Documentation / Developer's manual
Available modules
Calibration,  DataServer,  Launcher,  MetaModelOptim,  Modeler,  Optimizer,  ReLauncher,  Reliability,  ReOptimizer,  Sampler,  Sensitivity,  UncertModeler,  XmlProblem,  ![]() |
Uranie / Calibration v4.9.0
|
URANIE::Calibration::TWeightedLSDistanceFunction Class Reference
Description of the class TWeightedLSDistanceFunction
The distance is estimated as.
More...
#include <TStandardDistanceFunction.h>
Inheritance diagram for URANIE::Calibration::TWeightedLSDistanceFunction:

Collaboration diagram for URANIE::Calibration::TWeightedLSDistanceFunction:

Public Member Functions | |
Constructor and Destructor | |
TWeightedLSDistanceFunction (URANIE::DataServer::TDataServer *tdsEval, URANIE::DataServer::TDataServer *tdsObs, const char *reference, const char *output, const char *weight="") | |
Default constructor. | |
virtual | ~TWeightedLSDistanceFunction () |
Default destructor. | |
Estimate | |
Int_t | localeval (Double_t *res) |
![]() | |
TDistanceFunction (URANIE::DataServer::TDataServer *tdsEval, URANIE::DataServer::TDataServer *tdsObs, const char *reference, const char *output, const char *weight="") | |
Standard constructor. | |
virtual | ~TDistanceFunction () |
Default destructor. | |
void | fillInOutAtt (URANIE::DataServer::TDataServer *tdsPar) |
Internal initialisation method. | |
void | initParameters (URANIE::DataServer::TDataServer *tdsPar, URANIE::Relauncher::TRun *run) |
void | initParameters (URANIE::DataServer::TDataServer *tdsPar, const char *funcName, const char *varexpinput, const char *varexpoutput) |
void | initParameters (URANIE::DataServer::TDataServer *tdsPar, void(*fcn)(Double_t *, Double_t *), const char *varexpinput, const char *varexpoutput) |
void | initParameters (URANIE::DataServer::TDataServer *tdsPar, URANIE::Launcher::TCode *Code) |
Int_t | eval (Double_t *theta, Double_t *res, int=0) |
Official method inherited from TSimpleEval, it is the main method of a DF It calls three methods in a row : runConfiguration, getData and localeval. | |
void | runConfiguration (double *theta) |
Runs the code provided on the reference input to get estimations. | |
vector< vector< double > > | getObservationVector () |
Return the observation vector of vector. | |
TMatrixD | getObservationMatrix () |
Return the observation matrix. | |
void | setSaveAllEvaluations (bool value) |
Choose whether every evaluations should be kept (might slown down the process) | |
void | changeLauncher (TString tlcName) |
Change the code launcher. | |
void | changeCodeLauncherOpt (TString opt) |
Change the option of the code launcher. | |
void | dumpAllDataservers () |
void | keepParametersValue () |
void | dumpDetails () |
void | addCodeLauncherOpt (TString opt) |
add options to the already of the code launcher | |
void | setUseMatrix (bool value) |
Choose whether vector of vector or matrix should be used in the distance function localeval method. | |
void | setVarWeights (int nwei, double *wei) |
Set a weight to ponderate variable when _nVar >1. | |
void | setVarWeights (vector< double > wei) |
Set a weight to ponderate variable when _nVar >1. | |
void | setObservationCovarianceMatrix (TMatrixD &mat) |
set the observatiton covariance matrix | |
bool | getSaveAllEvaluation () |
Check the value of the saveAll option. | |
bool | getUseMatrix () |
Check the value of the useMatrix option. | |
void | setGaussianRandomNoise (const char *stdname) |
Set Normal random noise for an output variable. | |
void | setSeed (UInt_t nval) |
Set the seed of the random generator if one is used. | |
void | setLog () |
void | unsetLog () |
void | changeLog () |
Bool_t | getLog () |
virtual void | printLog (Option_t *option="") |
Additional Inherited Members | |
![]() | |
