|....:....
|....:....|....:....|....:....0100
|..
..:....|....:....|....:...

* Row * vizirDemo * x.x * y.y * thick * sect * dist.dist *

* 0 * 0 * 0.5173155 * 0.1173213 * 0.399 * 0.25 * 14.000005 *
* 1 * 1 * 0.5173156 * 0.1173173 * 0.399 * 0.25 * 13.999986 *
* 2 * 2 * 0.5173155 * 0.1173155 * 0.4 * 0.25 * 14 *

XIV.9.3 Macro "reoptimizeHollowBarCodevizir.C"

XIV.9.3.1 Objective

The objective of the macro is to optimize the section and distortion of the hollow bar defined in Section IX.2.2 using the
evolutionary solvers. This can be done with different solvers, the one chosen here being the TVizirGenetic one.

XIV.9.3.2 Macro Uranie

{

using namespace URANIE::DataServer;
using namespace URANIE::Relauncher;

page 708

CHAPTER XIV. USE-CASES IN C++ Macro "reoptimizeHollowBarCodevizir.C"

using namespace URANIE::Reoptimizer;

// variables
TAttribute x("x", 0.0, 1.0),

y("y", 0.0, 1.0),
thick("thick"), // thickness
sect("sect"), // section of the pipe
dist("dist"); // distortion

// Creating the TCodeEval, dumping output of the dummy python in an output file
string python_exec = "python3";
if(string(gSystem->GetBuildArch()) == "win64")

python_exec.pop_back();
TCodeEval code((python_exec + " bar.py > bartoto.dat").data());

// Pass the python script itself as a input file. x and y will be modified in bar.py ←↩
directly

TKeyScript inputfile("bar.py");
inputfile.addInput(&x,"x");
inputfile.addInput(&y,"y");
code.addInputFile(&inputfile);

// precise the name of the output file in which to read the three output variables
TFlatResult outputfile("bartoto.dat");
outputfile.addOutput(&thick);
outputfile.addOutput(§);
outputfile.addOutput(&dist);
code.addOutputFile(&outputfile);

// Create a runner
TSequentialRun runner(&code);
runner.startSlave(); // Usual Relauncher construction

if(runner.onMaster())
{

// Create the TDS
TDataServer tds("vizirDemo", "Param de l’opt vizir pour la barre");
tds.addAttribute(&x);
tds.addAttribute(&y);

// create the vizir genetic solver
TVizirGenetic solv;
// Set the size of the population to 150, and a maximum number of evaluation at ←↩

15000
solv.setSize(200,15000);

// Create the multi-objective constrained optimizer
TVizir2 opt(&tds, &runner, &solv);

// add the objective
opt.addObjective(§); // minimizing the section
opt.addObjective(&dist); // minimizing the distortion

// and the constrains
TGreaterFit positiv(0.4);
opt.addConstraint(&thick,&positiv); //on thickness (thick > 0.4)

opt.solverLoop(); // running the optimization

// Stop the slave processes
runner.stopSlave();

page 709

Macro "reoptimizeHollowBarCodevizir.C" CHAPTER XIV. USE-CASES IN C++

TCanvas *fig1 = new TCanvas("fig1","Pareto Zone",5,64,1270,667);
int phi=12; int theta=30;
TPad *pad1 = new TPad("pad1","",0,0.03,1,1);
TPad *pad2 = new TPad("pad2","",0,0.03,1,1);
pad2->SetFillStyle(4000); //will be transparent

pad1->Draw(); pad1->Divide(2,1); pad1->cd(1); gPad->SetPhi(phi); gPad->SetTheta(theta);

gStyle->SetLabelSize(0.03); gStyle->SetLabelSize(0.03,"Y"); gStyle->SetLabelSize(0.03,"Z" ←↩
);

tds.getTuple()->Draw("sect:y:x");
//Get the TH3 to change Z axis color
TH3F *htemp = (TH3F*)gPad->GetPrimitive("htemp");
htemp->SetTitle("");
htemp->GetZaxis()->SetLabelColor(2); htemp->GetZaxis()->SetAxisColor(2); htemp->GetZaxis ←↩

()->SetTitleColor(2);

fig1->cd();
pad2->Draw();
pad2->Divide(2,1); pad2->cd(1); gPad->SetFillStyle(4000); gPad->SetPhi(phi); gPad-> ←↩

SetTheta(theta);
tds.getTuple()->SetMarkerColor(4);
tds.getTuple()->Draw("dist:y:x");
htemp = (TH3F*)gPad->GetPrimitive("htemp");
htemp->SetTitle("");
htemp->GetZaxis()->SetLabelColor(4); htemp->GetZaxis()->SetAxisColor(4); htemp->GetZaxis ←↩

()->SetTitleColor(4);
htemp->GetZaxis()->SetTickSize(-1*htemp->GetZaxis()->GetTickLength());
htemp->GetZaxis()->SetLabelOffset(-15*htemp->GetZaxis()->GetLabelOffset());
htemp->GetZaxis()->LabelsOption("d");
htemp->GetZaxis()->SetTitleOffset(-1.5*htemp->GetZaxis()->GetTitleOffset());
htemp->GetZaxis()->RotateTitle();

pad2->cd(2);
tds.getTuple()->SetMarkerColor(2);
tds.draw("dist:sect");

}
}

The variables are defined as follow:

// variables
TAttribute x("x", 0.0, 1.0),
y("y", 0.0, 1.0),
thick("thick"), // thickness
sect("sect"), // section of the pipe
dist("dist"); // distortion

where the first two are the input ones while the last ones are computed using the provided code (as explained in
Section IX.2.2). This code is configured through these lines

// Creating the TCodeEval, dumping output of the dummy python in an output file
TCodeEval code("python bar.py > bartoto.dat");

// Pass the python script itself as a input file. x and y will be modified in bar.py ←↩
directly

TKeyScript inputfile("bar.py");
inputfile.addInput(&x,"x");

page 710

CHAPTER XIV. USE-CASES IN C++ Macro "reoptimizeHollowBarCodevizir.C"

inputfile.addInput(&y,"y");
code.addInputFile(&inputfile);

// precise the name of the output file in which to read the three output variables
TFlatResult outputfile("bartoto.dat");
outputfile.addOutput(&thick);
outputfile.addOutput(§);
outputfile.addOutput(&dist);
code.addOutputFile(&outputfile);

The usual Relauncher construction is followed, using a TSequentialRun runner and the solver is chosen in these
lines

// create the vizir genetic solver
TVizirGenetic solv;
// Set the size of the population to 150, and a maximum number of evaluation at 15000
solv.setSize(200,15000);

Combining the runner, solver and dataserver, the master object is created and the objective and constraint are defined.
This is done in:

// Create the multi-objective constrained optimizer
TVizir2 opt(&tds, &runner, &solv);

// add the objective
opt.addObjective(§); // minimizing the section
opt.addObjective(&dist); // minimizing the distortion

// and the constrains
TGreaterFit positiv(0.4);
opt.addConstraint(&thick,&positiv); //on thickness (thick > 0.4);

Finally the optimisation is launched and the rest of code is providing the graphical result shown in next section.

XIV.9.3.3 Graph

Figure XIV.92: Graph of the macro "reoptimizeHollowBarCodeVizir.C"

page 711

Macro "reoptimizeHollowBarVizirMoead.C" CHAPTER XIV. USE-CASES IN C++

XIV.9.4 Macro "reoptimizeHollowBarVizirMoead.C"

XIV.9.4.1 Objective

The objective of the macro is to optimize the section and distortion of the hollow bar defined in Section IX.2.2 using
the evolutionary solvers, with a reduce number of points to compose the Pareto set/front. This example is comparing
both the usual Vizir genetic algorithm and the MOEAD implementation that is meant to be a many-objective criteria
algorithm. A short discussion on the many-objective aspect can be found in [30].

XIV.9.4.2 Macro Uranie

{
#define nbPoints 20
#define total 4*nbPoints

using namespace URANIE::DataServer;
using namespace URANIE::Relauncher;
using namespace URANIE::Reoptimizer;

// variables
TAttribute x("x", 0.0, 1.0),
y("y", 0.0, 1.0),
thick("thick"), // thickness
sect("sect"), // section of the pipe
dist("dist"); // distortion

gROOT->LoadMacro("UserFunctions.C");

// Creating the assessor using the analytical function
TCIntEval code("barAllCost");
code.addInput(&x);
code.addInput(&y);
code.addOutput(&thick);
code.addOutput(§);
code.addOutput(&dist);

// Create a runner
TSequentialRun runner(&code);
runner.startSlave(); // Usual Relauncher construction

int nMax=3000;
if(runner.onMaster())
{

// ==
// ========= Classical Vizir implementation =========
// ==

// Create the TDS
TDataServer tds_viz("vizirDemo", "Vizir parameter dataser");
tds_viz.addAttribute(&x);
tds_viz.addAttribute(&y);

// create the vizir genetic solver
TVizirGenetic solv_viz;
// Set the size of the population to 150, and a maximum number of evaluation at ←↩

15000
solv_viz.setSize(nbPoints,nMax);

// Create the multi-objective constrained optimizer

page 712

CHAPTER XIV. USE-CASES IN C++ Macro "reoptimizeHollowBarVizirMoead.C"

TVizir2 opt_viz(&tds_viz, &runner, &solv_viz);

// add the objective
opt_viz.addObjective(§); // minimizing the section
opt_viz.addObjective(&dist); // minimizing the distortion

// and the constrains
TGreaterFit positiv(0.4);
opt_viz.addConstraint(&thick,&positiv); //on thickness (thick > 0.4)

opt_viz.solverLoop(); // running the optimization

// ==
// ============== MOEAD implementation ==============
// ==

// Create the TDS
TDataServer tds_moead("vizirDemo", "Vizir parameter dataser");
tds_moead.addAttribute(&x);
tds_moead.addAttribute(&y);

// create the vizir genetic solver
TVizirGenetic solv_moead;
solv_moead.setMoeadDiversity(nbPoints);
solv_moead.setStoppingCriteria(1);
solv_moead.setSize(0, nMax, 200);

// Create the multi-objective constrained optimizer
TVizir2 opt_moead(&tds_moead, &runner, &solv_moead);

// add the objective
opt_moead.addObjective(§); // minimizing the section
opt_moead.addObjective(&dist); // minimizing the distortion

opt_moead.addConstraint(&thick,&positiv); //on thickness (thick > 0.4)

opt_moead.solverLoop(); // running the optimization

// Stop the slave processes
runner.stopSlave();

// Start the graphical part
// Preaparing canvas
TCanvas *fig1 = new TCanvas("fig1","Pareto Zone",5,64,1270,667);

TPad *pad1 = new TPad("pad1","",0,0.03,1,1);
pad1->Draw();

pad1->Divide(2,1); pad1->cd(1);

// extracting data to construct graphs
double viz[total], moead[total+4]; // There is always one more point in moead
tds_viz.getTuple()->extractData(viz, total, "x:y:sect:dist","","column");
tds_moead.getTuple()->extractData(moead, total+4, "x:y:sect:dist","","column");

TGraph *set_viz = new TGraph(nbPoints, &viz[0], &viz[nbPoints]);
TGraph *front_viz = new TGraph(nbPoints, &viz[2*nbPoints], &viz[3*nbPoints]);
set_viz->SetMarkerColor(4); set_viz->SetMarkerStyle(20); set_viz->SetMarkerSize ←↩

(0.8);
front_viz->SetMarkerColor(4); front_viz->SetMarkerStyle(20); front_viz-> ←↩

SetMarkerSize(0.8);

TGraph *set_moead = new TGraph(nbPoints+1, &moead[0], &moead[nbPoints+1]);

page 713

Macro "reoptimizeHollowBarVizirMoead.C" CHAPTER XIV. USE-CASES IN C++

TGraph *front_moead = new TGraph(nbPoints, &moead[2*(nbPoints+1)], &moead[3*(←↩
nbPoints+1)]);

set_moead->SetMarkerColor(2); set_moead->SetMarkerStyle(20); set_moead-> ←↩
SetMarkerSize(0.8);

front_moead->SetMarkerColor(2); front_moead->SetMarkerStyle(20); front_moead-> ←↩
SetMarkerSize(0.8);

// Legend
TLegend *leg = new TLegend(0.25, 0.75, 0.55, 0.89);
leg->AddEntry(set_viz,"Vizir algo","p");
leg->AddEntry(set_moead,"MOEAD algo","p");

// Pareto Set
TMultiGraph *set_mg = new TMultiGraph();
set_mg->Add(set_viz); set_mg->Add(set_moead);
set_mg->Draw("aP");
set_mg->SetTitle("Pareto Set"); set_mg->GetXaxis()->SetTitle("x"); set_mg->GetYaxis ←↩

()->SetTitle("y");
leg->Draw();
gPad->Update();

// Pareto Front
pad1->cd(2);
TMultiGraph *front_mg = new TMultiGraph();
front_mg->Add(front_viz); front_mg->Add(front_moead);
front_mg->Draw("aP");
front_mg->SetTitle("Pareto front"); front_mg->GetXaxis()->SetTitle("Section"); ←↩

front_mg->GetYaxis()->SetTitle("Distortion");
leg->Draw();
gPad->Update();

}
}

The variables are defined as follow:

// variables
TAttribute x("x", 0.0, 1.0),
y("y", 0.0, 1.0),
thick("thick"), // thickness
sect("sect"), // section of the pipe
dist("dist"); // distortion

where the first two are the input ones while the last ones are computed using the provided code (as explained in
Section IX.2.2). This code is configured through these lines

// Creating the assessor using the analytical function
TCIntEval code("barAllCost");
code.addInput(&x);
code.addInput(&y);
code.addOutput(&thick);
code.addOutput(§);
code.addOutput(&dist);

The usual Relauncher construction is followed, using a TSequentialRun runner. The first solver is defined in these
lines

TVizirGenetic solv_viz;
// Set the size of the population to 150, and a maximum number of evaluation at 15000
solv_viz.setSize(nbPoints,nMax);

page 714

CHAPTER XIV. USE-CASES IN C++ Macro "reoptimizeHollowBarVizirMoead.C"

Combining the runner, solver and dataserver, the master object is created and the objective and constraint are defined.
This is done in:

// Create the multi-objective constrained optimizer
TVizir2 opt_viz(&tds_viz, &runner, &solv_viz);

// add the objective
opt_viz.addObjective(§); // minimizing the section
opt_viz.addObjective(&dist); // minimizing the distortion

// and the constrains
TGreaterFit positiv(0.4);
opt_viz.addConstraint(&thick,&positiv); //on thickness (thick > 0.4);

In a second block a new dataserver is created along with a new genetic solver in these lines:

// create the vizir genetic solver
TVizirGenetic solv_moead;
solv_moead.setMoeadDiversity(nbPoints);
solv_moead.setStoppingCriteria(1);
solv_moead.setSize(0, nMax, 200);

The idea here is to use the Moead algorithm whose principle in few words is to split the space into a certain numbers
of direction intervals (set by the argument in the function setMoeadDiversity). This should provide a Pareto front
with a better homogeneity in the front member distribution (particularly visible here when the size of the requested
ensemble is small). The second method, setStoppingCriteria(1) states that the only stopping criteria avail-
able is the total number of estimation, allowed in the setSize method. Finally, the last function to be called is the
setSize one, with a peculiar first argument here: the size of the pareto can be chosen but if 0 is put (as done here)
the number of elements will be the number of intervals defined previously plus one (the plus one comes from the fact
that the elements are created at the edge of every interval, so for 20 intervals, there are 21 edges in total).

The rest of the code is creating the plot shown below in which both Pareto set and front are compared.

XIV.9.4.3 Graph

Figure XIV.93: Graph of the macro "reoptimizeHollowBarVizirMoead.C"

page 715

Macro "reoptimizeHollowBarVizirSplitRuns.C" CHAPTER XIV. USE-CASES IN C++

XIV.9.5 Macro "reoptimizeHollowBarVizirSplitRuns.C"

XIV.9.5.1 Objective

The objective of the macro is to be able to run an evolutionary algorithm (here we are using a genetic one) with a limited
number of code estimation and restart it from where it stopped if it has not converged the first time. This is of utmost
usefulness when running a resource-consumming code or (/and) when running on a cluster with a limited number of
cpu time. The classical hollow bar example defined in Section IX.2.2 is used to obtain a nice Pareto set/front.

