English Français

Documentation / Manuel développeur

Modules disponibles

Calibration,  DataServer,  Launcher,  MetaModelOptim,  Modeler,  Optimizer,  ReLauncher,  Reliability,  ReOptimizer,  Sampler,  Sensitivity,  UncertModeler,  XmlProblem,   Uranie / Calibration: TMetropHasting.h Source File
Uranie / Calibration  v4.10.0
/* @license-end */
TMetropHasting.h
Go to the documentation of this file.
1 // Copyright (C) 2013-2024 CEA/DES
3 //
4 // This program is free software: you can redistribute it and/or modify
5 // it under the terms of the GNU Lesser General Public License as published
6 // by the Free Software Foundation, either version 3 of the License, or any
7 // later version.
8 //
9 // This program is distributed in the hope that it will be useful,
10 // but WITHOUT ANY WARRANTY; without even the implied warranty of
11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 // GNU Lesser General Public License for more details.
13 //
14 // You should have received a copy of the GNU Lesser General Public License
15 // along with this program. If not, see <http://www.gnu.org/licenses/>.
17 #ifndef TMetropHasting_H
18 #define TMetropHasting_H
19 
20 // Uranie
21 #include "TCalibration.h"
22 
23 namespace URANIE
24 {
25 namespace Calibration
26 {
27 
29 {
30 
31 public:
32 
33  // Attributes
34  vector<double> _values;
35  vector<double> _vstd;
36  vector<double> _dBaseSaved;
37  vector<int> _acceptSaved;
38  vector<int> _rejectSaved;
39 
40  TRandom3 _randSaved;
41 
42  int _burnin;
43  int _lag;
44  int _nbDump;
45  double _lowAccRange;
46  double _higAccRange;
47  bool _mbGDVersion;
49 
50  //---------------------------------------------
54 
61  TMetropHasting(URANIE::DataServer::TDataServer *tds, URANIE::Relauncher::TRun *run, int nS=100, Option_t *option = "lhs");
62 
72  TMetropHasting(URANIE::DataServer::TDataServer *tds, void (*fcn)(Double_t*,Double_t*), const char *varexpinput, const char *varexpoutput, int ns = 100, Option_t *option = "");
73 
82  TMetropHasting(URANIE::DataServer::TDataServer *tds, const char *fcn, const char *varexpinput, const char *varexpoutput, int ns = 100, Option_t *option = "");
83 
90  TMetropHasting(URANIE::DataServer::TDataServer *tds, URANIE::Launcher::TCode *fcode, int ns = 100, Option_t *option = "");
91 
93  virtual ~TMetropHasting();
95 
96  //---------------------------------------------
100 
107  void computeParameters(Option_t *option = "");
108 
113  void continueCalculation(int new_Ns);
114 
119  void exportMHData(const char *fileName);
120 
125  void readMHData(const char *fileName);
126 
130  void checktdsParContent();
132 
133 
134  //---------------------------------------------
138 
139  void setBurnin( int burn ){ _burnin = burn; }
140  void setLag( int lag ){ _lag = lag; }
141  void setNbDump( int nbDump ){ _nbDump = nbDump; }
142 
143  void setAcceptationRatioRange( double lower, double higher);
144 
145  string getDefaultCut(){
146  string cut = "";
147  if( _burnin != -1 )
148  cut += string(Form("%s > %d",_tdsPar->getIteratorName(), _burnin));
149  if( _lag != -1 )
150  cut += ((cut=="")? "": " && " ) + string(Form("%s %% %d",_tdsPar->getIteratorName(), _lag));
151 
152  if(cut!="")
153  cout<<"TMetropHasting drawing method apply default cut ["<<cut<<"]"<<endl;
154  return cut;
155  }
156 
157  void clearDefaultCut(){ setBurnin(-1); setLag(-1); }
158 
165  void setInitialisation(int n, double *values, double *standDev);
166 
172  void setInitialisation(vector<double> values, vector<double> standDev);
173 
187  void setDistanceAndReference(const char *funcName, URANIE::DataServer::TDataServer *tdsRef, const char *input, const char *output, const char *weight="");
188 
197  void setDistanceAndReference(URANIE::Calibration::TDistanceFunction *distFunc, URANIE::DataServer::TDataServer *tdsRef, const char *input, const char *output, const char *weight="");
198 
200 
201  //---------------------------------------------
205 
214  void drawTrace(TString sTitre, const char *variable="*", const char *select="1>0", Option_t *option="");
215 
224  void drawAcceptationRatio(TString sTitre, const char *variable="*", const char *select="1>0", Option_t *option="");
225 
