Documentation / Manuel développeur
Modules disponibles
Calibration,  DataServer,  Launcher,  MetaModelOptim,  Modeler,  Optimizer,  ReLauncher,  Reliability,  ReOptimizer,  Sampler,  Sensitivity,  UncertModeler,  XmlProblem,  ![]() |
Uranie / Calibration
v4.10.0
|
▼NURANIE | |
▼NCalibration | |
CTABC | |
CTCalibration | Description of the class TCalibration |
CTDistanceFunction | Description of the class TDistanceFunction |
CTL1DistanceFunction | Description of the class TL1DistanceFunction The distance is estimated as \[ Dist = \sum_{i=1}^{n_{Var}} \alpha_i \times ( \sum_{j=1}^{n_{Obs}} | \mathbf{y^{j}_{i,Obs}} - \mathbf{y^{j}_{i,Est}} | ) \] where |
CTLinearBayesian | Description of the class TLinearBayesian |
CTLSDistanceFunction | Description of the class TLSDistanceFunction The distance is estimated as \[ Dist = \sum_{i=1}^{n_{Var}} \alpha_i \times \sqrt{ \sum_{j=1}^{n_{Obs}} (\mathbf{y^{j}_{i,Obs}} - \mathbf{y^{j}_{i,Est}})^{2}} \] where |
CTMahalanobisDistanceFunction | Description of the class TMahalanobisDistanceFunction The distance is estimated as \[ Dist = \sum_{i=1}^{n_{Var}} \alpha_i \times \sqrt{ (\mathbf{y_{i,Obs}} - \mathbf{y_{i,Est}})^{T} \Omega^{-1} (\mathbf{y_{i,Obs}} - \mathbf{y_{i,Est}}) } \] where |
CTMetropHasting | |
CTMinimisation | Description of the class TMinimisation |
CTPMCABC | |
CTRejectionABC | |
CTRelativeLSDistanceFunction | Description of the class TRelativeLSDistanceFunction The distance is estimated as \[ Dist = \sum_{i=1}^{n_{Var}} \alpha_i \times \sqrt{ \sum_{j=1}^{n_{Obs}} \frac{(\mathbf{y^{j}_{i,Obs}} - \mathbf{y^{j}_{i,Est}})^{2}}{(\mathbf{y^{j}_{i,Obs}})^{2}}} \] where |
CTWeightedLSDistanceFunction | Description of the class TWeightedLSDistanceFunction The distance is estimated as \[ Dist = \sum_{i=1}^{n_{Var}} \alpha_i \times \sqrt{ \sum_{j=1}^{n_{Obs}} \beta_{j} (\mathbf{y^{j}_{i,Obs}} - \mathbf{y^{j}_{i,Est}})^{2}} \] where |
Chide_DistanceConstructor |