XIV.9.5.2 Macro Uranie

#define TOLERANCE 0.001
#define NBmaxEVAL 1200
#define SIZE 500

bool LaunchVizir(int RunNumber, TCanvas *fig1)
{

// variables
TAttribute x("x", 0.0, 1.0),
y("y", 0.0, 1.0),
thick("thick"),
sect("sect"),
def("def");

TCIntEval code("barAllCost");
code.addInput(&x);
code.addInput(&y);
code.addOutput(&thick);
code.addOutput(§);
code.addOutput(&def);

// Create a runner
TSequentialRun runner(&code);
runner.startSlave();

// Output to state whether convergence is reached
bool hasConverged=false;
if(runner.onMaster())
{

// Create the TDS
TDataServer tds("vizirDemo", "Param de l’opt vizir pour la barre");
tds.addAttribute(&x);
tds.addAttribute(&y);

TVizirGenetic solv;
// Name of the file that will contain
string filename="genetic.dump";
std::vector<char> cstr(filename.c_str(), filename.c_str() + filename.size() + 1);
/* Test whether genetic.dump exists. If not, it creates it and returns false, so
that the "else" part is done to start the initialisation of the vizir algorithm. */
if (solv.setResume(NBmaxEVAL, &cstr[0]))

cout << "Restarting Vizir" << endl;
else solv.setSize(SIZE, NBmaxEVAL);

// Create the multi-objective constrained optimizer
TVizir2 opt(&tds, &runner, &solv);
opt.setTolerance(TOLERANCE);
// add the objective

page 716

CHAPTER XIV. USE-CASES IN C++ Macro "reoptimizeHollowBarVizirSplitRuns.C"

opt.addObjective(§);
opt.addObjective(&def);
TGreaterFit positiv(0.4);
opt.addConstraint(&thick,&positiv);

/* resolution */
opt.solverLoop();
hasConverged=opt.isConverged();
// Stop the slave processes
runner.stopSlave();

fig1->cd(RunNumber+1);
tds.getTuple()->SetMarkerColor(2);
tds.draw("def:sect");
stringstream tit; tit << "Run number "<<RunNumber+1;
if(hasConverged) tit << ": Converged !";
((TH1F*)gPad->GetPrimitive("__tdshisto__0"))->SetTitle(tit.str().c_str());

}

return hasConverged;
}

int reoptimizeHollowBarVizirSplitRuns()
{

using namespace URANIE::DataServer;
using namespace URANIE::Relauncher;
using namespace URANIE::Reoptimizer;

gROOT->LoadMacro("UserFunctions.C");
// Delete previous file if it exists
gSystem->Unlink("genetic.dump");

bool finished=false;
int i=0;
TCanvas *fig1 = new TCanvas("fig1","fig1",1200,800);
fig1->Divide(2,2);
while (! finished)
{

finished=LaunchVizir(i, fig1);
i++;

}

return 1;
}

The idea is to show how to run this kind of configuration: the function LaunchVizir is the usual script one can run
to get an optimisation with Vizir on the hollow bar problem. The aim is to create a Pareto set of 500 points (SIZE) but
only allowing 1200 estimation (NBmaxEVAL). With this configuration we are sure that a first round of estimation will not
converge, so we will have to restart the optimisation from the point we stopped. With this regard, the beginning of this
function is trivial and the main point to be discussed arises once the solver is created.

TVizirGenetic solv;
// Name of the file that will contain
string filename="genetic.dump";
std::vector<char> cstr(filename.c_str(), filename.c_str() + filename.size() + 1);
/* Test whether genetic.dump exists. If not, it creates it and returns false, so
that the "else" part is done to start the initialisation of the vizir algorithm. */
if (solv.setResume(NBmaxEVAL, &cstr[0]))
cout << "Restarting Vizir" << endl;
else solv.setSize(SIZE, NBmaxEVAL);

page 717

Macro "reoptimizeHollowBarVizirSplitRuns.C" CHAPTER XIV. USE-CASES IN C++

Clearly here, the interesting part apart, from the definition of the name of the file in which the final state will be kept, is
the first test on the solver, before using the setSize method. A new methods called setResume is called, with two
arguments : the number of elements requested in the Pareto set and the name of the file in which to save the state or
to restart from. This method returns "true" if genetic.dump is found and "false" if not. In the first case, the code will
assume that this file is the result of a previous run and it will start the optimisation from the its content trying to get all
the population non-dominated (if it’s not yet the case). If, on the other hand, no file is found, then the code knows that it
would have to store the results of its process, in a file whose name is the second argument, and because the function
returns "false", then we move to the "else" part, that starts the optimisation.

Apart from this, the rest of the function is doing the optimisation, and plotting the pareto front in a provided canvas.
The only new part here is the fact that the solver (its master in fact) is now able to tell whether it has converged or not
through the following method

hasConverged=opt.isConverged();

this argument being return as the results of the function.

This macro contains another function called reoptimizeHollowBarVizirSplitRuns which plays the role of
the user in front of a ROOT-console. It defines the correct namespace, loads the function file and destroys previously
existing genetic.dump files. From there it runs the LaunchVizir function as many times as needed (thanks to
the boolean returned) as the used would do, by restarting the macro, even after exiting the ROOT console.

The plot shown below represent the Pareto front every time the genetic algorithm stops (at the fourth run, it finally
converges !).

XIV.9.5.3 Graph

Figure XIV.94: Graph of the macro "reoptimizeHollowBarVizirSplitRuns.C"

page 718

CHAPTER XIV. USE-CASES IN C++ Macro "reoptimizeZoningBiSubMpi.C"

XIV.9.6 Macro "reoptimizeZoningBiSubMpi.C"

XIV.9.6.1 Objective

The objective of the macro is to show an example of a two level parallelism program using the Mpi paradigm.

• At the top level, an optimization loop parallelizes its evaluations

• At low level, each optimizer evaluation are a launcher loop who parallelizes its own sequential evaluations

These example is inspired from a zoning problem of a small plant core with square assemblies. However, the physics
embeded in it is reduced to none (sorry), and the problem is simplified. With symetries, the core is defined by 10
different assemblies presented on the following figure. For production purpose, only 5 assembly types are allowed,
defined by an emission value.

Figure XIV.95: The core and its assemblies

To simplify the problem, some constraints are put :

• most assemblies belong to a default zone

• other zone is restricted to one assembly (or two for 4 and 5, and for 8 and 9 for symetrical reason)

• one zone is imposed with the 8th et 9th external assemblies.

• the total of assembly emission is defined.

For each assembly, a reception value is defined depending on the emission from itself and its neighbour’s (just 8
neightbours are taken in account, the 4 nearest neighbours and 4 secondary neighbours). The global objective is to
minimize the difference between the biggest and the smallest reception value.

Optimisation works on 4 emission values (the fifth value, affected to the external zone, is set, and all values are
normalized with the total emission value) and each evaluation loops over the 35 possible arrangements (choose 3
zones from 7). A single evaluation take emission values and the selected zones and return the maximum reception
difference.

XIV.9.6.2 Macro Uranie

This macro is splited in 2 files : the first one defines the low level evaluation function and is reused in the next reoptimizer
example. It is quite a mock function, and is given to be complete, but is not needed to understand how to implement
the two level MPI parallelism

page 719

Macro "reoptimizeZoningBiSubMpi.C" CHAPTER XIV. USE-CASES IN C++

/*
the different zones

6 9
3 5 7
1 2 4 8
0 1 3 6
1 2 5 9

*/

// 4 primary neighbours of a zone
int near1[10][4] = {

{1,1,1,1}, {0,2,2,3}, {1,1,4,5}, {1,4,5,6}, {2,3,7,8}, // 0-4
{2,3,7,9}, {3,8,9,10}, {4,5,10,10}, {4,6,10,10}, {5,6,10,10} // 5-9

};

// 4 secondary neighbours
int near2[10][4] = {

{2,2,2,2}, {1,1,4,5}, {0,3,3,7}, {2,2,8,9}, {1,5,6,10}, //4
{1,4,6,10}, {4,5,10,10}, {2,8,9,10}, {3,7,10,10}, {3,7,10,10} //9

};

// low level evaluation

void lowfun(double *in, double *out)
// evaluate a zoning
{

double dft;
double all, min, max, next;
int p, i, j, id;
double loc[11], bar[11];

// init dft
dft = in[0];
for (i=0; i<8; i++) loc[i] = dft;
loc[8] = loc[9] = 0.8;
loc[10] = 0.;
// init spec
for (i=4; i<7; i++) {

id = (int) in[i];
loc[id] = in[i-3];
if (id == 4) loc[5] = in[i-3];

}
// normalize
all = loc[0]/4;
for (i=1; i<11; i++) all += loc[i];
for (i=0; i<11; i++) loc[i] *= 10/all;

// max diff
i=0;
next = loc[i];
for (j=0; j<4; j++) next += loc[near1[i][j]]/8;
for (j=0; j<4; j++) next += loc[near2[i][j]]/16;
max = min = next;

for (i=1; i<10; i++) {
next = loc[i];
for (j=0; j<4; j++) next += loc[near1[i][j]]/8;
for (j=0; j<4; j++) next += loc[near2[i][j]]/16;
if (next < min) min = next;

page 720

CHAPTER XIV. USE-CASES IN C++ Macro "reoptimizeZoningBiSubMpi.C"

else if (next > max) max = next;
}

out[0] = max-min;
for (i=0; i<10; i++) out[i+1] = loc[i];

}

The lowfun function deals, as expected, with the low level evaluation. In inputs it has the 4 emission values (default,
zone1, zone2, zone3) and 3 indicators defining the zone affected by the extra emission value. It returns the maximal
difference between two zone reception values and the 9 normalized emission values (informative data). Two arrays are
used to define the neighbourhood

With the second file, the two level MPI parallelism is defined.

using namespace URANIE::DataServer;
using namespace URANIE::Relauncher;
using namespace URANIE::Reoptimizer;
using namespace URANIE::MpiRelauncher;

#include "reoptimizeZoneCore.C"

void tds_resume(TDataServer *tds, TAttribute **att, double *res)
{

TList leaves;
TLeaf *leaf;
int i, j, k, siz;
double obj, cur;
std::vector<double> tmp;

siz = tds->getTuple()->GetEntries();

// init
for (i=0; att[i]; i++) {

leaves.Add(tds->GetTuple()->GetLeaf(att[i]->GetName()));
}
tmp.resize(i);

// search min
tds->GetTuple()->GetEntry(0);
obj = ((TLeaf *) leaves.At(0))->GetValue(0);
k = 0;
for (i=1; i<siz; i++) {

tds->GetTuple()->GetEntry(i);
cur = ((TLeaf *) leaves.At(0))->GetValue(0);
if (cur < obj) {

obj = cur;
k = i;

}
}

// get all results
TIter nextl(&leaves);
tds->GetTuple()->GetEntry(k);
for (j=0; (leaf = (TLeaf *) nextl()); j++) {

res[j] = leaf->GetValue(0);
}

}

int doefun(double *in, double *out)

page 721

Macro "reoptimizeZoningBiSubMpi.C" CHAPTER XIV. USE-CASES IN C++

{
double z0, z1, z2, z3;
int i;

// const
z0 = in[0];
z1 = in[1];
z2 = in[2];
z3 = in[3];

// inputs
TAttribute zon0("zon0", 0., 1.);
TAttribute zon1("zon1", 0., 1.);
TAttribute zon2("zon2", 0., 1.);
TAttribute zon3("zon3", 0., 1.);
TAttribute a1("a1");
TAttribute a2("a2");
TAttribute a3("a3");
TAttribute *funi[] = { &zon0, &zon1, &zon2, &zon3, &a1, &a2, &a3, NULL};
//output
TAttribute diff("diff");
TAttribute v0("v0");
TAttribute v1("v1");
TAttribute v2("v2");
TAttribute v3("v3");
TAttribute v4("v4");
TAttribute v5("v5");
TAttribute v6("v6");
TAttribute v7("v7");
TAttribute v8("v8");
TAttribute v9("v9");
TAttribute *funo[] = {

&diff, &v0, &v1, &v2, &v3, &v4, &v5, &v6, &v7, &v8, &v9, NULL
};

// funlow
TCJitEval lfun(lowfun);
for (i=0; funi[i]; i++) lfun.addInput(funi[i]);
for (i=0; funo[i]; i++) lfun.addOutput(funo[i]);

// runner
// TSequentialRun run(&lfun);
TSubMpiRun run(&lfun);
run.startSlave();
if (run.onMaster()) {

TDataServer tds("doe", "tds4doe");
tds.keepFinalTuple(kFALSE);
for (i=4; i<7; i++) tds.addAttribute(funi[i]);
tds.fileDataRead("reoptimizeZoneDoe.dat", kFALSE, kTRUE, "quiet");

TLauncher2 launch(&tds, &run);
launch.addConstantValue(&zon0, z0);
launch.addConstantValue(&zon1, z1);
launch.addConstantValue(&zon2, z2);
launch.addConstantValue(&zon3, z3);
// run doe
launch.solverLoop();

//get critere
tds_resume(&tds, funo, out);

run.stopSlave();

page 722

CHAPTER XIV. USE-CASES IN C++ Macro "reoptimizeZoningBiSubMpi.C"

}
return 1;

}

void reoptimizeZoneBiSubMpi()
{

//ROOT::EnableThreadSafety();
int i;

// inputs
TAttribute z1("zone1", 0., 1.);
TAttribute z2("zone2", 0., 1.);
TAttribute z3("zone3", 0., 1.);
TAttribute z4("zone4", 0., 1.);
TAttribute *zo[] = { &z1, &z2, &z3, &z4, NULL };

// outputs
TAttribute diff("diff");
TAttribute v0("v0");
TAttribute v1("v1");
TAttribute v2("v2");
TAttribute v3("v3");
TAttribute v4("v4");
TAttribute v5("v5");
TAttribute v6("v6");
TAttribute v7("v7");
TAttribute v8("v8");
TAttribute v9("v9");
TAttribute *out[] = {

&diff, &v0, &v1, &v2, &v3, &v4, &v5, &v6, &v7, &v8, &v9, NULL
};

// fonction
TCJitEval fun(doefun);
for (i=0; zo[i]; i++) fun.addInput(zo[i]);
for (i=0; out[i]; i++) fun.addOutput(out[i]);

// runner
//TThreadedRun runner(&fun,8);
//TSequentialRun runner(&fun);
TBiMpiRun runner(&fun, 3);
runner.startSlave();
if (runner.onMaster()) {

TDataServer tds("tdsvzr", "tds4optim");
fun.addAllInputs(&tds);

//
TVizirGenetic gene;
gene.setSize(300, 200000, 100);
//TVizirIsland viz(&tds, &runner, &gene);
TVizir2 viz(&tds, &runner, &gene);
//viz.setTolerance(0.00001);
viz.addObjective(&diff);

viz.solverLoop();

runner.stopSlave();
tds.exportData("__coeur__.dat");

}
}

page 723

Macro "reoptimizeZoneBiFunMpi.C" CHAPTER XIV. USE-CASES IN C++

This script is structured with 3 functions :

• function tds_resume is used by the intermediate function. It receives the TDataServer filled, loops on its items
and returns an synthetic value. In our case, the minimum value of the reception difference, and the 9 normalized
emission values

• function doefun is the intermediate evaluation function. It runs the design of experiments containing all 35 pos-
sible arrangements and extract the best one. It receives the 4 emission values and used them to complete the
TDataServer using the addConstantValue method.

• function reoptimizeZoningBiSubMpi is the top level function who solve the zoning problem

TBiMpiRun and TSubMpiRun are used to allocate cpus between intermediate and low level. TBiMpiRun is used
in reoptimizeZoningBiSubMpi (top) with an integer argument specifying the number of CPUs dedicated to
each intermediate level. In our case (3), with 16 resources request to MPI, they are divided in 5 groups of 3 CPUs, and
one CPU is left for the top level master (take care that the number of CPUs requested matches group size (16 % 3 ==
1)). The top level Master sees 5 resources for his evaluations. TSubMpiRun is used in doefun function and gives
access to the 3 own resources reserved in top level function.

Running the script is done as usual with MPI :

mpirun -n 16 root -l -b -q reoptimizeZoningBiSubMpi.C

At the begining of reoptimizeZoningBiSubMpi function there is a call to ROOT::EnableThreadSafety.
It is unusefull in this case, but if we parallelize with threads instead of MPI. If you want to use both threads and MPI, it
is recommended to use MPI at top level.

