Documentation / Developer's manual
Available modules
Calibration,  DataServer,  Launcher,  MetaModelOptim,  Modeler,  Optimizer,  ReLauncher,  Reliability,  ReOptimizer,  Sampler,  Sensitivity,  UncertModeler,  XmlProblem,  
Uranie / Calibration v4.9.0
|
URANIE::Calibration::TMahalanobisDistanceFunction Class Reference
Description of the class TMahalanobisDistanceFunction
The distance is estimated as.
More...
#include <TStandardDistanceFunction.h>
Inheritance diagram for URANIE::Calibration::TMahalanobisDistanceFunction:
Collaboration diagram for URANIE::Calibration::TMahalanobisDistanceFunction:
Public Member Functions | |
Constructor and Destructor | |
TMahalanobisDistanceFunction (URANIE::DataServer::TDataServer *tdsEval, URANIE::DataServer::TDataServer *tdsObs, const char *reference, const char *output, const char *weight="") | |
Default constructor. | |
virtual | ~TMahalanobisDistanceFunction () |
Default destructor. | |
Estimate | |
Int_t | localeval (Double_t *res) |
Public Member Functions inherited from URANIE::Calibration::TDistanceFunction | |
TDistanceFunction (URANIE::DataServer::TDataServer *tdsEval, URANIE::DataServer::TDataServer *tdsObs, const char *reference, const char *output, const char *weight="") | |
Standard constructor. | |
virtual | ~TDistanceFunction () |
Default destructor. | |
void | fillInOutAtt (URANIE::DataServer::TDataServer *tdsPar) |
Internal initialisation method. | |
void | initParameters (URANIE::DataServer::TDataServer *tdsPar, URANIE::Relauncher::TRun *run) |
void | initParameters (URANIE::DataServer::TDataServer *tdsPar, const char *funcName, const char *varexpinput, const char *varexpoutput) |
void | initParameters (URANIE::DataServer::TDataServer *tdsPar, void(*fcn)(Double_t *, Double_t *), const char *varexpinput, const char *varexpoutput) |
void | initParameters (URANIE::DataServer::TDataServer *tdsPar, URANIE::Launcher::TCode *Code) |
Int_t | eval (Double_t *theta, Double_t *res, int=0) |
Official method inherited from TSimpleEval, it is the main method of a DF It calls three methods in a row : runConfiguration, getData and localeval. | |
void | runConfiguration (double *theta) |
Runs the code provided on the reference input to get estimations. | |
vector< vector< double > > | getObservationVector () |
Return the observation vector of vector. | |
TMatrixD | getObservationMatrix () |
Return the observation matrix. | |
void | setSaveAllEvaluations (bool value) |
Choose whether every evaluations should be kept (might slown down the process) | |
void | changeLauncher (TString tlcName) |
Change the code launcher. | |
void | changeCodeLauncherOpt (TString opt) |
Change the option of the code launcher. | |
void | dumpAllDataservers () |
void | keepParametersValue () |
void | dumpDetails () |
void | addCodeLauncherOpt (TString opt) |
add options to the already of the code launcher | |
void | setUseMatrix (bool value) |
Choose whether vector of vector or matrix should be used in the distance function localeval method. | |
void | setVarWeights (int nwei, double *wei) |
Set a weight to ponderate variable when _nVar >1. | |
void | setVarWeights (vector< double > wei) |
Set a weight to ponderate variable when _nVar >1. | |
void | setObservationCovarianceMatrix (TMatrixD &mat) |
set the observatiton covariance matrix | |
bool | getSaveAllEvaluation () |
Check the value of the saveAll option. | |
bool | getUseMatrix () |
Check the value of the useMatrix option. | |
void | setGaussianRandomNoise (const char *stdname) |
Set Normal random noise for an output variable. | |
void | setSeed (UInt_t nval) |
Set the seed of the random generator if one is used. | |
void | setLog () |
void | unsetLog () |
void | changeLog () |
Bool_t | getLog () |
virtual void | printLog (Option_t *option="") |
Additional Inherited Members | |
