Documentation / Developer's manual
Available modules
Calibration,  DataServer,  Launcher,  MetaModelOptim,  Modeler,  Optimizer,  ReLauncher,  Reliability,  ReOptimizer,  Sampler,  Sensitivity,  UncertModeler,  XmlProblem,  ![]() |
Uranie / Calibration
v4.10.0
|
Description of the class TLinearBayesian. More...
#include <TLinearBayesian.h>


Public Member Functions | |
Constructor and Destructor | |
| TLinearBayesian (URANIE::DataServer::TDataServer *tds, URANIE::Relauncher::TRun *run, Int_t ns=1, Option_t *option="") | |
| Default constructor with TRun arg. More... | |
| TLinearBayesian (URANIE::DataServer::TDataServer *tds, void(*fcn)(Double_t *, Double_t *), const char *varexpinput, const char *varexpoutput, int ns=1, Option_t *option="") | |
| Default Calibration constructor with the function argument: it contains the assessor to be used. More... | |
| TLinearBayesian (URANIE::DataServer::TDataServer *tds, const char *fcn, const char *varexpinput, const char *varexpoutput, int ns=1, Option_t *option="") | |
| Default Calibration constructor with the function argument: it contains the assessor to be used. More... | |
| TLinearBayesian (URANIE::DataServer::TDataServer *tds, URANIE::Launcher::TCode *fcode, int ns=1, const char *option="") | |
| Default Calibration constructor with the code argument: it contains the assessor to be used. More... | |
| virtual | ~TLinearBayesian () |
| Default destructor. More... | |
Predictions methods | |
| void | computePredictionVariance (URANIE::DataServer::TDataServer *tds_new, string outname) |
| Set parameter transformation function Sometimes the calibration is performed on transformed variables (for linear problem for instance) This method allows to provide a custom function to trasform the estimated parameters to the original one. the first argument of the fonction must an array of double of size _nPar and the second argument is also an array of double of size _nPar. More... | |
Setting and Getting attributs | |
| void | setParameterTransformationFunction (void(*fTransfoParam)(double *, double *)) |
| Set parameter transformation function Sometimes the calibration is performed on transformed variables (for linear problem for instance) This method allows to provide a custom function to trasform the estimated parameters to the original one. the first argument of the fonction must an array of double of size _nPar and the second argument is also an array of double of size _nPar. More... | |
| void | setRegressorName (const char *regName) |
| Set the regressor matrix by providing the variables to be extracted from tdsObs. More... | |
| void | setDistanceAndReference (const char *funcName, URANIE::DataServer::TDataServer *tdsRef, const char *input, const char *output, const char *weight="") |
| Set the distance function and some needed informations. More... | |
| void | setDistanceAndReference (URANIE::Calibration::TDistanceFunction *distFunc, URANIE::DataServer::TDataServer *tdsRef, const char *input, const char *output, const char *weight="") |
| Set the distance function and some needed informations. More... | |
| TMatrixD | getParameterValueMatrix () |
| get the matrix of parameter values More... | |
| TMatrixD | getTransfParameterValueMatrix () |
| get the matrix of parameter values More... | |
| TMatrixD | getParameterCovarianceMatrix () |
| get the matrix of parameter covariances More... | |
Visualisation methods | |
| void | drawParameters (TString sTitre, const char *variable="*", const char *select="1>0", Option_t *option="") |
| void | printLog (Option_t *option="") |
| dump content More... | |
Public Member Functions inherited from URANIE::Calibration::TCalibration | |
| TCalibration (URANIE::DataServer::TDataServer *tds, URANIE::Relauncher::TRun *run, int ns=1, Option_t *option="") | |
| Default constructor with the runner argument: it contains the assessor to be used. More... | |
| TCalibration (URANIE::DataServer::TDataServer *tds, void(*fcn)(Double_t *, Double_t *), const char *varexpinput, const char *varexpoutput, int ns=1, Option_t *option="") | |
| Default Calibration constructor with the function argument: it contains the assessor to be used. More... | |
| TCalibration (URANIE::DataServer::TDataServer *tds, const char *fcn, const char *varexpinput, const char *varexpoutput, int ns=1, Option_t *option="") | |
| Default Calibration constructor with the function argument: it contains the assessor to be used. More... | |
| TCalibration (URANIE::DataServer::TDataServer *tds, URANIE::Launcher::TCode *fcode, int ns=1, const char *option="") | |