XIV.9.7 Macro "reoptimizeZoneBiFunMpi.C"

XIV.9.7.1 Objective

The objective of the macro is to give another example of a two level parallelism program using MPI paradigm. In the
former example MPI function call is implicit using Uranie facilities. In this one, explicit calls to MPI functions is done.
It’s presented to illustrate the case when the user evaluation fonction is an MPI function.

It takes the former example of zoning problem and adapts it. The intermediate level does not use a TLauncher2 to
run all different arrangements, but encodes it. Each Mpi ressources evaluates different possible arrangements keeping
its best one, and Mpi reduce these results to the final result.

XIV.9.7.2 Macro Uranie

The low level evaluation function is the same than in previous example and is not shown again.

using namespace URANIE::DataServer;
using namespace URANIE::Relauncher;
using namespace URANIE::Reoptimizer;
using namespace URANIE::MpiRelauncher;

#include "reoptimizeZoneCore.C"
#include "reoptimizeZoneDoe.h"

struct mpiret {
double val;
int id;

page 724

CHAPTER XIV. USE-CASES IN C++ Macro "reoptimizeZoneBiFunMpi.C"

};

int doefun(double*, double*);

void reoptimizeZoneBiFunMpi()
{

ROOT::EnableThreadSafety();
int i;

// inputs
TAttribute z1("zone1", 0., 1.);
TAttribute z2("zone2", 0., 1.);
TAttribute z3("zone3", 0., 1.);
TAttribute z4("zone4", 0., 1.);
TAttribute *zo[] = { &z1, &z2, &z3, &z4, NULL };

// outputs
TAttribute diff("diff");
TAttribute v0("v0");
TAttribute v1("v1");
TAttribute v2("v2");
TAttribute v3("v3");
TAttribute v4("v4");
TAttribute v5("v5");
TAttribute v6("v6");
TAttribute v7("v7");
TAttribute v8("v8");
TAttribute v9("v9");
TAttribute *out[] = {

&diff, &v0, &v1, &v2, &v3, &v4, &v5, &v6, &v7, &v8, &v9, NULL
};

// fonction
TCJitEval fun(doefun);
for (i=0; zo[i]; i++) fun.addInput(zo[i]);
for (i=0; out[i]; i++) fun.addOutput(out[i]);

// runner
//TThreadedRun runner(&fun,8);
//TSequentialRun runner(&fun);
TBiMpiRun runner(&fun, 3);
runner.startSlave();
if (runner.onMaster()) {

TDataServer tds("tdsvzr", "tds4optim");
fun.addAllInputs(&tds);

//
TVizirGenetic gene;
gene.setSize(300, 200000, 100);
//TVizirIsland viz(&tds, &runner, &gene);
TVizir2 viz(&tds, &runner, &gene);
//viz.setTolerance(0.00001);
viz.addObjective(&diff);

viz.solverLoop();

runner.stopSlave();
tds.exportData("__coeurM__.dat");

}
}

int doefun(double *in, double *out)

page 725

Macro "reoptimizeZoneBiFunMpi.C" CHAPTER XIV. USE-CASES IN C++

{
int i, id, size, fid, tag;
MPI_Comm comm;
double z[7], one[11], two[11];
double *cur, *mem, *swp;
struct mpiret ret, res;

comm = URANIE::MpiRelauncher::TBiMpiRun::getCalculMpiComm();
MPI_Comm_rank(comm, &id);
MPI_Comm_size(comm, &size);

// const
z[0] = in[0];
z[1] = in[1];
z[2] = in[2];
z[3] = in[3];

// local
mem = one;
cur = two;
i = id;
z[4] = doe[i][0];
z[5] = doe[i][1];
z[6] = doe[i][2];
lowfun(z, mem);
for (i = id+size; i<DOESIZE; i+=size) {

z[4] = doe[i][0];
z[5] = doe[i][1];
z[6] = doe[i][2];
lowfun(z, cur);
if (cur[0] < mem[0]) {

swp = mem;
mem = cur;
cur = swp;

}
}

// global
/* where is min */
ret.val = mem[0];
ret.id = id;
MPI_Allreduce(&ret, &res, 1, MPI_DOUBLE_INT, MPI_MINLOC, comm);

/* get min extra datas */
if (res.id != 0) {

if (id == res.id) {
MPI_Send(mem, 11, MPI_DOUBLE, 0, 0, comm);

}
else if (id == 0) {

MPI_Recv(out, 11, MPI_DOUBLE, res.id, 0, comm, MPI_STATUS_IGNORE);
}

}
else {

for (i=0; i<11; i++) out[i] = mem[i];
}
return 1;

}

The top level function (reoptimizeZoneBiFunMpi) does not change from the previous example and defines a
TBiMpiRun instances.

page 726

CHAPTER XIV. USE-CASES IN C++ Macros MetaModelOptim

The evaluation MPI fonction (doefun) is totaly different. It uses the class method URANIE::MpiRelauncher::TBiMpiRun::getCalculMpiComm
to get the MPI Communicator object (MPI_Comm) dedicated to the calcul ressources. With it, different call to MPI func-
tions can be done : MPI_Comm_rank and MPI_Comm_size to get the context ; MPI_Allreduce, MPI_Send
and MPI_Recv to communicate between calculs ressources.

Note that the evaluation function is predeclared and defined after the top level function. It is a trick for cling (the ROOT
jit compiler) to know the MPI function : when it compiles, it sees the TBiMpiRun before, and loads MPI librairies.
With a real MPI user code, which needs a library, cling cannot be used. User needs extra works to make it run (build a
standalone program or a ROOT compatible library), but the principle presented before is suitable.

You may run this script the same way as the precedent example, with the same constraint on the ressource number.
Also note that this version is really faster than the previous one, avoiding creation and manipulation of a TDataServer.

XIV.10 Macros MetaModelOptim

XIV.10.1 Macro "metamodoptEgoHimmel.C"

XIV.10.1.1 Objective

The objective of this macro is to optimize a function using the Efficient Global Optimization algorithm (EGO). EGO is
well suited for problem when solution evaluations are expensive (efficient) and when problem has local minima (global).
In our example, user function is artificially slown down and evaluations are parallelized with threads to point out the
standard context of its use.

The user function is inspired by an academic function, Himmelblau. It is a multimodal function used to point out the
global search that is realized. The problem have 3 parameters and 4 optimal solutions.

XIV.10.1.2 Macro Uranie>

This macro follows the structure of an reoptimizer macro (see previous chapter) and we take a quick look at generic
part. Only specific codes are explained in more details.

/** user choice **/
#define LENT 123456789 // slow down

#define NK 40 // minimal evaluation number for initialize a kriging model
#define NR 8 // resource number to be used
#define NC 300 // maximum evaluation number
#define NP 3 // parameter number

/* user function */
int userfun(double* in, double *out)
{

double him, ret, tmp;
int i;

// himmelblau
ret = 0;

#ifdef LENT
for (int j=0; j<LENT; j++)

#endif
{

him = 0;
tmp = in[0]*in[0] - in[1] - 6;

page 727

Macro "metamodoptEgoHimmel.C" CHAPTER XIV. USE-CASES IN C++

him += tmp*tmp;
for (i=1; i<NP; i++) {

tmp = (i%2) ? in[i]*in[i] - in[i-1] - 6 : in[i] - in[i-1];
him += tmp*tmp;

}
if (him > ret) ret = him;

}

out[0] = ret;
return 1;

}

void metamodoptEgoHimmel()
{

int i;

// input and aoutput variables
URANIE::DataServer::TUniformDistribution x1("x1", -8., 8.);
URANIE::DataServer::TUniformDistribution x2("x2", -8., 8.);
URANIE::DataServer::TUniformDistribution x3("x3", -8., 8.);
URANIE::DataServer::TAttribute *inatt[4] = {&x1, &x2, &x3, NULL};
URANIE::DataServer::TAttribute y("y");

// user fun
URANIE::Relauncher::TCJitEval fun(&userfun);
for (i=0; inatt[i] != NULL; i++) fun.addInput(inatt[i]);
fun.addOutput(&y);

// runner
URANIE::Relauncher::TThreadedRun run(&fun, NR+1);
run.startSlave();
if (run.onMaster()) {

// tds
URANIE::DataServer::TDataServer tds("tds", "ego tds");
tds.keepFinalTuple(kFALSE);
for (i=0; inatt[i] != NULL; i++) tds.addAttribute(inatt[i]);

tds.fileDataRead("lhs3.dat", kFALSE, kTRUE);

// meta modele to use
URANIE::MetaModelOptim::TEgoKBModeler egomod;
egomod.setModel("matern7/2", "const", 1e-8);
egomod.setSolver("ML", "Bobyqa", 300, 800);

// ei optimiser
URANIE::MetaModelOptim::TEgoHjDynSolver hjsolv;
hjsolv.setSize(128, 32);

// master
URANIE::MetaModelOptim::TEGO egosolv(&tds, &run);
egosolv.setSize(NK, NC);
egosolv.setModeler(&egomod);
egosolv.setSolver(&hjsolv);
egosolv.addObjective(&y);

// run master
egosolv.solverLoop();

// results
tds.exportData("egoC.dat");
run.stopSlave();

page 728

CHAPTER XIV. USE-CASES IN C++ Macros Calibration

}
}

At beginning, some cpp macro value are defined.

• The LENT value is used to slow down evaluation time.

• NR value defines the number of threads that are used for evaluation.

• NP, NK and NC values define respectively the number of problem parameters, the number of evalutions needed
before creating a first surrogate model and the maximum number of evaluation allowed.

The userfun function defines the user function, and metamodoptEgoHimmmel the optimisation to realize. The
latter follows usual structure: It defines the problem variables, a TCjitEval to describes the user function, a
TThreadRun to use thread parallelism. In the master block, a working TDataServer is defined, and optimiza-
tion classes.

Notice that the input variables are defined with a TUniformDistribution (not just a TAttributewith minimum
and maximum values). It may be unuseful in this case where the TDataServer is filled with fileDataRead but
otherwise, a sampler is run implicitely.

EGO uses two different solvers : one for surrogate model construction, one for EI optimisation :

• for surrogate model only one class is provided (TKBModeler). It allows to configure which kriging model to use
(setModel), and how it is constructed (setSolver)

• for maximizing EI, a TEgoHjDynSolver is defined, meaning it uses dynamic optimization with the HJMA algo-
rithm. Two parameters are given, first one configuring the initial search, and the second the following one using
previous results.

These solvers are passed to the TEGO class with a dedicated method. Currently, EGO runs in verbose modes.

The resulting TDataServer is filled with all evaluated solutions. In our case of a multi modal problem, keeping just
the best solution is not appropriate. A postprocessing is needed to get best solutions.

XIV.11 Macros Calibration

This section introduces few examples dealing with calibration in order to illustrate the different techniques introduced
in Chapter XI and few of the options available as well.

XIV.11.1 Macro "calibrationMinimisationFlowrate1D.C"

XIV.11.1.1 Objective

The purpose here is to calibrate the value of Hl that entered the flowrate model, when only two inputs have
been varied (rω and L) while the rest of the variables are set to a frozen value: r = 25050, Tu = 89335, Tl = 89.55,
Hu = 1050, Kω = 10950. The context has been already discussed in Section XI.2.4 (including discussing the model,
here using the model as a C++-function and the first few lines defining the TDataServer objects). This macro shows
how to use simple minimisation technique, with a Relauncher-architecture.

page 729

Macro "calibrationMinimisationFlowrate1D.C" CHAPTER XIV. USE-CASES IN C++

XIV.11.1.2 Macro Uranie

{
// Load the function flowrateCalib1D
gROOT->LoadMacro("UserFunctions.C");

// Input reference file
TString ExpData="Ex2DoE_n100_sd1.75.dat";

// define the reference
TDataServer *tdsRef = new TDataServer("tdsRef","doe_exp_Re_Pr");
tdsRef->fileDataRead(ExpData.Data());

// define the parameters
TDataServer *tdsPar = new TDataServer("tdsPar","pouet");
tdsPar->addAttribute(new TAttribute("hl", 700.0, 760.0));
tdsPar->getAttribute("hl")->setDefaultValue(728.0);

// Create the output attribute
TAttribute *out = new TAttribute("out");

// Create interface to assessors
TCIntEval *Model = new TCIntEval("flowrateCalib1D");
Model->addInput(tdsPar->getAttribute("hl"));
Model->addInput(tdsRef->getAttribute("rw"));
Model->addInput(tdsRef->getAttribute("l"));
Model->addOutput(out);

// Set the runner
TSequentialRun *runner = new TSequentialRun(Model);

// Set the calibration object
TMinimisation *cal = new TMinimisation(tdsPar,runner,1);
cal->setDistanceAndReference("LS",tdsRef,"rw:l","Qexp");
TNloptSubplexe solv;
cal->setOptimProperties(&solv);
cal->estimateParameters();

// Draw the residuals
TCanvas *canRes = new TCanvas("CanRes","CanRes",1200,800);
TPad *apad = new TPad("apad","apad",0, 0.03, 1, 1); apad->Draw(); apad->cd();
cal->drawResidues("Residual title","*","","nonewcanvas");

}

Apart from the first lines discussed in Section XI.2.4, the important line is the one defining the starting point of the
minimisation. This can be done by calling the setStartingPoint method of the TNlopt class, or simply by
defining default value for the parameter attributes. This is done here:

tdsPar->getAttribute("hl")->setDefaultValue(728.0);

This macro continues by defining the model and the way to run it. The instance created here, is a TCIntEval which
simply request the three input variables discussed above in the correct order. Here the first one has to be Hl , the
parameter that we want to calibrate, because of the way the C++-function has been defined and then the two varying
ones, (rω and L) whose values are coming from the reference input file. Once done, the output attribute is added (as
our model computes only one variable) and the chosen distribution strategy is chosen to be sequential.

// Create interface to assessors
TCIntEval *Model = new TCIntEval("flowrateCalib1D");
Model->addInput(tdsPar->getAttribute("hl"));

page 730

CHAPTER XIV. USE-CASES IN C++ Macro "calibrationMinimisationFlowrate1D.C"

Model->addInput(tdsRef->getAttribute("rw"));
Model->addInput(tdsRef->getAttribute("l"));
Model->addOutput(out);

// Set the runner
TSequentialRun *runner = new TSequentialRun(Model);

Once done the calibration object (TMinimisation) is created and, as discussed in Section XI.2.2.1, the first object
to be created is the distance function (here the least-square one) through the setDistanceAndReference, that
also defines the TDataServer that contains reference data, the name of the reference inputs and the reference
variable to which the output of the model should be compared with. Finally the optimisation algorithm is defined by
creating an instance of TNloptSubplexe and then the parameters are estimated.

// Set the calibration object
TMinimisation *cal = new TMinimisation(tdsPar,runner,1);
cal->setDistanceAndReference("LS",tdsRef,"rw:l","Qexp");
TNloptSubplexe solv;
cal->setOptimProperties(&solv);
cal->estimateParameters();

The final part is how to represents part of the results. As this method is a point-estimation there is only one value so
it is always displayed on screen, as shown in Section XIV.11.1.3. The other interesting point is to look at the residual,
as discussed in [30] and this is done in Figure XIV.96 which shows normally-distributed residual for the a posteriori
estimations.

XIV.11.1.3 Console

Processing calibrationMinimisationFlowrate1D.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

|....:....|....:....|....:....|....:
.**
* Row * tdsPar__n * hl.hl * agreement *
**
* 0 * 0 * 749.72363 * 18.149368 *
**

page 731

Macro "calibrationLinBayesFlowrate1D.C" CHAPTER XIV. USE-CASES IN C++

XIV.11.1.4 Graph

Figure XIV.96: Graph of the macro "calibrationMinimisationFlowrate1D.C"

XIV.11.2 Macro "calibrationLinBayesFlowrate1D.C"

XIV.11.2.1 Objective

The purpose here is to calibrate the value of Hl that entered the flowrate model, when only two inputs have
been varied (rω and L) while the rest of the variables are set to a frozen value: r = 25050, Tu = 89335, Tl = 89.55,
Hu = 1050, Kω = 10950. The context has been already discussed in Section XI.2.4 (including discussing the model,
here using the model as a C++-function and the first few lines defining the TDataServer objects). This macro shows
how to use linear Bayesian estimation technique, with a Relauncher-architecture.