URANIE::DataServer::TDataServer * | _tdsEval |
pointer toward the evaluation dataserver | |
URANIE::DataServer::TDataServer * | _tdsObs |
pointer toward the reference dataserver | |
URANIE::DataServer::TDSNtupleD * | _allData |
pointer toward the reference dataserver | |
![]() | |
void | getData (bool reference=false) |
Get the data either the reference one, or the estimated one for a given parameter configuration. | |
![]() | |
vector< string > | _vrefName |
Vector of reference name. | |
vector< string > | _voutName |
Vector of output name. | |
vector< string > | _vparName |
Vector of parameters name. | |
vector< vector< double > > | _yObs |
Vector of observations outputs (size: _nVar < _nObs >) | |
vector< vector< double > > | _yExp |
Vector of tested values (size: _nVar <_nObs>) | |
TMatrixD | _mObsCovMat |
Observation Covariance matrix. | |
TMatrixD | _myObs |
Vector of observations outputs (size: _nVar < _nObs >) | |
TMatrixD | _myExp |
Vector of tested values (size: _nVar <_nObs>) | |
unsigned int | _nObs |
Number of observations. | |
unsigned int | _nVar |
Number of variables;. | |
unsigned int | _nPar |
Number of Parameters;. | |
vector< double > | _vParValues |
vector< double > | _varWeights |
Vector of variable weights (size: _nVar) | |
vector< vector< double > > | _obsWeights |
Vector of observation weights outputs (size: _nObs) | |
URANIE::Relauncher::TRun * | _run |
TString | _tlcType |
TString | _codeLauncherOpt |
Option for code launcher. | |
URANIE::Launcher::TCode * | _code |
TString | _funcName |
void(* | _pFunction )(double *, double *) |
Function pointer. | |
TString | _varexpinput |
TString | _varexpoutput |
bool | _baprioriSet |
Whether apriori is set to evaluator. | |
bool | _bsaveAll |
Whether all evaluations should be saved, not only a priori and a posteriori. | |
bool | _buseMatrix |
Use matrix instead of vectors. | |
bool | _blog |
Boolean to decide if the log information is shown or not. | |
bool | _dumpAllTds |
dump all tested dataserver; | |
bool | _keepParValue |
Keep the parameters values in runner case. | |
bool | _bdumpDetails |
Dump the details in Distance Computation. | |
int | _icalc |
Calcul iterator;. | |
unsigned int | _ivar |
unsigned int | _iobs |
TList * | _listOfParameters |
list of parameters | |
TRandom3 * | _rand |
The random generator. | |
int | _nSeed |
The seed of the random generator. | |
TMatrixD | _mSigma |
Vector of variance of errors. | |
bool | _boolNoise |
Whether noise is add to the output. | |
Detailed Description
Description of the class TWeightedLSDistanceFunction
The distance is estimated as.
where
and are respectively the number of output variables and the number of events in the reference dataset and are respectively the reference and estimated value of output for event is a weight that might be used to ponderate one variable with respect to the others is a weight that might be used to ponderate one event with respect to the others (uncertainty for instance)
Constructor & Destructor Documentation
◆ TWeightedLSDistanceFunction()
URANIE::Calibration::TWeightedLSDistanceFunction::TWeightedLSDistanceFunction | ( | URANIE::DataServer::TDataServer * | tdsEval, |
URANIE::DataServer::TDataServer * | tdsObs, | ||
const char * | reference, | ||
const char * | output, | ||
const char * | weight = "" |
||
) |
Default constructor.
- the evaluation dataserver
- the reference dataserver
- the list of variable that are the output reference (_nVar in total)
- the outputs of the code (_nVar as well)
- the observation weight (uncertainty for instance)
◆ ~TWeightedLSDistanceFunction()
|
virtual |
Default destructor.
Member Function Documentation
◆ localeval()
|
virtual |
Evaluate the distance function
Implements URANIE::Calibration::TDistanceFunction.