Documentation / Manuel développeur
Modules disponibles
Calibration,  DataServer,  Launcher,  MetaModelOptim,  Modeler,  Optimizer,  ReLauncher,  Reliability,  ReOptimizer,  Sampler,  Sensitivity,  UncertModeler,  XmlProblem,  ![]() |
Uranie / Calibration
v4.10.0
|
TMetropHasting.h
Go to the documentation of this file.
61 TMetropHasting(URANIE::DataServer::TDataServer *tds, URANIE::Relauncher::TRun *run, int nS=100, Option_t *option = "lhs");
72 TMetropHasting(URANIE::DataServer::TDataServer *tds, void (*fcn)(Double_t*,Double_t*), const char *varexpinput, const char *varexpoutput, int ns = 100, Option_t *option = "");
82 TMetropHasting(URANIE::DataServer::TDataServer *tds, const char *fcn, const char *varexpinput, const char *varexpoutput, int ns = 100, Option_t *option = "");
90 TMetropHasting(URANIE::DataServer::TDataServer *tds, URANIE::Launcher::TCode *fcode, int ns = 100, Option_t *option = "");
187 void setDistanceAndReference(const char *funcName, URANIE::DataServer::TDataServer *tdsRef, const char *input, const char *output, const char *weight="");
197 void setDistanceAndReference(URANIE::Calibration::TDistanceFunction *distFunc, URANIE::DataServer::TDataServer *tdsRef, const char *input, const char *output, const char *weight="");
214 void drawTrace(TString sTitre, const char *variable="*", const char *select="1>0", Option_t *option="");
224 void drawAcceptationRatio(TString sTitre, const char *variable="*", const char *select="1>0", Option_t *option="");
236 void drawParameters(TString sTitre, const char *variable = "*", const char *select = "1>0", Option_t * option = "");
int _burnin
The warm-up or burn-in.
Definition: TMetropHasting.h:42
Definition: TABC.cxx:45
void getAutoCorrelation(vector< int > l, vector< double > *out, int cut=0)
Compute the autocorrelation.
virtual void printLog(Option_t *option="")
Prints the log.
URANIE::DataServer::TDataServer * _tdsPar
TDS containing parameters properties (parameters that should be calibrated)
Definition: TCalibration.h:79
bool _bcleaningAtt
Do not store the underlying att.
Definition: TMetropHasting.h:48
int _nbDump
Frequency to which the algo dump a line.
Definition: TMetropHasting.h:44
void setInitialisation(int n, double *values, double *standDev)
Initialise the parameters.
TRandom3 _randSaved
Random number generator saved.
Definition: TMetropHasting.h:40
string getDefaultCut()
Definition: TMetropHasting.h:145
TMetropHasting(URANIE::DataServer::TDataServer *tds, URANIE::Relauncher::TRun *run, int nS=100, Option_t *option="lhs")
double _higAccRange
higheracceptation ratio bound to decrease _vstd
Definition: TMetropHasting.h:46
void setBurnin(int burn)
Definition: TMetropHasting.h:139
double _lowAccRange
loweracceptation ratio bound to increase _vstd
Definition: TMetropHasting.h:45
void drawTrace(TString sTitre, const char *variable="*", const char *select="1>0", Option_t *option="")
Draws the evolution of parameters as a function of the iterator.
Definition: TMetropHasting.h:28
vector< double > _vstd
Vector of standard deviation.
Definition: TMetropHasting.h:35
void setNbDump(int nbDump)
Definition: TMetropHasting.h:141
Description of the class TDistanceFunction.
Definition: TDistanceFunction.h:67
bool _mbGDVersion
Use the Guillaume Damblin.
Definition: TMetropHasting.h:47
void parseOption(Option_t *option="")
Read the possible options.
void exportMHData(const char *fileName)
Save the current state of the Markov Chain in a ROOT file in order to continue calculation latter (in...
void setDistanceAndReference(const char *funcName, URANIE::DataServer::TDataServer *tdsRef, const char *input, const char *output, const char *weight="")
Set the distance function and some needed informations.
Interface of class URANIE::Calibration::TCalibration.
Description of the class TCalibration.
Definition: TCalibration.h:64
void drawParameters(TString sTitre, const char *variable="*", const char *select="1>0", Option_t *option="")
Draws the parameters as distributions The estimateParamters method has computed the parameters...
vector< int > _rejectSaved
Vector containing the number of rejected candidates for each parameter.
Definition: TMetropHasting.h:38
void logPriorPdf(double &ret)
Logarithm of the prior.
void readMHData(const char *fileName)
Read a save of a Markov Chain in a ROOT file in order to continue calculation (in case of non converg...
void continueCalculation(int new_Ns)
Continue the MH computation.
void checktdsParContent()
void computeParameters(Option_t *option="")
Generate the sample.
vector< int > _acceptSaved
Vector containing the number of accepted candidates for each parameter.
Definition: TMetropHasting.h:37
void setAcceptationRatioRange(double lower, double higher)
void drawAcceptationRatio(TString sTitre, const char *variable="*", const char *select="1>0", Option_t *option="")
Draws the evolution of acceptation ratio as a function of the iterator.
void clearDefaultCut()
Definition: TMetropHasting.h:157
vector< double > _dBaseSaved
Database containing the values, acceptation rate, ...
Definition: TMetropHasting.h:36
vector< double > _values
Vector of values to be tested.
Definition: TMetropHasting.h:34