XIV.11.2.2 Macro Uranie

{
// Load the function flowrateCalib1D
gROOT->LoadMacro("UserFunctions.C");

// Input reference file
TString ExpData="Ex2DoE_n100_sd1.75.dat";

// define the reference
TDataServer *tdsRef = new TDataServer("tdsRef","doe_exp_Re_Pr");
tdsRef->fileDataRead(ExpData.Data());

// define the parameters
TDataServer *tdsPar = new TDataServer("tdsPar","pouet");
tdsPar->addAttribute(new TUniformDistribution("hl", 700.0, 760.0));

// Create the output attribute
TAttribute *out = new TAttribute("out");

// Create interface to assessors

page 732

CHAPTER XIV. USE-CASES IN C++ Macro "calibrationLinBayesFlowrate1D.C"

TCIntEval *Reg = new TCIntEval("flowrateModelnoH");
Reg->addInput(tdsRef->getAttribute("rw"));
Reg->addInput(tdsRef->getAttribute("l"));
Reg->addOutput(new TAttribute("H"));
TSequentialRun *runnoH = new TSequentialRun(Reg);
runnoH->startSlave();
if(runnoH->onMaster())
{
TLauncher2 l(tdsRef, runnoH);
l.solverLoop();
runnoH->stopSlave();

}

// Create interface to assessors
TCIntEval *Model = new TCIntEval("flowrateCalib1D");
Model->addInput(tdsPar->getAttribute("hl"));
Model->addInput(tdsRef->getAttribute("rw"));
Model->addInput(tdsRef->getAttribute("l"));
Model->addOutput(out);

// Set the runner
TSequentialRun *runner = new TSequentialRun(Model);

// Set the covariance matrix of the input reference
double sd=tdsRef->getValue("sd_eps",0);
TMatrixD mat(100,100);
for(unsigned int ival=0; ival<tdsRef->getNPatterns(); ival++)
mat(ival,ival)=(sd*sd);

// Set the calibration object
TLinearBayesian *cal = new TLinearBayesian(tdsPar,runner,1,"");
cal->setDistanceAndReference("Mahalanobis",tdsRef,"rw:l","Qexp");
cal->setObservationCovarianceMatrix(mat);
cal->setRegressorName("H");
cal->setParameterTransformationFunction(transf);
cal->estimateParameters();

// Draw the residuals
TCanvas *canRes = new TCanvas("CanRes","CanRes",1200,800);
TPad *padRes = new TPad("padRes","padRes",0, 0.03, 1, 1); padRes->Draw(); padRes->cd();
cal->drawResidues("Residual title","*","","nonewcanvas");

// Draw the parameters
TCanvas *canPar = new TCanvas("CanPar","CanPar",1200,800);
TPad *padPar = new TPad("padPar","padPar",0, 0.03, 1, 1); padPar->Draw(); padPar->cd();
cal->drawParameters("Parameter title","*","","nonewcanvas,transformed");

}

A very large fraction of this code has been discussed in Section XIV.11.1.2 (from the very start to the sequential run
used). The main difference is the fact that the input parameter is now defined as a TStochasticDistribution -
inheriting object which is the a priori chosen distribution. It can, in this case, only be a either a TNormalDistribution
or a TUniformDistribution (see [30]) and the latter is the chosen solution here:

tdsPar->addAttribute(new TUniformDistribution("hl", 700.0, 760.0));

Another difference with previous example is the fact that we need to prepare a bit the method as we need to get values
for the regressor. As seen in [30], the linear Bayesian estimation is available when the model can be considered linear.

page 733

Macro "calibrationLinBayesFlowrate1D.C" CHAPTER XIV. USE-CASES IN C++

This means that one should linearise the flowrate function as done here by writing:

fθ (x) = (2πTu)

(
ln(

r
rω

)

[
1+

2LTu

ln(r
rω
)r2

ωKω

+
Tu

Tl

])−1

θ = H×θ

where the regressor can be expressed as H = (2πTu)
(

ln(r
rω
)
[
1+ 2LTu

ln(r
rω

)r2
ω Kω

+ Tu
Tl

])−1
. From there, it is clear that we

will be calibrating a newly defined parameter θ = (Hu−Hl), so we will have to transform that back into our parameter
of interest at some point. To get the regressor estimation we simply use another C++-function flowrateModelnoH
along with the standard Relauncher approach:

// Create interface to assessors
TCIntEval *Reg = new TCIntEval("flowrateModelnoH");
Reg->addInput(tdsRef->getAttribute("rw"));
Reg->addInput(tdsRef->getAttribute("l"));
Reg->addOutput(new TAttribute("H"));
TSequentialRun *runnoH = new TSequentialRun(Reg);
runnoH->startSlave();
if(runnoH->onMaster())
{

TLauncher2 l(tdsRef, runnoH);
l.solverLoop();
runnoH->stopSlave();

}

Moving on, this method also needs the input covariance matrix. The input datasets provided (Ex2DoE_n100_sd1.
75.dat) does contain an estimation of the uncertainty affecting the reference measurement, this uncertainty being
constant throughout the sample, the input covariance is stated to be diagonal with a constant value set to the standard
deviation squared, as, done below:

// Set the covariance matrix of the input reference
double sd=tdsRef->getValue("sd_eps",0);
TMatrixD mat(100,100);
for(unsigned int ival=0; ival<tdsRef->getNPatterns(); ival++)
mat(ival,ival)=(sd*sd);

The model is anyway defined along with the way to distribute the computation, and then the calibration object is
constructed with a Mahalanobis distance function (which is not so relevant as discussed in Section XI.4, as it is only
used for illustration purpose). The three important steps are then providing

• the input covariance matrix through the setObservationCovarianceMatrix method;

• the regressors name, by calling setRegressorName;

• the parameter transformation function (not compulsory) with the setParameterTransformationFunction.

The last step is tricky: as we will be performing calibration to get θ , it would be nice to get the proper parameter value
in the end. This is possible if one provides a C++-function that transform the parameter estimated from the linearisation
back into our parameter of interest. This is done in UserFunctions.C for illustration purpose as it contains this
transf function shown below

void transf(double *x, double *res) { res[0] = 1050 - x[0]; } // simply H_l = \theta - H_u

The full block of code discussed here is this one

page 734

CHAPTER XIV. USE-CASES IN C++ Macro "calibrationLinBayesFlowrate1D.C"

// Set the calibration object
TLinearBayesian *cal = new TLinearBayesian(tdsPar,runner,1,"");
cal->setDistanceAndReference("Mahalanobis",tdsRef,"rw:l","Qexp");
cal->setObservationCovarianceMatrix(mat);
cal->setRegressorName("H");
cal->setParameterTransformationFunction(transf);
cal->estimateParameters();

The final part is how to represents part of the results. As this method gives normal a posteriori laws, there defined by a
vector of means and a covariance structure which could simply be accessed and the former is shown in on screen, as
shown in Section XIV.11.2.3. Two other a posteriori information can be seen as plots: the parameter distribution (shown
in Figure XIV.98) and the residual, as discussed in [30], shown in Figure XIV.97 which shows normally-distributed
behaviour.

XIV.11.2.3 Console

Processing calibrationLinBayesFlowrate1D.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

*** TLinearBayesian::computeParameters(); Transformed parameters estimated are

1x1 matrix is as follows

0

0 | 749.7

page 735

Macro "calibrationRejectionABCFlowrate1D.C" CHAPTER XIV. USE-CASES IN C++

XIV.11.2.4 Graph

Figure XIV.97: Residual graph of the macro "calibrationLinBayesFlowrate1D.C"

Figure XIV.98: Parameter graph of the macro "calibrationLinBayesFlowrate1D.C"

XIV.11.3 Macro "calibrationRejectionABCFlowrate1D.C"

XIV.11.3.1 Objective

The purpose here is to calibrate the value of Hl that entered the flowrate model, when only two inputs have
been varied (rω and L) while the rest of the variables are set to a frozen value: r = 25050, Tu = 89335, Tl = 89.55,
Hu = 1050, Kω = 10950. The context has been already discussed in Section XI.2.4 (including discussing the model,
here using the model as a C++-function and the first few lines defining the TDataServer objects). This macro shows
how to use the rejection ABC method, with a Relauncher-architecture.

page 736

CHAPTER XIV. USE-CASES IN C++ Macro "calibrationRejectionABCFlowrate1D.C"

XIV.11.3.2 Macro Uranie

{
// Load the function flowrateCalib1D
gROOT->LoadMacro("UserFunctions.C");

// Input reference file
TString ExpData="Ex2DoE_n100_sd1.75.dat";

// define the reference
TDataServer *tdsRef = new TDataServer("tdsRef","doe_exp_Re_Pr");
tdsRef->fileDataRead(ExpData.Data());

// define the parameters
TDataServer *tdsPar = new TDataServer("tdsPar","pouet");
tdsPar->addAttribute(new TUniformDistribution("hl", 700.0, 760.0));

// Create the output attribute
TAttribute *out = new TAttribute("out");

// Create interface to assessors
TCIntEval *Model = new TCIntEval("flowrateCalib1D");
Model->addInput(tdsPar->getAttribute("hl"));
Model->addInput(tdsRef->getAttribute("rw"));
Model->addInput(tdsRef->getAttribute("l"));
Model->addOutput(out);

// Set the runner
TSequentialRun *runner = new TSequentialRun(Model);

// Set the calibration object
Int_t nABC = 100; Double_t eps = 0.05;
TRejectionABC *cal = new TRejectionABC(tdsPar, runner, nABC, "");
cal->setDistanceAndReference("LS",tdsRef,"rw:l","Qexp");
cal->setGaussianNoise("sd_eps");
cal->setPercentile(eps);
cal->estimateParameters();

// Compute statistics
tdsPar->computeStatistic();
cout << "The mean of hl is " << tdsPar->getAttribute("hl")->getMean() << endl;
cout << "The std of hl is " << tdsPar->getAttribute("hl")->getStd() << endl;

// Draw the parameters
TCanvas *canPar = new TCanvas("CanPar","CanPar",1200,800);
TPad *padPar = new TPad("padPar","padPar",0, 0.03, 1, 1); padPar->Draw(); padPar->cd();
cal->drawParameters("Parameter title","*","","nonewcanvas");

// Draw the residuals
TCanvas *canRes = new TCanvas("CanRes","CanRes",1200,800);
TPad *padRes = new TPad("padRes","padRes",0, 0.03, 1, 1); padRes->Draw(); padRes->cd();
cal->drawResidues("Residual title","*","","nonewcanvas");

}

A very large fraction of this code has been discussed in Section XIV.11.1.2 (from the very start to the sequential run
used). The main difference is the fact that the input parameter is now defined as a TStochasticDistribution
- inheriting object, as a sample will be generated to test locations:

tdsPar->addAttribute(new TUniformDistribution("hl", 700.0, 760.0));

page 737

Macro "calibrationRejectionABCFlowrate1D.C" CHAPTER XIV. USE-CASES IN C++

Apart from this, the model is defined along with the way to distribute the computation, and then the calibration object
is constructed by defining the number of elements in the final sample (nABC set to 100) and, here, the percentile
of events kept (eps set to 5 percent, which means of total number of estimation of 2000 locations). As the code is
deterministic, the uncertainty model is inserted through a random gaussian noise whose standard deviation is defined
event-by-event thanks to a variable in the observation dataserver. The distance is also define and the estimation is
performed.

// Set the calibration object
Int_t nABC = 100; Double_t eps = 0.05;
TRejectionABC *cal = new TRejectionABC(tdsPar, runner, nABC, "");
cal->setDistanceAndReference("LS",tdsRef,"rw:l","Qexp");
cal->setGaussianNoise("sd_eps");
cal->setPercentile(eps);
cal->estimateParameters();

The final part is how to represents part of the results. As this method gives a sample, the first two lines give basic
statistical information, directly on screen, as shown in Section XIV.11.3.3. Two other a posteriori information can be
seen as plots: the parameter distribution (shown in Figure XIV.100) and the residual, as discussed in [30], shown in
Figure XIV.99 which shows normally-distributed behaviour.

XIV.11.3.3 Console

Processing calibrationRejectionABCFlowrate1D.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

<URANIE::INFO>
<URANIE::INFO> *** URANIE INFORMATION ***
<URANIE::INFO> *** File[${SOURCEDIR}/meTIER/calibration/souRCE/TDistanceFunction.cxx] Line ←↩

[601]
<URANIE::INFO> TDistanceFunction::setGaussianRandomNoise: gaussian random noise(s) is ←↩

added using information in [sd_eps] to modify the output variable(s) [out].
<URANIE::INFO> *** END of URANIE INFORMATION ***
<URANIE::INFO>
<URANIE::INFO>
<URANIE::INFO> *** URANIE INFORMATION ***
<URANIE::INFO> *** File[${SOURCEDIR}/meTIER/calibration/souRCE/TRejectionABC.cxx] Line ←↩

[107]
<URANIE::INFO> TRejectionABC::computeParameters:: 2000 evaluations will be performed !
<URANIE::INFO> *** END of URANIE INFORMATION ***
<URANIE::INFO>

A posteriori mean coordinates are : (749.926)
The mean of hl is 749.926
The std of hl is 1.97042

page 738

CHAPTER XIV. USE-CASES IN C++ Macro "calibrationMetropHastingFlowrate1D.C"

XIV.11.3.4 Graph

Figure XIV.99: Residual graph of the macro "calibrationRejectionABCFlowrate1D.C"

Figure XIV.100: Parameter graph of the macro "calibrationRejectionABCFlowrate1D.C"

XIV.11.4 Macro "calibrationMetropHastingFlowrate1D.C"

XIV.11.4.1 Objective

The purpose here is to calibrate the value of Hl that entered the flowrate model, when only two inputs have
been varied (rω and L) while the rest of the variables are set to a frozen value: r = 25050, Tu = 89335, Tl = 89.55,
Hu = 1050, Kω = 10950. The context has been already discussed in Section XI.2.4 (including discussing the model,
here using the model as a C++-function and the first few lines defining the TDataServer objects). This macro shows
how to use Markov-chain approach with the metropolis-hasting algorithm, using a Relauncher-architecture.

page 739

Macro "calibrationMetropHastingFlowrate1D.C" CHAPTER XIV. USE-CASES IN C++

XIV.11.4.2 Macro Uranie

{
// Load the function flowrateCalib1D
gROOT->LoadMacro("UserFunctions.C");

// Input reference file
TString ExpData="Ex2DoE_n100_sd1.75.dat";

// define the reference
TDataServer *tdsRef = new TDataServer("tdsRef","doe_exp_Re_Pr");
tdsRef->fileDataRead(ExpData.Data());
tdsRef->addAttribute("wei_exp","1./(sd_eps*sd_eps)");

// define the parameters
TDataServer *tdsPar = new TDataServer("tdsPar","pouet");
tdsPar->addAttribute(new TUniformDistribution("hl", 700.0, 760.0));

// Create the output attribute
TAttribute *out = new TAttribute("out");

// Create interface to assessors
TCIntEval *Model = new TCIntEval("flowrateCalib1D");
Model->addInput(tdsPar->getAttribute("hl"));
Model->addInput(tdsRef->getAttribute("rw"));
Model->addInput(tdsRef->getAttribute("l"));
Model->addOutput(out);

// Set the runner
TSequentialRun *runner = new TSequentialRun(Model);

// Set the calibration object
TMetropHasting *cal = new TMetropHasting(tdsPar,runner,2000,"");
cal->setDistanceAndReference("weightedLS",tdsRef,"rw:l","Qexp","wei_exp");
cal->setNbDump(400);
cal->setAcceptationRatioRange(0.4, 0.45);
cal->estimateParameters();

// Quality assessment : Draw the trace the MCMC
TCanvas *canTr = new TCanvas("CanTr","CanTr",1200,800);
TPad *padTr = new TPad("padTr","padTr",0, 0.03, 1, 1); padTr->Draw(); padTr->cd();
cal->drawTrace("Trace title","*","","nonewcanvas");

// Draw the parameters
TCanvas *canPar = new TCanvas("CanPar","CanPar",1200,800);
TPad *padPar = new TPad("padPar","padPar",0, 0.03, 1, 1); padPar->Draw(); padPar->cd();
cal->drawParameters("Parameter title","*","","nonewcanvas");

// Draw the residuals
TCanvas *canRes = new TCanvas("CanRes","CanRes",1200,800);
TPad *padRes = new TPad("padRes","padRes",0, 0.03, 1, 1); padRes->Draw(); padRes->cd();
cal->drawResidues("Residual title","*","","nonewcanvas");

// Compute the auto-correlation
int burn=20; // Remove first 20 elements
vector<int> lag={1,5,10,20};
vector<double> autoCorr;
cal->getAutoCorrelation(lag, &autoCorr, burn);

cout<<"Autocorrelation are "<<autoCorr.size()<<":"<<endl;
for(unsigned il=0; il<lag.size(); il++)
{

page 740

CHAPTER XIV. USE-CASES IN C++ Macro "calibrationMetropHastingFlowrate1D.C"

cout<<"*** for lag="<<lag.at(il)<<": ";
for(unsigned ip=0; ip<cal->getNPar(); ip++)
cout<<autoCorr.at(ip*lag.size()+il)<<"; ";
cout<<endl;

}
}

A very large fraction of this code has been discussed in Section XIV.11.1.2 (from the very start to the sequential run
used). The main difference is the fact that the input parameter is now defined as a TStochasticDistribution
- inheriting object, as a sample will be generated to test locations:

tdsPar->addAttribute(new TUniformDistribution("hl", 700.0, 760.0));

Apart from this, the model is defined along with the way to distribute the computation, and then the calibration object
is constructed by defining the number of elements in the final sample (set to 2000). The distance function is then
defined and two properties are set along: the threshold to which a new line is dump on screen to provide information
and the acceptation ratio to be kept by playing on the standard deviation of the research (see Section XI.6). Finally the
estimation is performed.