| Default Calibration constructor with the code argument: it contains the assessor to be used. More... | |
| virtual | ~TCalibration () |
| Default destructor. More... | |
| void | estimateParameters (Option_t *option="") |
| void | estimateCustomResidues (string resName, int n_theta, double *theta) |
| void | checkReference (URANIE::DataServer::TDataServer *tdsRef, const char *input, const char *output, const char *weight) |
| Check the consistency of the formation provided. More... | |
| void | drawResidues (TString sTitre, const char *variable="*", const char *select="1>0", Option_t *option="") |
| void | setLog () |
| void | unsetLog () |
| void | changeLog () |
| Bool_t | getLog () |
| Int_t | getID () |
| void | setSeed (UInt_t nval) |
| Set the seed of the random generator if one is used. More... | |
| UInt_t | getSeed () |
| Get the seed of the random generator if one is used. More... | |
| const char * | getMethodName () |
| Get the method name. More... | |
| void | setObservationCovarianceMatrix (TMatrixD &mat) |
| Set the observatiton covariance matrix. More... | |
| URANIE::Calibration::TDistanceFunction * | getDistanceFunction () |
| Return the distance function. More... | |
| Int_t | getNPar () |
| Get the number of parameters to be calibrated. More... | |
| URANIE::DataServer::TDataServer * | getEvaluationTDS () |
| Get the tds in which evaluation will be performed. More... | |
Protected Member Functions | |
| void | computeParameters (Option_t *option="") |
| internal method in which the estimation is performed for all inheriting classes More... | |
| void | checktdsParContent () |
Protected Member Functions inherited from URANIE::Calibration::TCalibration | |
| void | checkCanvasCreation (bool newcan) |
| Create a canvas if needed. More... | |
| void | initInputs () |
| Initialise some common inputs. More... | |
| void | initResults (vector< string > *ParsedLines) |
| Initialise some common inputs. More... | |
| void | computeAPosterioriForDistribution () |
| Compute the a posteriori residual for many-solutions method. More... | |
| virtual void | parseOption (Option_t *option="") |
| Read the possible options. More... | |
| void | setMethodName (const char *str) |
| Set the Method name. More... | |
Protected Attributes | |
| void(* | _fTransfoParam )(double *, double *) |
| Parameter transformation function. More... | |
| vector< double > | _aPrioriMode |
| A priori modes of the laws. More... | |
| TMatrixD | _mParCovariance |
| Parameters covariance matrix. More... | |
| TMatrixD | _mParValues |
| Parametres matrix. More... | |
| TMatrixD | _mTransfoParValues |
| Parametres matrix. More... | |
| TMatrixD | _mH |
| Regressor matrix. More... | |
| vector< string > | _vRegName |
| Regressor names. More... | |
| string | _regname |
| regressor name More... | |
Protected Attributes inherited from URANIE::Calibration::TCalibration | |
| URANIE::Calibration::TDistanceFunction * | _dFunc |
| Pointer to chosen distance function. More... | |
| URANIE::DataServer::TDSNtupleD * | _evTuple |
| Pointer to the eval ntuple. More... | |
| TList * | _listOfParameters |
| List of the parameters to be calibrated. More... | |
| TCanvas * | _canvas |
| Canvas object to deal with. More... | |
| TObjArray * | _drawingGarbageCollector |
| Garbage collector for prints. More... | |
| int | _nSam |
| The number of sample in a posteriori distributions. More... | |
| int | _nObs |
| The number of observations in the reference database. More... | |
| int | _nIterMax |
| The maximum number of iteration allowed (meaning total number of code estimation is _nIterMax * _nObs) More... | |
| int | _nPar |
| Dimension of the parameters. More... | |
| int | _nVar |
| Dimension of the output and references to be compared with. More... | |
| int | _nSeed |
| The seed of the random generator. More... | |
| TString | _sMethodName |
| The method name. More... | |
| TString | _referenceName |
| The reference name. More... | |
| TString | _outputName |
| The output name. More... | |
| vector< string > | _vrefName |
| The reference names. More... | |
| vector< string > | _voutName |
| The output names. More... | |
| TString | _weightName |
| The weight name. More... | |
| TMatrixD | _mObsCovMat |
| Observation Covariance matrix. More... | |
| bool | _buseMatrix |
| Use matrix instead of vectors in the Distance Function. More... | |
| bool | _bsaveAll |
| Whether all evaluations should be saved, not only a priori and a posteriori. More... | |