Public Attributes inherited from URANIE::Calibration::TDistanceFunction | |
URANIE::DataServer::TDataServer * | _tdsEval |
pointer toward the evaluation dataserver | |
URANIE::DataServer::TDataServer * | _tdsObs |
pointer toward the reference dataserver | |
URANIE::DataServer::TDSNtupleD * | _allData |
pointer toward the reference dataserver | |
Protected Member Functions inherited from URANIE::Calibration::TDistanceFunction | |
void | getData (bool reference=false) |
Get the data either the reference one, or the estimated one for a given parameter configuration. | |
Protected Attributes inherited from URANIE::Calibration::TDistanceFunction | |
vector< string > | _vrefName |
Vector of reference name. | |
vector< string > | _voutName |
Vector of output name. | |
vector< string > | _vparName |
Vector of parameters name. | |
vector< vector< double > > | _yObs |
Vector of observations outputs (size: _nVar < _nObs >) | |
vector< vector< double > > | _yExp |
Vector of tested values (size: _nVar <_nObs>) | |
TMatrixD | _mObsCovMat |
Observation Covariance matrix. | |
TMatrixD | _myObs |
Vector of observations outputs (size: _nVar < _nObs >) | |
TMatrixD | _myExp |
Vector of tested values (size: _nVar <_nObs>) | |
unsigned int | _nObs |
Number of observations. | |
unsigned int | _nVar |
Number of variables;. | |
unsigned int | _nPar |
Number of Parameters;. | |
vector< double > | _vParValues |
vector< double > | _varWeights |
Vector of variable weights (size: _nVar) | |
vector< vector< double > > | _obsWeights |
Vector of observation weights outputs (size: _nObs) | |
URANIE::Relauncher::TRun * | _run |
TString | _tlcType |
TString | _codeLauncherOpt |
Option for code launcher. | |
URANIE::Launcher::TCode * | _code |
TString | _funcName |
void(* | _pFunction )(double *, double *) |
Function pointer. | |
TString | _varexpinput |
TString | _varexpoutput |
bool | _baprioriSet |
Whether apriori is set to evaluator. | |
bool | _bsaveAll |
Whether all evaluations should be saved, not only a priori and a posteriori. | |
bool | _buseMatrix |
Use matrix instead of vectors. | |
bool | _blog |
Boolean to decide if the log information is shown or not. | |
bool | _dumpAllTds |
dump all tested dataserver; | |
bool | _keepParValue |
Keep the parameters values in runner case. | |
bool | _bdumpDetails |
Dump the details in Distance Computation. | |
int | _icalc |
Calcul iterator;. | |
unsigned int | _ivar |
unsigned int | _iobs |
TList * | _listOfParameters |
list of parameters | |
TRandom3 * | _rand |
The random generator. | |
int | _nSeed |
The seed of the random generator. | |
TMatrixD | _mSigma |
Vector of variance of errors. | |
bool | _boolNoise |
Whether noise is add to the output. | |
Detailed Description
Description of the class TMahalanobisDistanceFunction
The distance is estimated as.
where
- is the number of output variables
- and are respectively the reference and estimated matrix of output
- is the covariance matrix of the events (from the reference file)
- is a weight that might be used to ponderate one variable with respect to the others
Constructor & Destructor Documentation
◆ TMahalanobisDistanceFunction()
URANIE::Calibration::TMahalanobisDistanceFunction::TMahalanobisDistanceFunction | ( | URANIE::DataServer::TDataServer * | tdsEval, |
URANIE::DataServer::TDataServer * | tdsObs, | ||
const char * | reference, | ||
const char * | output, | ||
const char * | weight = "" |
||
) |
Default constructor.
- the evaluation dataserver
- the reference dataserver
- the list of variable that are the output reference (_nVar in total)
- the outputs of the code (_nVar as well)
- the observation weight (uncertainty for instance)
◆ ~TMahalanobisDistanceFunction()
|
virtual |
Default destructor.
Member Function Documentation
◆ localeval()
|
virtual |
Evaluate the distance function
Implements URANIE::Calibration::TDistanceFunction.