// Set the calibration object
TMetropHasting *cal = new TMetropHasting(tdsPar,runner,2000,"");
cal->setDistanceAndReference("weightedLS",tdsRef,"rw:l","Qexp","wei_exp");
cal->setNbDump(400);
cal->setAcceptationRatioRange(0.4, 0.45);
cal->estimateParameters();

The final part is how to represents part of the results. At first one should look at the trace to check for any peculiar
trend and choose a burn-in threshold if needed (see Section XI.6), which is shown in Figure XIV.101. As this method
gives a sample, the first two lines give basic statistical information, directly on screen, as shown in Section XIV.11.4.3.
Two other a posteriori information can be seen as plots: the parameter distribution (shown in Figure XIV.103) and the
residual, as discussed in [30], shown in Figure XIV.102 which shows normally-distributed behaviour.

Finally, the auto-correlation of the resulting sample can be computed with different lag values (see Section XI.6), as by
definition, elements from a Markov-chain are not fully independent. This is done here by calling the getAutoCorrelation
method which provides as many estimations as one request, for the lag values. The results are show on screen (see
Section XIV.11.4.3) and are used for post-processing analysis, as the trace plot discussed above.

// Compute the auto-correlation
int burn=20;
vector<int> lag={1,5,10,20};
vector<double> autoCorr;
cal->getAutoCorrelation(lag, &autoCorr, burn);

cout<<"Autocorrelation are "<<autoCorr.size()<<":"<<endl;
for(unsigned il=0; il<lag.size(); il++)
{
cout<<"*** for lag="<<lag.at(il)<<": ";
for(unsigned ip=0; ip<cal->getNPar(); ip++)
cout<<autoCorr.at(ip*lag.size()+il)<<"; ";
cout<<endl;

}

XIV.11.4.3 Console

Processing calibrationMetropHastingFlowrate1D.C...

page 741

Macro "calibrationMetropHastingFlowrate1D.C" CHAPTER XIV. USE-CASES IN C++

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

400 events done
800 events done
1200 events done
1600 events done
A posteriori mean coordinates are : (749.66)
Autocorrelation are 4:

*** for lag=1: 0.409977;

*** for lag=5: 0.0365494;

*** for lag=10: 0.0138947;

*** for lag=20: 0.0773913;

XIV.11.4.4 Graph

Figure XIV.101: Trace graph of the macro "calibrationMetropHastingFlowrate1D.C"

page 742

CHAPTER XIV. USE-CASES IN C++ Macro "calibrationMetropHastingLinReg.C"

Figure XIV.102: Residual graph of the macro "calibrationMetropHastingFlowrate1D.C"

Figure XIV.103: Parameter graph of the macro "calibrationMetropHastingFlowrate1D.C"

XIV.11.5 Macro "calibrationMetropHastingLinReg.C"

XIV.11.5.1 Objective

The purpose here is to calibrate the value of t0 and t1 in a very simple linear model where both parameters are re-
spectively the constant term and the multiplicative coefficient of the only input variable. The input file is linReg_
Database.dat and the toy model is stored in UserFunctions.C. This macro illustrates the steps in two dimen-
sions to get a sample, estimate the burn-in and lag (if needed) and plot the resulting distribution.

XIV.11.5.2 Macro Uranie

page 743

Macro "calibrationMetropHastingLinReg.C" CHAPTER XIV. USE-CASES IN C++

{
// Load the function flowrateCalib1D
gROOT->LoadMacro("UserFunctions.C");

// Input reference file
TString ExpData="linReg_Database.dat";

// Input reference file loaded
TDataServer *tdsRef = new TDataServer("tdsRef","tdsRef");
tdsRef->fileDataRead(ExpData.Data());

// Define the uncertainty model wih a guess
double sd_exp=0.2;
tdsRef->addAttribute("wei_exp",Form("1./(%g*%g)",sd_exp,sd_exp));

// Define the parameters
TDataServer *tdsPar = new TDataServer("tdsPar","poute");
double binf_search=-2.0, bsup_search=2.0;
tdsPar->addAttribute(new TUniformDistribution("t0", binf_search, bsup_search));
tdsPar->addAttribute(new TUniformDistribution("t1", binf_search, bsup_search)) ;

// Create the output attribute
TAttribute *out = new TAttribute("out");

// Create interface to assessors
TCIntEval eval("Toy");
eval.addInput(tdsRef->getAttribute("x"));
eval.addInput(tdsPar->getAttribute("t0"));
eval.addInput(tdsPar->getAttribute("t1"));
eval.addOutput(out);

// Set the runner
TSequentialRun run(&eval);

// Set the calibration object
// Providing wild guess for value and variation range
vector<double> inval={0.8, -0.6}, std={0.4, 0.5};
int ns=12000;
TMetropHasting *cal = new TMetropHasting(tdsPar, &run, ns,"");
cal->setDistanceAndReference("weightedLS",tdsRef,"x","yExp","wei_exp");
cal->setNbDump(4000);
cal->setInitialisation(inval, std);
cal->estimateParameters();

// Quality assessment : Draw the trace the MCMC
TCanvas *canTr = new TCanvas("CanTr","CanTr",1200,800);
TPad *padTr = new TPad("padTr","padTr",0, 0.03, 1, 1); padTr->Draw(); padTr->cd();
cal->drawTrace("Trace title","*","","nonewcanvas");

// Quality assessment : Draw the trace the MCMC
TCanvas *canAcc = new TCanvas("CanAcc","CanAcc",1200,800);
TPad *padAcc = new TPad("padAcc","padAcc",0, 0.03, 1, 1); padAcc->Draw(); padAcc->cd();
cal->drawAcceptationRatio("AcceptRatio title","*","","nonewcanvas");

int burn=100;
// Compute the auto-correlation
vector<int> lag={1,3,6,10,20};
vector<double> autoCorr;
cal->getAutoCorrelation(lag, &autoCorr, burn);

cout<<"Autocorrelation are:"<<endl;

page 744

CHAPTER XIV. USE-CASES IN C++ Macro "calibrationMetropHastingLinReg.C"

for(unsigned il=0; il<lag.size(); il++)
{
cout<<"*** for lag="<<lag.at(il)<<": ";
for(unsigned ip=0; ip<cal->getNPar(); ip++)
cout<<autoCorr.at(ip*lag.size()+il)<<"; ";
cout<<endl;

}

int mylag=6;
//Define a selection based on burn-in and lag
TString mycut=Form("(%s > %d) && ((%s %% %d) == 0)", tdsPar->getIteratorName(), burn, ←↩

tdsPar->getIteratorName(), mylag);
// Draw the parameters
TCanvas *canPar = new TCanvas("CanPar","CanPar",1200,800);
TPad *padPar = new TPad("padPar","padPar",0, 0.03, 1, 1); padPar->Draw(); padPar->cd();
cal->drawParameters("Parameter title","*",mycut.Data(),"nonewcanvas");

// Draw the residuals
TCanvas *canRes = new TCanvas("CanRes","CanRes",1200,800);
TPad *padRes = new TPad("padRes","padRes",0, 0.03, 1, 1); padRes->Draw(); padRes->cd();
cal->drawResidues("Residual title","*","","nonewcanvas");

}

This macro starts, as usual by defining both reference and parameter dataservers. The only specific lines here are
these lines used later-on in which we define the uncertainty hypothesis, meaning a guess of the uncertainty by creating
the weight variable (constant throughout the 30 reference bservations)

// Define the uncertainty model wih a guess
double sd_exp=0.2;
tdsRef->addAttribute("wei_exp",Form("1./(%g*%g)",sd_exp,sd_exp));

This macro continues by defining the model and the way to run it. The instance created here, is a TCIntEval
which simply request the three input variables discussed above in the correct order. Here the first one has to be the
input variable, whose values are coming from the reference datasets, while the other ones are the parameters to be
calibrated, because of the way the C++-function has been defined. Once done, the output attribute is added (as our
model computes only one variable) and the chosen distribution strategy is chosen to be sequential.

// Create interface to assessors
TCIntEval eval("Toy");
eval.addInput(tdsRef->getAttribute("x"));
eval.addInput(tdsPar->getAttribute("t0"));
eval.addInput(tdsPar->getAttribute("t1"));
eval.addOutput(out);

// Set the runner
TSequentialRun run(&eval);

Apart from this, the model is defined along with the way to distribute the computation, and then the calibration object
is constructed by defining the number of elements in the final sample (set to 12000). The distance function is then
defined and two properties are set along: the threshold to which a new line is dump on screen to provide information
and the initialisation properties (values and variation ranges, see Section XI.6). Finally the estimation is performed.

// Set the calibration object
// Providing wild guess for value and variation range
vector<double> inval={0.8, -0.6}, std={0.4, 0.5};
int ns=12000;
TMetropHasting *cal = new TMetropHasting(tdsPar, &run, ns,"");
cal->setDistanceAndReference("weightedLS",tdsRef,"x","yExp","wei_exp");
cal->setNbDump(4000);

page 745

Macro "calibrationMetropHastingLinReg.C" CHAPTER XIV. USE-CASES IN C++

cal->setInitialisation(inval, std);
cal->estimateParameters();

The final part is how to represents part of the results. At first one should look at the trace to check for any peculiar
trend and choose a burn-in threshold if needed (see Section XI.6), which is shown in Figure XIV.104, but one can also
look at the acceptation ratio plots show in Figure XIV.105. As this method gives a sample, the first two lines give basic
statistical information, directly on screen, as shown in Section XIV.11.5.3. One can also look at the autocorrelation and
this might lead to the choice of a lag value to get low autocorrelation values (as shown in the console below).

Given both burn-in and lag values set, two other a posteriori information can be seen as plots: the parameter distribution
(shown in Figure XIV.107) and the residual, as discussed in [30], shown in Figure XIV.106 which shows normally-
distributed behaviour.

XIV.11.5.3 Console

Processing calibrationMetropHastingLinReg.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

4000 events done
8000 events done
12000 events done
A posteriori mean coordinates are : (-0.441188,0.373825)
Autocorrelation are:

*** for lag=1: 0.598494; 0.629943;

*** for lag=3: 0.189151; 0.205056;

*** for lag=6: 0.0542879; 0.0667108;

*** for lag=10: 0.0160068; 0.0195018;

*** for lag=20: 0.0363133; 0.00163761;

XIV.11.5.4 Graph

Figure XIV.104: Trace graph of the macro "calibrationMetropHastingLinReg.C"

page 746

CHAPTER XIV. USE-CASES IN C++ Macro "calibrationMetropHastingLinReg.C"

Figure XIV.105: Acceptation rate graph of the macro "calibrationMetropHastingLinReg.C"

Figure XIV.106: Residual graph of the macro "calibrationMetropHastingLinReg.C"

page 747

Macro "calibrationMinimisationFlowrate2DVizir.C" CHAPTER XIV. USE-CASES IN C++

Figure XIV.107: Parameter graph of the macro "calibrationMetropHastingLinReg.C"

XIV.11.6 Macro "calibrationMinimisationFlowrate2DVizir.C"

XIV.11.6.1 Objective

The purpose here is to calibrate the value both of Hu and Hl that entered the flowrate model, when only two inputs
have been varied (rω and L) while the rest of the variables are set to a frozen value: r = 25050, Tu = 89335, Tl = 89.55,
Kω = 10950. The context is the same as the one discussed in Section XIV.11.1 but it describes two things:

• using Vizir instead of a more simple TNloptSolver-inheriting instance

• discuss the identifiability of a problem, introduced in [30]

The model is the function flowrateCalib2D which is the same as the flowrateClib1D just requesting the Hu

variable as first input.

XIV.11.6.2 Macro Uranie

{
// Load the function flowrateCalib2DVizir
gROOT->LoadMacro("UserFunctions.C");

// Input reference file
TString ExpData="Ex2DoE_n100_sd1.75.dat";

// define the reference
TDataServer *tdsRef = new TDataServer("tdsRef","doe_exp_Re_Pr");
tdsRef->fileDataRead(ExpData.Data());

// define the parameters
TDataServer *tdsPar = new TDataServer("tdsPar","pouet");
tdsPar->addAttribute(new TAttribute("hu", 1020.0, 1080.0));
tdsPar->addAttribute(new TAttribute("hl", 720.0, 780.0));

// Create the output attribute

page 748

CHAPTER XIV. USE-CASES IN C++ Macro "calibrationMinimisationFlowrate2DVizir.C"

TAttribute *out = new TAttribute("out");

// Create interface to assessors
TCIntEval *Model = new TCIntEval("flowrateCalib2D");
Model->addInput(tdsPar->getAttribute("hu"));
Model->addInput(tdsPar->getAttribute("hl"));
Model->addInput(tdsRef->getAttribute("rw"));
Model->addInput(tdsRef->getAttribute("l"));
Model->addOutput(out);

// Set the runner
TSequentialRun *runner = new TSequentialRun(Model);

// Set the calibration object
TMinimisation *cal = new TMinimisation(tdsPar,runner,1);
cal->setDistanceAndReference("relativeLS",tdsRef,"rw:l","Qexp");
// Set optimisaiton properties
URANIE::Reoptimizer::TVizirGenetic solv;
solv.setSize(24,15000,100);
cal->setOptimProperties(&solv);
// ((URANIE::Reoptimizer::TVizir2*)cal->getOptimMaster()->setTolerance(1e-6);
cal->estimateParameters();

// Draw the Residual
TCanvas *canRes = new TCanvas("CanRes","CanRes",1200,800);
TPad *padRes = new TPad("padRes","padRes",0, 0.03, 1, 1); padRes->Draw(); padRes->cd();
cal->drawResidues("tutu","*","","nonewcanvas");

// Draw the box plot of parameters
TCanvas *canPar = new TCanvas("CanPar","CanPar",1200,800);
tdsPar->getTuple()->SetMarkerStyle(20); tdsPar->getTuple()->SetMarkerSize(0.8);
tdsPar->Draw("hu:hl");

// Look at the correlation and statistic
tdsPar->computeStatistic("hu:hl");
TMatrixD corr=tdsPar->computeCorrelationMatrix("hu:hl");
corr.Print();

cout<<"hl is "<<tdsPar->getAttribute("hl")->getMean()<<" +- "<<tdsPar->getAttribute("hl") ←↩
->getStd()<<endl;

cout<<"hu is "<<tdsPar->getAttribute("hu")->getMean()<<" +- "<<tdsPar->getAttribute("hu") ←↩
->getStd()<<endl;

}

Apart from the first lines discussed in Section XI.2.4, the important line is the one defining the variable, here as
TAttribute with boundaries to define the phase space in which the algorithm will look for:

tdsPar->addAttribute(new TAttribute("hu", 1020.0, 1080.0));
tdsPar->addAttribute(new TAttribute("hl", 720.0, 780.0));

This macro continues by defining the model and the way to run it. The instance created here, is a TCIntEval which
simply request the three input variables discussed above in the correct order. Here the first ones have to be Hu and
Hl , the parameter that we want to calibrate, because of the way the C++-function has been defined and then the two
varying ones, (rω and L) whose values are coming from the reference input file. Once done, the output attribute is
added (as our model computes only one variable) and the chosen distribution strategy is chosen to be sequential.

