Documentation / Manuel développeur
Modules disponibles
Calibration,  DataServer,  Launcher,  MetaModelOptim,  Modeler,  Optimizer,  ReLauncher,  Reliability,  ReOptimizer,  Sampler,  Sensitivity,  UncertModeler,  XmlProblem,  
Uranie / Calibration v4.9.0
|
Description of the class TLinearBayesian. More...
#include <TLinearBayesian.h>
Public Member Functions | |
Constructor and Destructor | |
TLinearBayesian (URANIE::DataServer::TDataServer *tds, URANIE::Relauncher::TRun *run, Int_t ns=1, Option_t *option="") | |
Default constructor with TRun arg. | |
TLinearBayesian (URANIE::DataServer::TDataServer *tds, void(*fcn)(Double_t *, Double_t *), const char *varexpinput, const char *varexpoutput, int ns=1, Option_t *option="") | |
Default Calibration constructor with the function argument: it contains the assessor to be used. | |
TLinearBayesian (URANIE::DataServer::TDataServer *tds, const char *fcn, const char *varexpinput, const char *varexpoutput, int ns=1, Option_t *option="") | |
Default Calibration constructor with the function argument: it contains the assessor to be used. | |
TLinearBayesian (URANIE::DataServer::TDataServer *tds, URANIE::Launcher::TCode *fcode, int ns=1, const char *option="") | |
Default Calibration constructor with the code argument: it contains the assessor to be used. | |
virtual | ~TLinearBayesian () |
Default destructor. | |
Predictions methods | |
void | computePredictionVariance (URANIE::DataServer::TDataServer *tds_new, string outname) |
Set parameter transformation function Sometimes the calibration is performed on transformed variables (for linear problem for instance) This method allows to provide a custom function to trasform the estimated parameters to the original one. the first argument of the fonction must an array of double of size _nPar and the second argument is also an array of double of size _nPar. | |
Setting and Getting attributs | |
void | setParameterTransformationFunction (void(*fTransfoParam)(double *, double *)) |
Set parameter transformation function Sometimes the calibration is performed on transformed variables (for linear problem for instance) This method allows to provide a custom function to trasform the estimated parameters to the original one. the first argument of the fonction must an array of double of size _nPar and the second argument is also an array of double of size _nPar. | |
void | setRegressorName (const char *regName) |
Set the regressor matrix by providing the variables to be extracted from tdsObs. | |
void | setDistanceAndReference (const char *funcName, URANIE::DataServer::TDataServer *tdsRef, const char *input, const char *output, const char *weight="") |
Set the distance function and some needed informations. | |
void | setDistanceAndReference (URANIE::Calibration::TDistanceFunction *distFunc, URANIE::DataServer::TDataServer *tdsRef, const char *input, const char *output, const char *weight="") |
Set the distance function and some needed informations. | |
TMatrixD | getParameterValueMatrix () |
get the matrix of parameter values | |
TMatrixD | getTransfParameterValueMatrix () |
get the matrix of parameter values | |
TMatrixD | getParameterCovarianceMatrix () |
get the matrix of parameter covariances | |
Public Member Functions inherited from URANIE::Calibration::TCalibration | |
TCalibration (URANIE::DataServer::TDataServer *tds, URANIE::Relauncher::TRun *run, int ns=1, Option_t *option="") | |
Default constructor with the runner argument: it contains the assessor to be used. | |
TCalibration (URANIE::DataServer::TDataServer *tds, void(*fcn)(Double_t *, Double_t *), const char *varexpinput, const char *varexpoutput, int ns=1, Option_t *option="") | |
Default Calibration constructor with the function argument: it contains the assessor to be used. | |
TCalibration (URANIE::DataServer::TDataServer *tds, const char *fcn, const char *varexpinput, const char *varexpoutput, int ns=1, Option_t *option="") | |
Default Calibration constructor with the function argument: it contains the assessor to be used. | |
TCalibration (URANIE::DataServer::TDataServer *tds, URANIE::Launcher::TCode *fcode, int ns=1, const char *option="") | |
Default Calibration constructor with the code argument: it contains the assessor to be used. | |
virtual | ~TCalibration () |
Default destructor. | |
void | estimateParameters (Option_t *option="") |
void | estimateCustomResidues (string resName, int n_theta, double *theta) |
void | checkReference (URANIE::DataServer::TDataServer *tdsRef, const char *input, const char *output, const char *weight) |
Check the consistency of the formation provided. | |
void | drawResidues (TString sTitre, const char *variable="*", const char *select="1>0", Option_t *option="") |
void | setLog () |
void | unsetLog () |
void | changeLog () |