236  void drawParameters(TString sTitre, const char *variable = "*", const char *select = "1>0", Option_t * option = "");
237 
244  void getAutoCorrelation(vector<int> l, vector<double> *out, int cut=0);
246 
247  //---------------------------------------------
251  virtual void printLog(Option_t *option = "");
254 
255 protected:
256  //---------------------------------------------
260 
264  void logPriorPdf(double &ret);
265 
267 
273  void parseOption(Option_t *option = "");
275 
276 
277  ClassDef(URANIE::Calibration::TMetropHasting, ID_CALIBRATION)
278  //Classe
279 };
280 }
281 }
282 
283 
284 #endif
int _burnin
The warm-up or burn-in.
Definition: TMetropHasting.h:42
Definition: TABC.cxx:45
void getAutoCorrelation(vector< int > l, vector< double > *out, int cut=0)
Compute the autocorrelation.
virtual void printLog(Option_t *option="")
Prints the log.
virtual ~TMetropHasting()
Default destructor.
URANIE::DataServer::TDataServer * _tdsPar
TDS containing parameters properties (parameters that should be calibrated)
Definition: TCalibration.h:79
bool _bcleaningAtt
Do not store the underlying att.
Definition: TMetropHasting.h:48
int _nbDump
Frequency to which the algo dump a line.
Definition: TMetropHasting.h:44
void setInitialisation(int n, double *values, double *standDev)
Initialise the parameters.
TRandom3 _randSaved
Random number generator saved.
Definition: TMetropHasting.h:40
string getDefaultCut()
Definition: TMetropHasting.h:145
TMetropHasting(URANIE::DataServer::TDataServer *tds, URANIE::Relauncher::TRun *run, int nS=100, Option_t *option="lhs")
double _higAccRange
higheracceptation ratio bound to decrease _vstd
Definition: TMetropHasting.h:46
void setBurnin(int burn)
Definition: TMetropHasting.h:139
double _lowAccRange
loweracceptation ratio bound to increase _vstd
Definition: TMetropHasting.h:45
void drawTrace(TString sTitre, const char *variable="*", const char *select="1>0", Option_t *option="")
Draws the evolution of parameters as a function of the iterator.
Definition: TMetropHasting.h:28
vector< double > _vstd
Vector of standard deviation.
Definition: TMetropHasting.h:35
void setNbDump(int nbDump)
Definition: TMetropHasting.h:141
Description of the class TDistanceFunction.
Definition: TDistanceFunction.h:67
bool _mbGDVersion
Use the Guillaume Damblin.
Definition: TMetropHasting.h:47
void parseOption(Option_t *option="")
Read the possible options.
void exportMHData(const char *fileName)
Save the current state of the Markov Chain in a ROOT file in order to continue calculation latter (in...
void setDistanceAndReference(const char *funcName, URANIE::DataServer::TDataServer *tdsRef, const char *input, const char *output, const char *weight="")
Set the distance function and some needed informations.
Interface of class URANIE::Calibration::TCalibration.
Description of the class TCalibration.
Definition: TCalibration.h:64
void drawParameters(TString sTitre, const char *variable="*", const char *select="1>0", Option_t *option="")
Draws the parameters as distributions The estimateParamters method has computed the parameters...
vector< int > _rejectSaved
Vector containing the number of rejected candidates for each parameter.
Definition: TMetropHasting.h:38
void logPriorPdf(double &ret)
Logarithm of the prior.
void readMHData(const char *fileName)
Read a save of a Markov Chain in a ROOT file in order to continue calculation (in case of non converg...
void continueCalculation(int new_Ns)
Continue the MH computation.
void computeParameters(Option_t *option="")
Generate the sample.
vector< int > _acceptSaved
Vector containing the number of accepted candidates for each parameter.
Definition: TMetropHasting.h:37
void setAcceptationRatioRange(double lower, double higher)
void drawAcceptationRatio(TString sTitre, const char *variable="*", const char *select="1>0", Option_t *option="")
Draws the evolution of acceptation ratio as a function of the iterator.
void clearDefaultCut()
Definition: TMetropHasting.h:157
vector< double > _dBaseSaved
Database containing the values, acceptation rate, ...
Definition: TMetropHasting.h:36
vector< double > _values
Vector of values to be tested.
Definition: TMetropHasting.h:34
void setLag(int lag)
Definition: TMetropHasting.h:140
int _lag
The lag value.
Definition: TMetropHasting.h:43