| bool | _bdontKeepAgreement |
| Remove the agreement attribute from the tdsPar object. More... | |
| bool | _buseMode |
| Use Mode instead of Mean. More... | |
| Bool_t | _blog |
| Boolean for edit the log. More... | |
Additional Inherited Members | |
Public Types inherited from URANIE::Calibration::TCalibration | |
| enum | ELauncher { kCode, kFunction, kRun, kUnknown } |
Public Attributes inherited from URANIE::Calibration::TCalibration | |
| URANIE::DataServer::TDataServer * | _tdsPar |
| TDS containing parameters properties (parameters that should be calibrated) More... | |
| URANIE::DataServer::TDataServer * | _tdsObs |
| TDS containing observations used for calibration. More... | |
| URANIE::DataServer::TDataServer * | _tdsEval |
| TDS containing a priori / a posteriori evaluations. More... | |
| ELauncher | _nLauncher |
| The type of launcher. More... | |
| TString | _sFunctionName |
| The Name of the evaluatuor. More... | |
| TString | _sEI |
| The Name of input. More... | |
| TString | _sEO |
| The Name of output. More... | |
| URANIE::Launcher::TCode * | _code |
| The tcode. More... | |
| URANIE::Relauncher::TRun * | _run |
| Pointer to the runner to be used. More... | |
| void(* | _pFunction )(double *, double *) |
| Function pointer. More... | |
| vector< URANIE::DataServer::TStochasticAttribute * > | _vatt |
| internal vector of stochastic attribute for some methods More... | |
Detailed Description
Description of the class TLinearBayesian.
Constructor & Destructor Documentation
◆ TLinearBayesian() [1/4]
| URANIE::Calibration::TLinearBayesian::TLinearBayesian | ( | URANIE::DataServer::TDataServer * | tds, |
| URANIE::Relauncher::TRun * | run, | ||
| Int_t | ns = 1, |
||
| Option_t * | option = "" |
||
| ) |
Default constructor with TRun arg.
Default constructor with the runner argument: it contains the assessor to be used
- Parameters
-
tds : the dataserver that contains no data but only one attribute per parameter to be calibrated run : the runner that contains the assessor to be used on the reference data ns : number of sample to be generated (depending on the method) option : see parseOption below
Referenced by ClassImp().
◆ TLinearBayesian() [2/4]
| URANIE::Calibration::TLinearBayesian::TLinearBayesian | ( | URANIE::DataServer::TDataServer * | tds, |
| void(*)(Double_t *, Double_t *) | fcn, | ||
| const char * | varexpinput, | ||
| const char * | varexpoutput, | ||
| int | ns = 1, |
||
| Option_t * | option = "" |
||
| ) |
Default Calibration constructor with the function argument: it contains the assessor to be used.
- Parameters
-
tds : the dataserver that contains no data but only one attribute per parameter to be calibrated fcn : the pointer to a function ns : number of sample to be generated (depending on the method) varexpinput : the input variable for the function in the correct order (both input and parameters) varexpoutput : the output of the function in the correct order
◆ TLinearBayesian() [3/4]
| URANIE::Calibration::TLinearBayesian::TLinearBayesian | ( | URANIE::DataServer::TDataServer * | tds, |
| const char * | fcn, | ||
| const char * | varexpinput, | ||
| const char * | varexpoutput, | ||
| int | ns = 1, |
||
| Option_t * | option = "" |
||
| ) |
Default Calibration constructor with the function argument: it contains the assessor to be used.
- Parameters
-
tds : the dataserver that contains no data but only one attribute per parameter to be calibrated fcn : the name of the function ns : number of sample to be generated (depending on the method) varexpinput : the input variable for the function in the correct order (both input and parameters) varexpoutput : the output of the function in the correct order
◆ TLinearBayesian() [4/4]
| URANIE::Calibration::TLinearBayesian::TLinearBayesian | ( | URANIE::DataServer::TDataServer * | tds, |
| URANIE::Launcher::TCode * | fcode, | ||
| int | ns = 1, |
||
| const char * | option = "" |
||
| ) |
Default Calibration constructor with the code argument: it contains the assessor to be used.
- Parameters
-
tds : the dataserver that contains no data but only one attribute per parameter to be calibrated code : the code object that will be runned ns : number of sample to be generated (depending on the method)
◆ ~TLinearBayesian()
|
virtual |
Default destructor.
Referenced by ClassImp().
Member Function Documentation
◆ checktdsParContent()
|
protectedvirtual |
Check the content of the input dataserver
Implements URANIE::Calibration::TCalibration.
Referenced by ClassImp().