// Create interface to assessors
TCIntEval *Model = new TCIntEval("flowrateCalib2D");
Model->addInput(tdsPar->getAttribute("hu"));
Model->addInput(tdsPar->getAttribute("hl"));

page 749

Macro "calibrationMinimisationFlowrate2DVizir.C" CHAPTER XIV. USE-CASES IN C++

Model->addInput(tdsRef->getAttribute("rw"));
Model->addInput(tdsRef->getAttribute("l"));
Model->addOutput(out);

// Set the runner
TSequentialRun *runner = new TSequentialRun(Model);

Once done the calibration object (TMinimisation) is created and, as discussed in Section XI.2.2.1, the first object
to be created is the distance function (here the least-square one) through the setDistanceAndReference, that
also defines the TDataServer that contains reference data, the name of the reference inputs and the reference
variable to which the output of the model should be compared with. Finally the optimisation algorithm is defined by
creating an instance of TVizirGenetic and then the parameters are estimated.

// Set the calibration object
TMinimisation *cal = new TMinimisation(tdsPar,runner,1);
cal->setDistanceAndReference("relativeLS",tdsRef,"rw:l","Qexp");
// Set optimisaiton properties
URANIE::Reoptimizer::TVizirGenetic solv;
solv.setSize(24,15000,100);
cal->setOptimProperties(&solv);
// ((URANIE::Reoptimizer::TVizir2*)cal->getOptimMaster()->setTolerance(1e-6);
cal->estimateParameters();

The final part is how to represents part of the results. There are many interesting point in this discussion: the residual,
which are estimated using the mean of both parameters, are shown in Figure XIV.108. The fact that it is normally-
distributed residual for the a posteriori estimations shows that the model is correct even though looking at the second
plots, the parameters distribution, shows that there is large variety of solutions possible, see Figure XIV.109. This is a
problem of identifiability as there are an infinity of solutions that could give the same results, and this can be seen by
looking at the correlation matrix shown in Section XIV.11.6.3.

XIV.11.6.3 Console

Processing calibrationMinimisationFlowrate2DVizir.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

first 100
Genetic 1

Generation : 1, rang max 23
Nb d’evaluation : 100, taille de la Z.P. : 0

Generation : 2, rang max 23
Nb d’evaluation : 465, taille de la Z.P. : 1

Generation : 3, rang max 8
Nb d’evaluation : 963, taille de la Z.P. : 6

Generation : 4, rang max 0
Nb d’evaluation : 1617, taille de la Z.P. : 24

Genetic converge 1617

**
* Row * tdsPar__n * hu.hu * hl.hl * agreement * rgpareto. * generatio *
**
* 0 * 0 * 1038.1302 * 738.13383 * 0.3639076 * 0 * 3 *

page 750

CHAPTER XIV. USE-CASES IN C++ Macro "calibrationMinimisationFlowrate2DVizir.C"

* 1 * 1 * 1080 * 780 * 0.3639083 * 0 * 3 *
* 2 * 2 * 1040.7058 * 740.77116 * 0.3639018 * 0 * 3 *
* 3 * 3 * 1079.9545 * 780 * 0.3639024 * 0 * 3 *
* 4 * 4 * 1040.7058 * 740.77116 * 0.3639018 * 0 * 1 *
* 5 * 5 * 1038.6638 * 738.70819 * 0.3639025 * 0 * 3 *
* 6 * 6 * 1040.7058 * 740.77116 * 0.3639018 * 0 * 3 *
* 7 * 7 * 1036.9776 * 736.98122 * 0.3639076 * 0 * 3 *
* 8 * 8 * 1036.9776 * 736.98122 * 0.3639076 * 0 * 3 *
* 9 * 9 * 1038.6638 * 738.70819 * 0.3639025 * 0 * 3 *
* 10 * 10 * 1036.9776 * 736.98122 * 0.3639076 * 0 * 2 *
* 11 * 11 * 1080 * 780 * 0.3639083 * 0 * 3 *
* 12 * 12 * 1036.9776 * 736.98122 * 0.3639076 * 0 * 3 *
* 13 * 13 * 1040.7058 * 740.77116 * 0.3639018 * 0 * 2 *
* 14 * 14 * 1080 * 780 * 0.3639083 * 0 * 3 *
* 15 * 15 * 1080 * 780 * 0.3639083 * 0 * 3 *
* 16 * 16 * 1038.6638 * 738.70819 * 0.3639025 * 0 * 3 *
* 17 * 17 * 1040.7058 * 740.77116 * 0.3639018 * 0 * 3 *
* 18 * 18 * 1080 * 780 * 0.3639083 * 0 * 3 *
* 19 * 19 * 1036.9776 * 736.98122 * 0.3639076 * 0 * 3 *
* 20 * 20 * 1036.9042 * 736.96108 * 0.3639019 * 0 * 3 *
* 21 * 21 * 1038.6638 * 738.70819 * 0.3639025 * 0 * 3 *
* 22 * 22 * 1080 * 780 * 0.3639083 * 0 * 3 *
* 23 * 23 * 1080 * 780 * 0.3639083 * 0 * 3 *
**

2x2 matrix is as follows

| 0 | 1 |

0 | 1 1
1 | 1 1

hl is 752.445 +- 19.9463
hu is 1052.42 +- 19.9598

page 751

Macro "calibrationMinimisationFlowrate2DVizir.C" CHAPTER XIV. USE-CASES IN C++

XIV.11.6.4 Graph

Figure XIV.108: Residual graph of the macro "calibrationMinimisationFlowrate2DVizir.C"

Figure XIV.109: Parameter graph of the macro "calibrationMinimisationFlowrate2DVizir.C"

page 752

CHAPTER XIV. USE-CASES IN C++ Macros UncertModeler

XIV.12 Macros UncertModeler

XIV.12.1 Macro "uncertModelerTestsYoungsModulus.C"

XIV.12.1.1 Objective

The objective of the macro is to pass the 3 tests of fit based on Empirical Distribution Function (EDF) statistics
(Kolmogorov-Smirnov (D), Cramer-VonMises (W2) and Anderson-Darling (A2)) on the attribute "E" in the "youngsmodulus"
dataset. The tested law is the "normal" distribution when both the mean (30576) and variance (1450) are set or when
both are defined either from the sample.

XIV.12.1.2 Macro Uranie

{
TDataServer *tds = new TDataServer();
tds->fileDataRead("youngsmodulus.dat");

TCanvas *c = new TCanvas("c1", "Test on youngsmodulus dataset",13,38,1210,1874);
TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();
pad->Divide(1,3);

TTestKolmogorovSmirnov *tks = new TTestKolmogorovSmirnov(tds,"E");
pad->cd(1); tks->computeScore("normal:normal(30576,1450)");

TTestCramerVonMises *tcvm = new TTestCramerVonMises(tds,"E");
pad->cd(2); tcvm->computeScore("normal:normal(30576,1450)");

TTestAndersonDarling *tad = new TTestAndersonDarling(tds,"E");
pad->cd(3); tad->computeScore("normal:normal(30576,1450)");

}

page 753

Macro "uncertModelerTestsYoungsModulus.C" CHAPTER XIV. USE-CASES IN C++

XIV.12.1.3 Graph

Figure XIV.110: Graph of the macro macro "uncertModelerTestsYoungsModulus.C"

page 754

CHAPTER XIV. USE-CASES IN C++ Macro "uncertModelerCirce.C"

XIV.12.2 Macro "uncertModelerCirce.C"

XIV.12.2.1 Objective

The objective of the macro uncertModelerCirce is to apply the Circe method on the dataset "jdd_circe_summerschool2006_
dataserver.dat", which contains 150 patterns described by 4 attributes ("code","exp" and the derivative from the
two parameters "sens1" and "sens2" of the study).

#COLUMN_NAMES: code | exp | sens1 | sens2

0.853828 0.720995 1.280695 0.426961
1.420676 1.467705 2.130798 0.710554
1.986837 1.277730 2.979664 0.994010
2.552036 1.991193 3.826800 1.277273
3.116001 2.036849 4.671714 1.560289
3.678459 3.445518 5.513915 1.843002
4.239138 4.735902 6.352916 2.125359
4.797768 3.381548 7.188232 2.407304
5.354081 5.383797 8.019378 2.688784
5.907808 5.001590 8.845874 2.969742
6.458685 5.330333 9.667245 3.250125
7.006447 7.952286 10.483015 3.529879
7.550833 4.561176 11.292717 3.808950
8.091583 7.968353 12.095884 4.087283
8.628440 8.644601 12.892057 4.364824
9.161150 7.772117 13.680780 4.641520
9.689460 11.946291 14.461602 4.917317

10.213121 9.110840 15.234080 5.192162
10.731888 9.179312 15.997775 5.466002
11.245518 12.044400 16.752254 5.738783
11.753772 9.955391 17.497091 6.010453
12.256413 8.516376 18.231867 6.280959
12.753210 11.832538 18.956171 6.550249
13.243933 15.764511 19.669597 6.818270
13.728360 13.636206 20.371749 7.084971
14.206269 15.828666 21.062237 7.350300
14.677444 15.371526 21.740682 7.614206
15.141674 17.624294 22.406711 7.876637
15.598751 16.365027 23.059960 8.137543
16.048474 13.622278 23.700075 8.396873
16.490644 16.654472 24.326711 8.654577
16.925069 18.445503 24.939533 8.910605
17.351561 21.030571 25.538214 9.164908
17.769937 17.357715 26.122438 9.417436
18.180020 11.956423 26.691900 9.668140
18.581638 19.157803 27.246304 9.916972
18.974624 16.126637 27.785365 10.163884
19.358818 18.922050 28.308810 10.408827
19.734065 20.848071 28.816374 10.651755
20.100213 18.048485 29.307807 10.892620
20.457121 8.858695 29.782866 11.131376
20.804650 17.677597 30.241324 11.367976
21.142669 22.920734 30.682962 11.602375
21.471051 18.370473 31.107575 11.834528
21.789678 16.656787 31.514968 12.064388
22.098436 19.602911 31.904959 12.291912
22.397218 27.669603 32.277379 12.517056
22.685923 22.298174 32.632070 12.739777
22.964458 21.384184 32.968887 12.960030
23.232734 30.519337 33.287695 13.177773
23.490671 15.001831 33.588376 13.392965

page 755

Macro "uncertModelerCirce.C" CHAPTER XIV. USE-CASES IN C++

23.738192 25.366767 33.870822 13.605563
23.975231 23.949371 34.134936 13.815527
24.201726 13.391711 34.380637 14.022815
24.417621 21.553269 34.607854 14.227387
24.622868 26.531200 34.816530 14.429205
24.817425 20.392323 35.006621 14.628229
25.001258 32.189940 35.178096 14.824419
25.174337 20.032718 35.330935 15.017740
25.336642 26.195740 35.465133 15.208152
25.488157 30.414972 35.580695 15.395619
25.628873 29.119988 35.677642 15.580104
25.758789 32.045293 35.756006 15.761573
25.877910 21.195366 35.815830 15.939990
25.986247 28.350611 35.857174 16.115319
26.083817 38.814487 35.880105 16.287529
26.170646 31.542012 35.884708 16.456584
26.246764 26.275016 35.871075 16.622452
26.312208 38.313217 35.839315 16.785102
26.367023 28.568492 35.789546 16.944501
26.411259 31.091609 35.721899 17.100619
26.444972 16.263460 35.636518 17.253425
26.468224 21.124831 35.533558 17.402891
26.481085 33.708891 35.413184 17.548986
26.483629 24.250273 35.275576 17.691683
26.475938 35.046525 35.120922 17.830954
26.458098 24.052985 34.949423 17.966773
26.430201 34.135678 34.761291 18.099112
26.392347 27.700029 34.556749 18.227946
26.344640 32.737134 34.336029 18.353251
26.287189 28.450629 34.099376 18.475001
26.220109 23.829647 33.847044 18.593174
26.143522 27.528282 33.579297 18.707747
26.057552 36.671849 33.296408 18.818696
25.962331 26.930743 32.998661 18.926002
25.857996 32.444448 32.686349 19.029643
25.744687 28.236267 32.359775 19.129598
25.622549 22.031751 32.019249 19.225849
25.491734 21.495018 31.665091 19.318378
25.352397 21.132186 31.297629 19.407165
25.204696 19.217357 30.917198 19.492194
25.048797 26.490158 30.524145 19.573449
24.884866 21.316733 30.118819 19.650913
24.713076 25.592418 29.701580 19.724572
24.533603 19.577027 29.272793 19.794412
24.346625 34.922599 28.832833 19.860418
24.152327 35.735641 28.382076 19.922578
23.950895 19.302306 27.920910 19.980881
23.742519 22.246825 27.449724 20.035314
23.527392 27.026746 26.968916 20.085868
23.305709 22.656735 26.478887 20.132532
23.077671 15.588268 25.980044 20.175297
22.843477 26.051802 25.472798 20.214156
22.603332 26.182246 24.957565 20.249100
22.357443 38.381341 24.434763 20.280123
22.106018 22.768312 23.904816 20.307219
21.849267 26.030200 23.368151 20.330382
21.587402 15.635641 22.825196 20.349609
21.320639 18.753400 22.276382 20.364895
21.049191 20.947923 21.722145 20.376237
20.773276 24.642890 21.162919 20.383634
20.493113 14.828323 20.599142 20.387083
20.208919 17.455233 20.031254 20.386585

page 756

CHAPTER XIV. USE-CASES IN C++ Macro "uncertModelerCirce.C"

19.920916 16.168686 19.459693 20.382139
19.629322 15.843812 18.884899 20.373745
19.334360 18.983964 18.307313 20.361407
19.036251 20.541221 17.727376 20.345126
18.735215 14.704089 17.145526 20.324904
18.431475 27.724483 16.562203 20.300747
18.125252 20.854847 15.977844 20.272659
17.816766 15.890789 15.392886 20.240646
17.506238 16.750030 14.807764 20.204712
17.193888 10.107342 14.222909 20.164866
16.879934 15.763192 13.638752 20.121116
16.564594 27.922521 13.055719 20.073469
16.248084 14.705787 12.474234 20.021934
15.930621 9.417969 11.894719 19.966523
15.612417 13.446139 11.317589 19.907245
15.293685 13.532392 10.743257 19.844112
14.974634 20.769703 10.172131 19.777137
14.655473 17.227635 9.604615 19.706331
14.336409 12.008431 9.041108 19.631710
14.017644 17.118440 8.482001 19.553287
13.699381 14.424335 7.927684 19.471078
13.381817 14.105580 7.378537 19.385098
13.065150 8.072573 6.834935 19.295364
12.749572 10.533065 6.297249 19.201894
12.435272 11.022880 5.765839 19.104706
12.122439 12.865744 5.241061 19.003818
11.811257 10.789248 4.723263 18.899250
11.501904 5.134292 4.212786 18.791022
11.194558 11.284947 3.709961 18.679155
10.889392 10.426379 3.215113 18.563671
10.586576 8.555081 2.728559 18.444593
10.286274 10.517881 2.250605 18.321943
9.988648 12.657006 1.781552 18.195744
9.693856 9.822359 1.321689 18.066023
9.402049 9.082523 0.871296 17.932802
9.113378 12.983850 0.430646 17.796110
8.827985 6.205202 -2.89e-15 17.655971

XIV.12.2.2 Macro Uranie

{

TDataServer *tds = new TDataServer();
tds->fileDataRead("jdd_circe_summerschool2006_dataserver.dat");

// tds->addAttribute("uexp", "0.05*exp");
// tds->addAttribute("sens3", "sens1*sens2");

// Create the TCirce object from the TDS and specify Experimental attribute, Code ←↩
attribute and sensitivity attributes

TCirce * tc = new TCirce(tds, "exp", "code", "sens1,sens2");
// tc->setTolerance(1e-5);
// tc->setYStarSigma("uexp");
// tc->setNCMatrix(5);

// TMatrixD initCMat(2,2);
// initCMat.Zero(); initCMat(0,0) = 0.042737; initCMat(1,1) = 0.525673;
// tc->setCMatrixInitial(initCMat);

