English Français

Documentation / Manuel développeur

Modules disponibles

Calibration,  DataServer,  Launcher,  MetaModelOptim,  Modeler,  Optimizer,  ReLauncher,  Reliability,  ReOptimizer,  Sampler,  Sensitivity,  UncertModeler,  XmlProblem,   Uranie / Calibration: TLinearBayesian.h Source File
Uranie / Calibration  v4.10.0
/* @license-end */
TLinearBayesian.h
Go to the documentation of this file.
1 // Copyright (C) 2013-2024 CEA/DES
3 //
4 // This program is free software: you can redistribute it and/or modify
5 // it under the terms of the GNU Lesser General Public License as published
6 // by the Free Software Foundation, either version 3 of the License, or any
7 // later version.
8 //
9 // This program is distributed in the hope that it will be useful,
10 // but WITHOUT ANY WARRANTY; without even the implied warranty of
11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 // GNU Lesser General Public License for more details.
13 //
14 // You should have received a copy of the GNU Lesser General Public License
15 // along with this program. If not, see <http://www.gnu.org/licenses/>.
17 // TLinearBayesian
19 // $Id$
20 // $Author$
21 // $Date$
22 // $Revision$
23 // $State$
25 
42 #ifndef TLINEARBAYESIAN_H
43 #define TLINEARBAYESIAN_H
44 
45 // Uranie
46 #include "TCalibration.h"
47 
48 namespace URANIE
49 {
50 namespace Calibration
51 {
52 
54 
55 protected:
56 
57  void (*_fTransfoParam)(double *, double*);
58  vector<double> _aPrioriMode;
59 
60  TMatrixD _mParCovariance;
61  TMatrixD _mParValues;
62  TMatrixD _mTransfoParValues;
63 
64  TMatrixD _mH;
65  vector<string> _vRegName;
66  string _regname;
67 public:
68 
69  //---------------------------------------------
73 
75 
82  TLinearBayesian(URANIE::DataServer::TDataServer *tds, URANIE::Relauncher::TRun *run, Int_t ns=1, Option_t * option = "");
83 
92  TLinearBayesian(URANIE::DataServer::TDataServer *tds, void (*fcn)(Double_t*,Double_t*), const char *varexpinput, const char *varexpoutput, int ns = 1, Option_t * option = "");
93 
102  TLinearBayesian(URANIE::DataServer::TDataServer *tds, const char *fcn, const char *varexpinput, const char *varexpoutput, int ns = 1, Option_t * option = "");
103 
110  TLinearBayesian(URANIE::DataServer::TDataServer *tds, URANIE::Launcher::TCode *fcode, int ns = 1, const char *option = "");
111 
113  virtual ~TLinearBayesian();
115 
116 
117  //---------------------------------------------
121 
129  void computePredictionVariance(URANIE::DataServer::TDataServer *tds_new, string outname);
131 
132 
133  //---------------------------------------------
137 
145  void setParameterTransformationFunction( void (*fTransfoParam)(double *, double*)){ _fTransfoParam = fTransfoParam; }
146 
150  void setRegressorName(const char *regName);
151 
165  void setDistanceAndReference(const char *funcName, URANIE::DataServer::TDataServer *tdsRef, const char *input, const char *output, const char *weight="");
166 
175  void setDistanceAndReference(URANIE::Calibration::TDistanceFunction *distFunc, URANIE::DataServer::TDataServer *tdsRef, const char *input, const char *output, const char *weight="");
176 
181 
186 
191 
193 
194  //---------------------------------------------
198 
211  void drawParameters(TString sTitre, const char *variable = "*", const char *select = "1>0", Option_t * option = "");
212 
216  void printLog(Option_t *option = "");
217 
219 
220 protected:
221  void computeParameters(Option_t *option="");
225  void checktdsParContent();
226 
227  ClassDef(URANIE::Calibration::TLinearBayesian, ID_CALIBRATION)
228 
229 
230 };
231 
232 } // Fin du namespace Calibration
233 } // Fin du namespace URANIE
234 
235 #endif
Definition: TABC.cxx:45
TLinearBayesian(URANIE::DataServer::TDataServer *tds, URANIE::Relauncher::TRun *run, Int_t ns=1, Option_t *option="")
Default constructor with TRun arg.
virtual ~TLinearBayesian()
Default destructor.
void setRegressorName(const char *regName)
Set the regressor matrix by providing the variables to be extracted from tdsObs.
string _regname
regressor name
Definition: TLinearBayesian.h:66
void computePredictionVariance(URANIE::DataServer::TDataServer *tds_new, string outname)
Set parameter transformation function Sometimes the calibration is performed on transformed variables...
void setParameterTransformationFunction(void(*fTransfoParam)(double *, double *))
Set parameter transformation function Sometimes the calibration is performed on transformed variables...
Definition: TLinearBayesian.h:145
TMatrixD getParameterCovarianceMatrix()
get the matrix of parameter covariances
Definition: TLinearBayesian.h:190
void computeParameters(Option_t *option="")
internal method in which the estimation is performed for all inheriting classes
TMatrixD _mParCovariance
Parameters covariance matrix.
Definition: TLinearBayesian.h:60
vector< double > _aPrioriMode
A priori modes of the laws.
Definition: TLinearBayesian.h:58
Description of the class TLinearBayesian.
Definition: TLinearBayesian.h:53
vector< string > _vRegName
Regressor names.
Definition: TLinearBayesian.h:65
Description of the class TDistanceFunction.
Definition: TDistanceFunction.h:67
TMatrixD getTransfParameterValueMatrix()
get the matrix of parameter values
Definition: TLinearBayesian.h:185
Interface of class URANIE::Calibration::TCalibration.
Description of the class TCalibration.
Definition: TCalibration.h:64
TMatrixD _mTransfoParValues
Parametres matrix.
Definition: TLinearBayesian.h:62
void printLog(Option_t *option="")
dump content
TMatrixD _mParValues
Parametres matrix.
Definition: TLinearBayesian.h:61
void setDistanceAndReference(const char *funcName, URANIE::DataServer::TDataServer *tdsRef, const char *input, const char *output, const char *weight="")
Set the distance function and some needed informations.
TMatrixD _mH
Regressor matrix.
Definition: TLinearBayesian.h:64
void(* _fTransfoParam)(double *, double *)
Parameter transformation function.
Definition: TLinearBayesian.h:57
void drawParameters(TString sTitre, const char *variable="*", const char *select="1>0", Option_t *option="")
TMatrixD getParameterValueMatrix()
get the matrix of parameter values
Definition: TLinearBayesian.h:180