Bool_t | getLog () |
Int_t | getID () |
void | setSeed (UInt_t nval) |
Set the seed of the random generator if one is used. | |
UInt_t | getSeed () |
Get the seed of the random generator if one is used. | |
const char * | getMethodName () |
Get the method name. | |
void | setObservationCovarianceMatrix (TMatrixD &mat) |
Set the observatiton covariance matrix. | |
URANIE::Calibration::TDistanceFunction * | getDistanceFunction () |
Return the distance function. | |
Int_t | getNPar () |
Get the number of parameters to be calibrated. | |
URANIE::DataServer::TDataServer * | getEvaluationTDS () |
Get the tds in which evaluation will be performed. | |
Protected Attributes | |
void(* | _fTransfoParam )(double *, double *) |
Parameter transformation function. | |
vector< double > | _aPrioriMode |
A priori modes of the laws. | |
TMatrixD | _mParCovariance |
Parameters covariance matrix. | |
TMatrixD | _mParValues |
Parametres matrix. | |
TMatrixD | _mTransfoParValues |
Parametres matrix. | |
TMatrixD | _mH |
Regressor matrix. | |
vector< string > | _vRegName |
Regressor names. | |
string | _regname |
regressor name | |
Protected Attributes inherited from URANIE::Calibration::TCalibration | |
URANIE::Calibration::TDistanceFunction * | _dFunc |
Pointer to chosen distance function. | |
URANIE::DataServer::TDSNtupleD * | _evTuple |
Pointer to the eval ntuple. | |
TList * | _listOfParameters |
List of the parameters to be calibrated. | |
TCanvas * | _canvas |
Canvas object to deal with. | |
TObjArray * | _drawingGarbageCollector |
Garbage collector for prints. | |
int | _nSam |
The number of sample in a posteriori distributions. | |
int | _nObs |
The number of observations in the reference database. | |
int | _nIterMax |
The maximum number of iteration allowed (meaning total number of code estimation is _nIterMax * _nObs) | |
int | _nPar |
Dimension of the parameters. | |
int | _nVar |
Dimension of the output and references to be compared with. | |
int | _nSeed |
The seed of the random generator. | |
TString | _sMethodName |
The method name. | |
TString | _referenceName |
The reference name. | |
TString | _outputName |
The output name. | |
vector< string > | _vrefName |
The reference names. | |
vector< string > | _voutName |
The output names. | |
TString | _weightName |
The weight name. | |
TMatrixD | _mObsCovMat |
Observation Covariance matrix. | |
bool | _buseMatrix |
Use matrix instead of vectors in the Distance Function. | |
bool | _bsaveAll |
Whether all evaluations should be saved, not only a priori and a posteriori. | |
bool | _bdontKeepAgreement |
Remove the agreement attribute from the tdsPar object. | |
bool | _buseMode |
Use Mode instead of Mean. | |
Bool_t | _blog |
Boolean for edit the log. | |
Visualisation methods | |
void | drawParameters (TString sTitre, const char *variable="*", const char *select="1>0", Option_t *option="") |
void | printLog (Option_t *option="") |
dump content | |
void | computeParameters (Option_t *option="") |
internal method in which the estimation is performed for all inheriting classes | |
void | checktdsParContent () |
Additional Inherited Members | |
Public Types inherited from URANIE::Calibration::TCalibration | |
enum | ELauncher { kCode , kFunction , kRun , kUnknown } |
Public Attributes inherited from URANIE::Calibration::TCalibration | |
URANIE::DataServer::TDataServer * | _tdsPar |
TDS containing parameters properties (parameters that should be calibrated) | |
URANIE::DataServer::TDataServer * | _tdsObs |
TDS containing observations used for calibration. | |
URANIE::DataServer::TDataServer * | _tdsEval |
TDS containing a priori / a posteriori evaluations. | |
ELauncher | _nLauncher |
The type of launcher. | |
TString | _sFunctionName |
The Name of the evaluatuor. | |
TString | _sEI |
The Name of input. | |
TString | _sEO |
The Name of output. | |
URANIE::Launcher::TCode * | _code |
The tcode. | |
URANIE::Relauncher::TRun * | _run |
Pointer to the runner to be used. | |
void(* | _pFunction )(double *, double *) |
Function pointer. | |
vector< URANIE::DataServer::TStochasticAttribute * > | _vatt |
internal vector of stochastic attribute for some methods | |
Protected Member Functions inherited from URANIE::Calibration::TCalibration | |
void | checkCanvasCreation (bool newcan) |
Create a canvas if needed. | |
void | initInputs () |
Initialise some common inputs. | |
void | initResults (vector< string > *ParsedLines) |
Initialise some common inputs. | |
void | computeAPosterioriForDistribution () |
Compute the a posteriori residual for many-solutions method. | |
virtual void | parseOption (Option_t *option="") |
Read the possible options. | |
void | setMethodName (const char *str) |
Set the Method name. | |
Detailed Description
Description of the class TLinearBayesian.