// TVectorD initBVec(2);

page 757

Macro "uncertModelerCirce.C" CHAPTER XIV. USE-CASES IN C++

// initBVec(0) = -1.436394; initBVec(1) = -1.501561;
// tc->setBVectorInitial(initBVec);
tc->estimate();

// Post-treatment
TVectorD vBiais = tc->getBVector();
cout << " ************** vBiais rows[" << vBiais.GetNrows() << "]"<< endl;
vBiais.Print();
TMatrixD matC = tc->getCMatrix();
cout << " ************** matC rows[" << matC.GetNrows() << "] col [" << matC.GetNcols() ←↩

<< "]"<< endl;
matC.Print();

}

XIV.12.2.3 Console

Processing uncertModelerCirce.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
Copyright (C) 2013-2024 CEA/DES
Contact: support-uranie@cea.fr
Date: Tue Jan 09, 2024

** addData from an another TDS [jdd_circe_summerschool2006_dataserver]

** YStar[exp] YStarSigma[]YHat[code]

** Sensitivity Attributes[sens1 sens2]

** nparameter [sens1 sens2] size[2]

** List Of TDS size[1]
Collection name=’TList’, class=’TList’, size=1
OBJ: URANIE::DataServer::TDataServer jdd_circe_summerschool2006_dataserver _title_

** List Of Informations size[3]
Collection name=’TList’, class=’TList’, size=3
OBJ: TNamed __Circe_YStar_jdd_circe_summerschool2006_dataserver_1__ exp
OBJ: TNamed __Circe_YHat_jdd_circe_summerschool2006_dataserver_1__ code
OBJ: TNamed __Circe_Sensitivity_jdd_circe_summerschool2006_dataserver_1__ sens1,sens2

** End Of addData from an another TDS [jdd_circe_summerschool2006_dataserver]

** Begin Of Initial Matrix C [1/1]

** CIRCE HAS CONVERGED

** iter[90] ** Likelihood[-2.729559333111159]

***** Selected :: iter[0] Likelihood[-2.729559333111159]

** matrix C1

2x2 matrix is as follows

| 0 | 1 |

0 | 0.01612 0
1 | 0 0.03616

** vector XM1

Vector (2) is as follows

| 1 |

page 758

CHAPTER XIV. USE-CASES IN C++ Macros Reliability

0 |-0.0131705
1 |0.0106155

** End Of Initial Matrix C [1/1]

** Residual :: Mean [-0.007054035043120376] Std[1.003324966600461]

************** vBiais rows[2]

Vector (2) is as follows

1

0 |-0.0131705
1 |0.0106155

************** matC rows[2] col [2]

2x2 matrix is as follows

| 0 | 1 |

0 | 0.01612 0
1 | 0 0.03616

XIV.13 Macros Reliability

XIV.13.1 Macro "reliabilityFormSorm.C"

XIV.13.1.1 Objective

The objective of the macro is to perform a FORM SORM study.

This example comes from De Victor’s thesis. The problem has three input variables x, fe and M. Each variable follows
a normal distribution with the following mean and standard error: x is N(40, 5), fe is N(50, 2.5) and M is N(1000,200).
The safety threshold is calculated with M-x*fe and should be positive for a safe solution.

XIV.13.1.2 Macro Uranie

The Script follows the following steps:

• a macro section to choose the optimisation solver;

• a namespace section;

• the definition of the safety function;

• the study procedure.

/* possible solver

* direct
#define SOLV TNloptCobyla

* lagragien direct

page 759

Macro "reliabilityFormSorm.C" CHAPTER XIV. USE-CASES IN C++

#define SOLV TNloptBobyqa //doesn’t work on this problem
#define SOLV TNloptPraxis
#define SOLV TNloptNelderMead
#define SOLV TNloptSubplexe

* */
#define SOLV TNloptCobyla

using namespace URANIE::DataServer;
using namespace URANIE::Relauncher;
using namespace URANIE::Reoptimizer;
using namespace URANIE::Reliability;

/********** User Function *****************/
static void fselect(double *in, double *res)
{

double x,fe,M;

x=in[0]; fe=in[1]; M=in[2];
/* critere */
res[0] = M-x*fe;

}

/********** Optimization *****************/
void reliabilityFormSorm()
{

/* inputs */
TNormalDistribution x("x", 40, 5),

fe("x2", 50, 2.5),
M("M", 1000, 200);

/* outputs */
TAttribute cont("seuil");
/* starting point */
vector<double> start{-1., -1., 1.};

/* code */
TSimpleTransform fobj;
fobj.setParameters(3, &x, &fe, &M);

TCIntEval fcont("fselect");
fcont.setInputs(3, &x, &fe, &M);
fcont.setOutputs(1, &cont);

TFormEval code(&fobj, &fcont);
TGreaterFit it(0.0);
code.addConstraint(&cont, &it);

/* runner */
TSequentialRun run(&code);
run.startSlave();
if (run.onMaster()) {
/* tds */
TDataServer tds("toto", "tds for vizir test");
code.addAllInputs(&tds);

/*** FORM ***/
/* optimizer */
SOLV solv;
TNlopt nlo(&tds, &run, &solv);
code.addObjective(&nlo);

/* resolution */

page 760

CHAPTER XIV. USE-CASES IN C++ Macro "reliabilityFormSorm.C"

nlo.setStartingPoint(start.size(),&start[0]);
nlo.solverLoop();

/* results */
//tds.getTuple()->Scan("*");

/*** SORM ***/
TSorm sorm(&tds, &run);
sorm.solverLoop();

/* results */
tds.getTuple()->Scan("*");

/* cleanup */
run.stopSlave();

}
}

The study procedure requests the definition of:

• variables: input variables with their statistical laws and the output variable;

• the starting point for the design point optimisation. Take care that it is defined in the normal space (not in the physical
space);

• evaluation functions; the transformation function, the safety function, and the composition of both of them;

• a standard sequential TRun;

• the TDataServer with its inputs declaration;

• the FORM optimisation sequence;

• the SORM estimation sequence;

• back-up and finalisation.

XIV.13.1.3 Console

Processing reliabilityFormSorm.C...
|....:....|....:....|....:....|....:....|....:....0050
|....:....|....

** ←↩

* Row * toto__n__ * u_x.u_x * u_x2.u_x2 * u_M.u_M * betaHL.be * form.form * ←↩
x.x * x2.x2 * M.M * seuil.seu * factor.fa * sorm.sorm *

** ←↩

* 0 * 0 * -2.289658 * -0.677000 * 1.8963080 * 3.0490734 * 0.0011477 * ←↩
28.551708 * 48.307498 * 1379.2616 * -1.67e-05 * 1.0203699 * 0.0011711 *

** ←↩

There are two lines used to show the optimisation progress (evaluation numbers), and then the resulting TDataServer
is shown. Columns start with two indexes, the three normal variables, the Hasofer-Lind indicator, the FORM estimation,
the three physical variables, the FORM correction, and the SORM estimation.

page 761

Macro "reliabilityFormSormBis.C" CHAPTER XIV. USE-CASES IN C++

XIV.13.2 Macro "reliabilityFormSormBis.C"

XIV.13.2.1 Objective

This example takes over the previous one, and tries to exploit the machine CPU using threads. For this purpose, FORM
will use a gradient optimisation algorithm with a finite differences gradient estimation which may use 2*n+1 CPU, and
Sorm is able to use 2*(n-1) CPU. For using thread, the code needs to be compiled on the fly using the ROOT facilities.

XIV.13.2.2 Macro Uranie

the main differences between previous Macro are:

• the #include section needed for compilation;

• the use of a gradient optimisation solver;

• the TCJitEval (vs the TCIntEval) uses to define the safety function;

• the use of TTreadedRun for parallelization;

• the use of a TGradientEstimationRun object to parallelize finite differences gradient estimation.

#include "TAttribute.h"
#include "TNormalDistribution.h"
#include "TLogNormalDistribution.h"
#include "TSimpleTransform.h"
#include "TCJitEval.h"
#include "TFormEval.h"
#include "TThreadedRun.h"
#include "TGradientEstimationRun.h"
#include "TDataServer.h"
#include "TOptimFit.h"
#include "TNloptCobyla.h"
#include "TNloptDirect.h"
#include "TNlopt.h"
#include "TSorm.h"

/* possible solver

* gradient
#define SOLV TNloptMMA
#define SOLV TNloptSLSQP

* lagragien gradient
#define SOLV TNloptLBFGS
#define SOLV TNloptNewton
#define SOLV TNloptVariableMetric

*
* */

#define SOLV TNloptMMA

using namespace URANIE::DataServer;
using namespace URANIE::Relauncher;
using namespace URANIE::Reoptimizer;
using namespace URANIE::Reliability;

/********** User Function *****************/
static void fselect(double *in, double *res)
{

page 762

CHAPTER XIV. USE-CASES IN C++ Macro "reliabilityFormSormBis.C"

double x,fe,M;

x=in[0]; fe=in[1]; M=in[2];
/* critere */
res[0] = M-x*fe;

}

/********** Optimization *****************/
void reliabilityFormSormBis()
{

/* inputs */
TNormalDistribution x("x", 40, 5),

fe("x2", 50, 2.5),
M("M", 1000, 200);

/* outputs */
TAttribute cont("seuil");
/* starting point */
double start[] = {-1., -1., 1.};

/* code */
TSimpleTransform fobj;
fobj.setParameters(3, &x, &fe, &M);

TCJitEval fcont(&fselect);
fcont.setInputs(3, &x, &fe, &M);
fcont.setOutputs(1, &cont);

TFormEval code(&fobj, &fcont);
TGreaterFit it(0.0);
code.addConstraint(&cont, &it);

TThreadedRun trun(&code, 5);
TGradientEstimationRun run(&trun);
run.startSlave();
if (run.onMaster()) {

/* tds */
TDataServer tds("toto", "tds for vizir test");
code.addAllInputs(&tds);

/*** FORM ***/
/* optimizer */
SOLV solv;
TNlopt nlo(&tds, &run, &solv);
code.addObjective(&nlo);

/* resolution */
nlo.setStartingPoint(start);
nlo.solverLoop();

/*** SORM ***/
TSorm sorm(&tds, &run);

sorm.solverLoop();

/* results */
tds.getTuple()->Scan("*");

/* cleanup */
run.stopSlave();

}

page 763

Macro "reliabilityFormSormBis.C" CHAPTER XIV. USE-CASES IN C++

}

XIV.13.2.3 Console

The console is very similar to the previous one.

Processing reliabilityFormSormBis.C+...
!,,,,;,,

** ←↩

* Row * toto__n__ * u_x * u_x2 * u_M * betaHL * form * ←↩
x * x2 * M * seuil * factor * sorm *

** ←↩

* 0 * 0 * -2.286037 * -0.677986 * 1.9003293 * 3.0490789 * 0.0011477 * ←↩
28.569814 * 48.305034 * 1380.0658 * -1.34e-05 * 1.0204395 * 0.0011711 *

** ←↩

You may notice that the evaluation numbers is very low, but each evaluation is equivalent to 7 evaluations. These traces
are obtained in a second run: in the first run you will see compiler messages.

page 764

Chapter XV

References

[1] N. Gilardi. Interface python pour la plate-forme uranie. Technical report, CEA, SFME/LGLS/RT/09-015/A, 2009.

[2] Damar Wicaksono. Borehole function. https://uqworld.org/t/borehole-function/60, 2019.

[3] W. Appel. Probabilité pour les non probabilistes. H & K, Paris, 2013.

[4] M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of three methods for selecting values of input
variables in the analysis of output from a computer code. Technometrics, 42(1):55–61, February 2000.

[5] J. C. Helton and F. J. Davis. Illustration of sampling-based methods for uncertainty and sensitivity analysis. Risk
Analysis, 22(3):591–622, 2002.

[6] R. L. Iman and W. J. Conover. A distribution-free approach to inducing rank correlation among input variables.
Communications in Statistics - Simulation and Computation, 11(3):311–334, 1982.

[7] I.M Sobol’. On the distribution of points in a cube and the approximate evaluation of integrals. USSR Computa-
tional Mathematics and Mathematical Physics, 7(4):86 – 112, 1967.

[8] J. H. Halton. Algorithm 247: Radical-inverse quasi-random point sequence. Commun. ACM, 7(12):701–702,
December 1964.

[9] K. Petras. Fast calculation of coefficients in the smolyak algorithm. Numerical Algorithms, 26(2):93–109, 2001.

[10] M. Baudin and J.M. Martinez. Polynômes de chaos sous Scilab via la librairie NISP. In 42èmes Journées de
Statistique, Marseille, France, France, 2010.

[11] G. Matheron. La théorie des variables régionalisées, et ses applications. Fasicule 5 in Les Cahiers du Centre de
Morphologie Mathématique de Fontainebleau, 1970.

[12] J.M. Martinez, A. Marrel, N. Gilardi, and F. Bachoc. Krigeage par processus gaussiens. Librairie gpLib. Technical
report, CEA DEN/DANS/DM2S/STMF/LGLS/RT/12-026/A, 2012.

[13] F. Bachoc. Estimation paramétrique de la fonction de covariance dans le modèle de Krigeage par processus
Gaussiens : application à la quantification des incertitudes en simulation numérique. PhD thesis, Mathématiques
appliquées, Paris 7, 2013. Thèse de doctorat dirigée par J. Garnier.

[14] T. Homma and A. Saltelli. Importance measures in global sensitivity analysis of nonlinear models. Reliability
Engineering and System Safety, 52:1–17, 1996.

[15] A. Saltelli. Making best use of model evaluations to compute sensitivity indices. Computer Physics Communica-
tions, 145:280–297, 2002.

page 765

https://uqworld.org/t/borehole-function/60

BIBLIOGRAPHY BIBLIOGRAPHY

[16] H. Monod, C. Naud, and D. Makowski. Uncertainty and sensitivity analysis for crop models. In D. Wallach, D.
Makowski, and J. W. Jones, editors, 2006.

[17] Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of expensive black-box
functions. Journal of Global optimization, 13(4):455–492, 1998.

[18] Ian Jolliffe. Principal component analysis. Springer, 2011.

[19] J.M. Martinez. Analyse de sensibilité globale par décomposition de la variance. Technical report, GdR Ondes et
Mascot Num, institut Henri Poincaré, 2011.

[20] I.M. Sobol’. Sensitivity indices for nonlinear mathematical models. Mathematical Modelling and Computational
Experiment 1, 1993.

[21] Richard David Wilkinson. Approximate bayesian computation (abc) gives exact results under the assumption of
model error. Statistical applications in genetics and molecular biology, 12(2):129–141, 2013.

[22] Andrew Gelman, Gareth O Roberts, Walter R Gilks, et al. Efficient metropolis jumping rules. Bayesian statistics,
5(599-608):42, 1996.

[23] Gareth O Roberts, Andrew Gelman, Walter R Gilks, et al. Weak convergence and optimal scaling of random walk
metropolis algorithms. The annals of applied probability, 7(1):110–120, 1997.

[24] William A Link and Mitchell J Eaton. On thinning of chains in mcmc. Methods in ecology and evolution, 3(1):112–
115, 2012.

[25] M.J.W. Jansen. Analysis of variance designs for model output. Computer Physics Communications, 117, 1999.

[26] G.J. McRae, J.W. Tilden, and J.H. Seinfeld. Global sensitivity analysis: a computational implementation of the
fourier amplitude sensitivity test (fast). Computers & Chemical Engineering, 6(1):15 – 25, 1982.

[27] A. Saltelli and R. Bolado. An alternative way to compute fourier amplitude sensitivity test (fast). Computational
Statistics & Data Analysis, 26(4):445 – 460, 1998.

[28] S. Tarantola, D. Gatelli, and T.A. Mara. Random balance designs for the estimation of first order global sensitivity
indices. Reliability Engineering & System Safety, 91(6):717 – 727, 2006.

[29] G. Arnaud. Manuel d’utilisation de Vizir distribué v2.0. Technical report, CEA, SFME/LGLS/RT/10-001/A, 2010.

[30] J-B. Blanchard. Methodological reference guide for uranie v3.11.0. Technical report, CEA,
DEN/DANS/DM2S/STMF/LGLS/RT/17-006/A, 2017. Updated with every new release.

[31] R. Brun and F. Rademakers. ROOT: An object oriented data analysis framework. Nucl. Instrum. Meth., A389:81–
86, 1997.

[32] Ken Martin and Bill Hoffman. An open source approach to developing software in a small organization. Ieee
Software, 24(1), 2007.