◆ computeParameters()
|
protectedvirtual |
internal method in which the estimation is performed for all inheriting classes
Implements URANIE::Calibration::TCalibration.
Referenced by ClassImp().
◆ computePredictionVariance()
| void URANIE::Calibration::TLinearBayesian::computePredictionVariance | ( | URANIE::DataServer::TDataServer * | tds_new, |
| string | outname | ||
| ) |
Set parameter transformation function Sometimes the calibration is performed on transformed variables (for linear problem for instance) This method allows to provide a custom function to trasform the estimated parameters to the original one. the first argument of the fonction must an array of double of size _nPar and the second argument is also an array of double of size _nPar.
Referenced by ClassImp().
◆ drawParameters()
|
virtual |
brief Draws the parameters as functions (ROOT's TF1s) The estimateParameters method hass computed the gaussian parameters, so this one plots the parameters as continous function TF1
- Parameters
-
sTitre title of the plots if specified variable list of variables that should be plotted select useless for this method option possible option for this plot - "nonewcanvas": don't create a new canvas, but use the one active
- "vertical" : if there are several parameters to be shown put them on top of another instead of side by side
- "transformed" : use the transformed central alues and not the nominal ones
- "same" : plot the function on the existing pad, using the existing axis.
Reimplemented from URANIE::Calibration::TCalibration.
Referenced by ClassImp().
◆ getParameterCovarianceMatrix()
|
inline |
get the matrix of parameter covariances
References _mParCovariance.
◆ getParameterValueMatrix()
|
inline |
get the matrix of parameter values
References _mParValues.
◆ getTransfParameterValueMatrix()
|
inline |
get the matrix of parameter values
References _mTransfoParValues.
◆ printLog()
|
virtual |
◆ setDistanceAndReference() [1/2]
|
virtual |
Set the distance function and some needed informations.
- Parameters
-
funcName name of the distance function chosen among the already implemented ones: - "LS" for least square
- "weighterLS" for weighted least square
- "relativeLS" for relative least square
- "L1" for L1 norm
- "Mahalanobis" for Mahalanobis distance function
tdsRef : the dataserver that contains all needed information detailled below - input: the input attributes used of the assessors in run
- reference: the reference attributes that will be used to compared the newly done estimations for every iterations
- weight: a weight to reweight every event, one-by-one (an experimental uncertainty for instance)
Reimplemented from URANIE::Calibration::TCalibration.
Referenced by ClassImp().
◆ setDistanceAndReference() [2/2]
|
virtual |
Set the distance function and some needed informations.
- Parameters
-
distFunc a pointer to a TDistanceFunction object (not usual, recommended only when dealing with a home-made distance unction compiled on the spot) tdsRef : the dataserver that contains all needed information detailled below - input: the input attributes used of the assessors in run
- reference: the reference attributes that will be used to compared the newly done estimations for every iterations
- weight: a weight to reweight every event, one-by-one (an experimental uncertainty for instance)
Reimplemented from URANIE::Calibration::TCalibration.
◆ setParameterTransformationFunction()
|
inline |
Set parameter transformation function Sometimes the calibration is performed on transformed variables (for linear problem for instance) This method allows to provide a custom function to trasform the estimated parameters to the original one. the first argument of the fonction must an array of double of size _nPar and the second argument is also an array of double of size _nPar.
References _fTransfoParam.
◆ setRegressorName()
| void URANIE::Calibration::TLinearBayesian::setRegressorName | ( | const char * | regName | ) |
Set the regressor matrix by providing the variables to be extracted from tdsObs.
Referenced by ClassImp().
Member Data Documentation
◆ _aPrioriMode
|
protected |
A priori modes of the laws.
Referenced by ClassImp().
◆ _fTransfoParam
|
protected |
Parameter transformation function.
Referenced by ClassImp(), and setParameterTransformationFunction().
◆ _mH
|
protected |
Regressor matrix.
Referenced by ClassImp().
◆ _mParCovariance
|
protected |
Parameters covariance matrix.
Referenced by ClassImp(), and getParameterCovarianceMatrix().
◆ _mParValues
|
protected |
Parametres matrix.
Referenced by ClassImp(), and getParameterValueMatrix().
◆ _mTransfoParValues
|
protected |
Parametres matrix.
Referenced by ClassImp(), and getTransfParameterValueMatrix().
◆ _regname
|
protected |
regressor name
Referenced by ClassImp().
◆ _vRegName
|
protected |
Regressor names.
Referenced by ClassImp().

Public Member Functions inherited from