Constructor & Destructor Documentation
◆ TLinearBayesian() [1/4]
URANIE::Calibration::TLinearBayesian::TLinearBayesian | ( | URANIE::DataServer::TDataServer * | tds, |
URANIE::Relauncher::TRun * | run, | ||
Int_t | ns = 1 , |
||
Option_t * | option = "" |
||
) |
Default constructor with TRun arg.
Default constructor with the runner argument: it contains the assessor to be used
- Parameters
-
tds : the dataserver that contains no data but only one attribute per parameter to be calibrated run : the runner that contains the assessor to be used on the reference data ns : number of sample to be generated (depending on the method) option : see parseOption below
Referenced by ClassImp().
◆ TLinearBayesian() [2/4]
URANIE::Calibration::TLinearBayesian::TLinearBayesian | ( | URANIE::DataServer::TDataServer * | tds, |
void(*)(Double_t *, Double_t *) | fcn, | ||
const char * | varexpinput, | ||
const char * | varexpoutput, | ||
int | ns = 1 , |
||
Option_t * | option = "" |
||
) |
Default Calibration constructor with the function argument: it contains the assessor to be used.
- Parameters
-
tds : the dataserver that contains no data but only one attribute per parameter to be calibrated fcn : the pointer to a function ns : number of sample to be generated (depending on the method) varexpinput : the input variable for the function in the correct order (both input and parameters) varexpoutput : the output of the function in the correct order
◆ TLinearBayesian() [3/4]
URANIE::Calibration::TLinearBayesian::TLinearBayesian | ( | URANIE::DataServer::TDataServer * | tds, |
const char * | fcn, | ||
const char * | varexpinput, | ||
const char * | varexpoutput, | ||
int | ns = 1 , |
||
Option_t * | option = "" |
||
) |
Default Calibration constructor with the function argument: it contains the assessor to be used.
- Parameters
-
tds : the dataserver that contains no data but only one attribute per parameter to be calibrated fcn : the name of the function ns : number of sample to be generated (depending on the method) varexpinput : the input variable for the function in the correct order (both input and parameters) varexpoutput : the output of the function in the correct order
◆ TLinearBayesian() [4/4]
URANIE::Calibration::TLinearBayesian::TLinearBayesian | ( | URANIE::DataServer::TDataServer * | tds, |
URANIE::Launcher::TCode * | fcode, | ||
int | ns = 1 , |
||
const char * | option = "" |
||
) |
Default Calibration constructor with the code argument: it contains the assessor to be used.
- Parameters
-
tds : the dataserver that contains no data but only one attribute per parameter to be calibrated code : the code object that will be runned ns : number of sample to be generated (depending on the method)
◆ ~TLinearBayesian()
|
virtual |
Default destructor.
Referenced by ClassImp().
Member Function Documentation
◆ checktdsParContent()
|
protectedvirtual |
Check the content of the input dataserver
Implements URANIE::Calibration::TCalibration.
Referenced by ClassImp().
◆ computeParameters()
|
protectedvirtual |
internal method in which the estimation is performed for all inheriting classes
Implements URANIE::Calibration::TCalibration.
Referenced by ClassImp().