[33] J. C. Meza, R. A. Oliva, P. D. Hough, and P. J. Williams. Opt++: An object-oriented toolkit for nonlinear optimization.
ACM Transactions on Mathematical Software, 33(2), June 2007.

[34] Matteo Frigo and Steven G. Johnson. The design and implementation of FFTW3. Proceedings of the IEEE,
93(2):216–231, 2005. Special issue on “Program Generation, Optimization, and Platform Adaptation”.

[35] Steven G. Johnson. The nlopt nonlinear-optimization package. http://ab-initio.mit.edu/nlopt.

page 766

BIBLIOGRAPHY BIBLIOGRAPHY

[36] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra, Jeffrey M. Squyres, Vishal
Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L.
Graham, and Timothy S. Woodall. Open MPI: Goals, concept, and design of a next generation MPI implemen-
tation. In Proceedings, 11th European PVM/MPI Users’ Group Meeting, pages 97–104, Budapest, Hungary,
September 2004.

[37] Michael Feathers and B Lepilleur. Cppunit cookbook, 2002.

[38] CUDA Nvidia. Nvidia cuda c programming guide. Nvidia Corporation, 120(18):8, 2011.

[39] Kai-Tai Fang, Runze Li, and Agus Sudjianto. Design and modeling for computer experiments. CRC Press, 2005.

[40] Brian A Worley. Deterministic uncertainty analysis. Technical report, Oak Ridge National Lab., TN (USA), 1987.

[41] T Ishigami and Toshimitsu Homma. An importance quantification technique in uncertainty analysis for computer
models. In Uncertainty Modeling and Analysis, 1990. Proceedings., First International Symposium on, pages
398–403. IEEE, 1990.

[42] HoHo Rosenbrock. An automatic method for finding the greatest or least value of a function. The Computer
Journal, 3(3):175–184, 1960.

page 767

	Overview: Uranie in a nutshell
	Introducing Uranie
	Uranie modules organisation
	External dependencies

	ROOT Environment
	Environment variables
	ROOT interpreter and runtime compiler
	Standard compilation
	Uranie namespace
	Important modifications going from ROOT v5 to ROOT v6
	References

	The Python Interface
	Python version: greater than 3.8
	Environment variables
	Using PyROOT
	The PyURANIE interface
	References

	The DataServer module
	Introduction
	The TAttribute class
	Nature of the attribute
	List of variable information
	Examples of use of the class TAttribute
	Adding TAttribute when data are already available
	Introducing the TStochasticAttribute classes

	Data handling
	Main format of input/output
	Import data from an ASCII file
	Import data from a TNtuple/TDSNtuple/TTree
	Adding attributes to a TDataServer
	Merging two DataServer
	Pattern selection
	Export to an ASCII file

	Statistical treatments and operations
	Normalising the variable
	Computing the ranking
	Computing the elementary statistic
	The quantile computation
	Correlation matrix

	Visualisation dedicated to uncertainties
	Histogram
	Box-and-whisker("boxplot")
	CDF, CCDF curves
	Graph 2D with contour levels
	Graph 2D "profile"
	Graph 2D "Tufte"
	Graph 2D "pairs"
	Graph "CobWeb"
	QQ plot
	PP plot

	Combining these aspects: performing PCA
	PCA usage within Uranie

	The Sampler module
	Introduction
	The Stochastic methods
	Introduction
	The main sampler classes
	Simple example
	TConstrLHS example

	Description of a correlation
	Imposing the correlation coefficients
	The copula classes

	QMC method
	The random fields
	OAT Design
	Introduction
	OAT design in Uranie
	TOATDesign

	The Vectorial Quantification method

	The Launcher module
	Introduction
	Presentation
	Overview of a simple case

	Analytic function
	External Code
	Code input and output files
	TCode definition
	Launcher definition

	Distribution
	Multi-core computer
	Cluster
	Advanced usage of batch systems
	Multi-step launching mechanism
	Multi-step remote launching to clusters

	The Modeler module
	Introduction
	 The TLinearRegression class
	Chaos polynomial expansion
	Nisp in a nutshell
	Step 1: Specification of the uncertain parameters
	Step 2: Building stochastic variables
	Step 3: Constitution of the sample
	Step 4: Building the polynomial chaos
	Step 5: Uncertainty and sensitivity analysis
	Other functionalities

	 Adaptive development in polynomial chaos: the Anisp method
	Step 1: Specification of the uncertain parameters
	Step 2: Creation of the TAnisp Object
	Step 3: Running the Anisp method
	Step 4: Uncertainty and sensitivity analysis

	The artificial neural network
	The working principle
	Constructor
	Training
	Export

	The kriging method
	Running a kriging
	Construction of a kriging model
	Usage of a Kriging model
	Advanced usage

	The Sensitivity module
	Brief reminder of theoretical aspects
	Content of the TSensitivity class
	List of available methods

	The finite differences method
	General presentation of finite difference sensitivity indices
	Computation of local sensitivity indices with the finite differences method

	The regression method
	General presentation of regression's coefficients
	Computation of the coefficients with Uranie

	The Morris screening method
	Principle of the Morris' method
	The Morris' method in Uranie

	The Sobol method
	Introduction to Sobol's sensitivity indices
	Computation of Sobol's sensitivity indices

	 Fourier-based methods
	Introducing the method
	Implementation of methods
	Computation of Sobol indices with the FAST method
	Computation of Sobol indices with the method RBD

	 The Johnson relative weight
	General overview

	 Sensitivity Indices based on HSIC
	Introduction to sensitivity measures using HSIC

	The Optimizer module
	Introduction
	Function optimisation
	Rosenbrock function
	TOptimizer constructors
	Optimisation as minimum of function seeking
	Optimisation as code adjustment
	Performing the optimisation

	Multicriteria optimisation

	The Relauncher module
	Introduction
	Relauncher abstraction levels
	TEval
	TCIntEval and TCJitEval
	TPythonEval
	TCodeEval
	Evaluation functions composition

	TRun
	TSequentialRun
	TThreadedRun
	TMpiRun

	TMaster
	Dealing with attributes
	TLauncher2

	The Reoptimizer module
	Introduction
	local optimizer
	global optimizer
	Number of objectives

	Problem definition
	 Objectives and Constraints
	Sizing of a hollow bar example problem

	Local solver
	TNlopt
	 Solvers

	Global solver
	 A step-by-step description of Vizir
	TVizir2 and TVizirIsland
	Solvers

	The Metamodel Optimization module
	Introduction
	Efficient Global Optimization
	 Introduction
	Problem definition

	The Calibration module
	Introduction
	The distance used to compare observations and model predictions

	Calibration classes, distance functions, observations and model
	General introduction on data and model definition
	Defining data and distance functions
	The calibration classes common methods
	Use-case for this chapter

	Using minimisation techniques
	Constructing the instance
	Setting the optimisation properties

	Analytical linear Bayesian estimation
	 Constructing the TLinearBayesian object
	Define the linear model properties
	Look at the results
	Prediction of the variance

	The Approximation Bayesian Computation techniques (ABC)
	 Constructing the RejectionABC object
	Define the TRejectionABC algorithm properties
	Look at the results

	The Markov-chain approach
	 Constructing the TMetropHasting object
	Define the Metropolis-Hasting algorithm properties
	Look at the results

	The Uncertainty modeler module
	Introduction
	Tests based on the Empirical Distribution Function ("EDF tests")
	The Circe method

	The Reliability module
	Introduction
	Form Sorm
	Study outline
	TSimpleTransform
	TFormEval
	TSorm

	Use-cases in C++
	Introduction
	Macros DataServer
	Macro "dataserverAttributes.C"
	Macro "dataserverMerge.C"
	Macro "dataserverLoadASCIIFilePasture.C"
	Macro "dataserverLoadASCIIFile.C"
	Macro "dataserverLoadASCIIFileYoungsModulus.C"
	Macro "dataserverLoadASCIIFileIonosphere.C"
	Macro "dataserverLoadASCIIFileCornell.C"
	Macro "dataserverComputeQuantile.C"
	Macro "dataserverGeyserStat.C"
	Macro "dataserverGeyserRank.C"
	Macro "dataserverNormaliseVector.C"
	Macro "dataserverComputeStatVector.C"
	Macro "dataserverComputeCorrelationMatrixVector.C"
	Macro "dataserverComputeQuantileVec.C"
	Macro "dataserverDrawQQPlot.C"
	Macro "dataserverDrawPPPlot.C"
	Macro "dataserverPCAExample.C"

	Macros Sampler
	Macro "samplingFlowrate.C"
	Macro "samplingLHS.C"
	Macro "samplingLHSCorrelation.C"
	Macro "samplingQMC.C"
	Macro "samplingBasicSampling.C"
	Macro "samplingOATRegular.C"
	Macro "samplingOATRandom.C"
	Macro "samplingOATMulti.C"
	Macro "samplingOATRange.C"
	Macro "samplingSpaceFilling.C"
	Macro "samplingMaxiMinLHSFromLHSGrid.C"
	Macro "samplingConstrLHSLinear.C"
	Macro "samplingConstrLHSEllipses.C"
	Macro "samplerSingularCorrelationCase.C"

	Macros Launcher
	Macro "launchFunctionDataBase.C"
	Macro "launchFunctionSampling.C"
	Macro "launchFunctionSamplingGraphs.C"
	 Macro "launchCodeFlowrateKeyDataBase.C"
	Macro "launchCodeFlowrateKeySampling.C"
	Macro "launchCodeFlowrateXMLSampling.C"
	Macro "launchCodeFlowrateKeySamplingKey.C"
	 Macro "launchCodeFlowrateKeyRecreateSampling.C"
	 Macro "launchCodeFlowrateKeyRecreateSamplingOutputDataServer.C"
	Macro "launchCodeFlowrateRowRecreateSamplingOutputDataServer.C"
	Macro "launchCodeFlowrateFlagSampling.C"
	Macro "launchCodeFlowrateFlagSamplingKey.C"
	 Macro "launchCodeFlowrateKeyFlagSampling.C"
	Macro "launchCodeFlowrateKeywithFlagSampling.C"
	Macro "launchCodeFlowrateKeyFailure.C"
	Macro "launchCodeFlowrateFlagFailure.C"
	Macro "launchCodeFlowrateKeyOATMinMax.C"
	Macro "launchCodeFlowrateFlagOATMinMax.C"
	 Macro "launchCodeLevelEOutputColumn.C"
	 Macro "launchCodeLevelEOutputRow.C"
	 Macro "launchCodeLevelEOutputKey.C"
	Input/Output with vector and string: introduction to macros with multitype
	 Macro "launchCodeMultiTypeKey.C"
	 Macro "launchCodeMultiTypeKeyCondensate.C"
	 Macro "launchCodeMultiTypeDataServer.C"
	 Macro "launchCodeMultiTypeColumn.C"
	 Macro "launchCodeMultiTypeRow.C"
	 Macro "launchCodeMultiTypeXML.C"
	 Macro "launchCodeReadMultiTypeKey.C"
	 Macro "launchCodeReadMultiTypeDataServer.C"
	 Macro "launchCodeReadMultiTypeColumn.C"
	 Macro "launchCodeReadMultiTypeRow.C"
	 Macro "launchCodeReadMultiTypeXML.C"
	 Macro "launchCodeFilesWithBlank.C"

	Macros Sensitivity
	Macro "sensitivityBrutForceMethodFlowrate.C"
	Macro "sensitivityFiniteDifferencesFunctionFlowrate.C"
	Macro "sensitivityDataBaseFlowrate.C"
	Macro "sensitivityFASTFunctionFlowrate.C"
	Macro "sensitivityRBDFunctionFlowrate.C"
	Macro "sensitivityMorrisFunctionFlowrate.C"
	Macro "sensitivityMorrisFunctionFlowrateRunner.C"
	Macro "sensitivityRegressionFunctionFlowrate.C"
	Macro "sensitivitySobolFunctionFlowrate.C"
	Macro "sensitivitySobolFunctionFlowrateRunner.C"
	Macro "sensitivityRegressionLeveLE.C"
	Macro "sensitivitySobolLeveLE.C"
	Macro "sensitivitySobolRe-estimation.C"
	Macro "sensitivitySobolWithData.C"
	Macro "sensitivitySobolLoadFile.C"
	Macro "sensitivityJohnsonRWFunctionFlowrate.C"
	Macro "sensitivityJohnsonRWCorrelatedFunctionFlowrate.C"
	Macro "sensitivityJohnsonRWJustCorrelationFakeFlowrate.C"
	Macro "sensitivityHSICFunctionFlowrate.C"
	Macro "sensitivitySobolRankFunctionFlowrate.C"

	Macros Modeler
	Macro "modelerCornellLinearRegression.C"
	Macro "modelerFlowrateLinearRegression.C"
	Macro "modelerFlowrateMultiLinearRegression.C"
	Macro "modelerFlowrateNeuralNetworks.C"
	Macro "modelerFlowrateNeuralNetworksLoadingPMML.C"
	Macro "modelerClassificationNeuralNetworks.C"
	Macro "modelerFlowratePolynChaosRegression.C"
	Macro "modelerFlowratePolynChaosIntegration.C"
	Macro "modelerbuildSimpleGP.C"
	Macro "modelerbuildGPInitPoint.C"
	Macro "modelerbuildGPWithAPriori.C"
	Macro "modelerbuildSimpleGPEstim.C"
	Macro "modelerbuildSimpleGPEstimWithCov.C"
	Macro "modelerTestKriging.C"

	Macros Optimizer
	Macro "optimizeFunctionRosenbrock.C"
	Macro "optimizeFunctionRosenbrockNewInputOutput.C"
	Macro "optimizeCodeRosenbrockKey.C"
	Macro "optimizeCodeRosenbrockKeyNewInputOutput.C"
	Macro "optimizeCodeRosenbrockRow.C"
	Macro "optimizeCodeRosenbrockKeyRowRecreate.C"
	Macro "optimizeCodeRosenbrockRowRecreate.C"
	Macro "optimizeCodeRosenbrockRowRecreateOutputDataServer.C"
	Example of optimisation with a code that can compute several values at each run
	Macro "optimizeRosenbrockMulti.C"
	Macro "optimizeRosenbrockError.C"

	Macros Relauncher
	Macro "relauncherFunctionFlowrateCInt.C"
	Macro "relauncherFunctionFlowrateCJit.C"
	Macro "relauncherCJitFunctionThreadTest.C"
	Macro "relauncherCodeFlowrateSequential.C"
	Macro "relauncherCodeFlowrateSequential_ConstantVar.C"
	Macro "relauncherCodeFlowrateThreaded.C"
	Macro "relauncherCodeFlowrateMPI.C"
	Macro "relauncherCodeFlowrateMpiStandalone.C"
	Macro "relauncherCodeFlowrateSequentialFailure.C"
	Macro "relauncherCodeMultiTypeKey.C"
	Macro "relauncherCodeMultiTypeKeyEmptyVectors.C"
	Macro "relauncherCodeMultiTypeKeyEmptyVectorsAsFailure.C"
	Macro "relauncherCodeReadMultiType.C"
	Macro "relauncherComposeMultitypeAndReadMultiType.C"
	Macro "relauncherCodeFlowrateSequential_TemporaryVar.C"

	Macros Reoptimizer
	Macro "reoptimizeHollowBarCode.C"
	Macro "reoptimizeHollowBarCodeMultiStart.C"
	Macro "reoptimizeHollowBarCodevizir.C"
	Macro "reoptimizeHollowBarVizirMoead.C"
	Macro "reoptimizeHollowBarVizirSplitRuns.C"
	Macro "reoptimizeZoningBiSubMpi.C"
	Macro "reoptimizeZoneBiFunMpi.C"

	Macros MetaModelOptim
	 Macro "metamodoptEgoHimmel.C"

	Macros Calibration
	Macro "calibrationMinimisationFlowrate1D.C"
	Macro "calibrationLinBayesFlowrate1D.C"
	Macro "calibrationRejectionABCFlowrate1D.C"
	Macro "calibrationMetropHastingFlowrate1D.C"
	Macro "calibrationMetropHastingLinReg.C"
	Macro "calibrationMinimisationFlowrate2DVizir.C"

	Macros UncertModeler
	Macro "uncertModelerTestsYoungsModulus.C"
	Macro "uncertModelerCirce.C"

	Macros Reliability
	Macro "reliabilityFormSorm.C"
	Macro "reliabilityFormSormBis.C"

	References