◆ computePredictionVariance()
void URANIE::Calibration::TLinearBayesian::computePredictionVariance | ( | URANIE::DataServer::TDataServer * | tds_new, |
string | outname | ||
) |
Set parameter transformation function Sometimes the calibration is performed on transformed variables (for linear problem for instance) This method allows to provide a custom function to trasform the estimated parameters to the original one. the first argument of the fonction must an array of double of size _nPar and the second argument is also an array of double of size _nPar.
Referenced by ClassImp().
◆ drawParameters()
|
virtual |
brief Draws the parameters as functions (ROOT's TF1s) The estimateParameters method hass computed the gaussian parameters, so this one plots the parameters as continous function TF1
- Parameters
-
sTitre title of the plots if specified variable list of variables that should be plotted select useless for this method option possible option for this plot - "nonewcanvas": don't create a new canvas, but use the one active
- "vertical" : if there are several parameters to be shown put them on top of another instead of side by side
- "transformed" : use the transformed central alues and not the nominal ones
- "same" : plot the function on the existing pad, using the existing axis.
Reimplemented from URANIE::Calibration::TCalibration.
Referenced by ClassImp().
◆ getParameterCovarianceMatrix()
|
inline |
get the matrix of parameter covariances
References _mParCovariance.
◆ getParameterValueMatrix()
|
inline |
get the matrix of parameter values
References _mParValues.
◆ getTransfParameterValueMatrix()
|
inline |
get the matrix of parameter values
References _mTransfoParValues.
◆ printLog()
|
virtual |
◆ setDistanceAndReference() [1/2]
|
virtual |
Set the distance function and some needed informations.
- Parameters
-
funcName name of the distance function chosen among the already implemented ones: - "LS" for least square
- "weighterLS" for weighted least square
- "relativeLS" for relative least square
- "L1" for L1 norm
- "Mahalanobis" for Mahalanobis distance function
tdsRef : the dataserver that contains all needed information detailled below - input: the input attributes used of the assessors in run
- reference: the reference attributes that will be used to compared the newly done estimations for every iterations
- weight: a weight to reweight every event, one-by-one (an experimental uncertainty for instance)
Reimplemented from URANIE::Calibration::TCalibration.
Referenced by ClassImp().
◆ setDistanceAndReference() [2/2]
|
virtual |
Set the distance function and some needed informations.
- Parameters
-
distFunc a pointer to a TDistanceFunction object (not usual, recommended only when dealing with a home-made distance unction compiled on the spot) tdsRef : the dataserver that contains all needed information detailled below - input: the input attributes used of the assessors in run
- reference: the reference attributes that will be used to compared the newly done estimations for every iterations
- weight: a weight to reweight every event, one-by-one (an experimental uncertainty for instance)
Reimplemented from URANIE::Calibration::TCalibration.
◆ setParameterTransformationFunction()
|
inline |
Set parameter transformation function Sometimes the calibration is performed on transformed variables (for linear problem for instance) This method allows to provide a custom function to trasform the estimated parameters to the original one. the first argument of the fonction must an array of double of size _nPar and the second argument is also an array of double of size _nPar.
References _fTransfoParam.
◆ setRegressorName()
void URANIE::Calibration::TLinearBayesian::setRegressorName | ( | const char * | regName | ) |
Set the regressor matrix by providing the variables to be extracted from tdsObs.
Referenced by ClassImp().
Member Data Documentation
◆ _aPrioriMode
|
protected |
A priori modes of the laws.
Referenced by ClassImp().
◆ _fTransfoParam
|
protected |
Parameter transformation function.
Referenced by ClassImp(), and setParameterTransformationFunction().
◆ _mH
|
protected |
Regressor matrix.
Referenced by ClassImp().
◆ _mParCovariance
|
protected |
Parameters covariance matrix.
Referenced by ClassImp(), and getParameterCovarianceMatrix().
◆ _mParValues
|
protected |
Parametres matrix.
Referenced by ClassImp(), and getParameterValueMatrix().
◆ _mTransfoParValues
|
protected |
Parametres matrix.
Referenced by ClassImp(), and getTransfParameterValueMatrix().
◆ _regname
|
protected |
regressor name
Referenced by ClassImp().
◆ _vRegName
|
protected |
Regressor names.
Referenced by ClassImp().