Documentation / Manuel développeur
Modules disponibles
Calibration,  DataServer,  Launcher,  MetaModelOptim,  Modeler,  Optimizer,  ReLauncher,  Reliability,  ReOptimizer,  Sampler,  Sensitivity,  UncertModeler,  XmlProblem,  
Uranie / DataServer v4.9.0
|
Description of the class TLogNormalDistribution. More...
#include <TLogNormalDistribution.h>
Public Member Functions | |
Constructor and Destructor | |
TLogNormalDistribution () | |
Default constructor. | |
TLogNormalDistribution (TString name) | |
Constructor setting the name. | |
TLogNormalDistribution (TString name, Double_t M, Double_t errorfactor, Double_t xmin=0.0) | |
Constructor setting name, mean and error factor. | |
TLogNormalDistribution (URANIE::DataServer::TAttribute *att, Double_t M, Double_t errorfactor, Double_t xmin=0.0) | |
Construction of a TLogNormalDistribution from an existing TAttribute object. | |
virtual | ~TLogNormalDistribution () |
Default destructor. | |
Law parameters | |
This law has three parameters: the mean , the error factor and the minimum value . All are defined here. Another function allows to set directly the underlying normal law parameters. Finally, as this law is defined only over the interval , the functions defining the lower and upper bounds must be redefined. | |
virtual void | setParameterMean (Double_t M, Bool_t recompute=kTRUE) |
Set the mean parameter. | |
Double_t | getParameterMean () |
Return the mean parameter. | |
virtual void | setParameterErrorFactor (Double_t errorfactor, Bool_t recompute=kTRUE) |
Set the error factor parameter. | |
Double_t | getParameterErrorFactor () |
Return the error factor parameter. | |
virtual void | setParameterXMin (Double_t xmin, Bool_t recompute=kTRUE) |
Set the minimum value parameter. | |
Double_t | getParameterXMin () |
Return the minimum value parameter. | |
virtual void | setParameters (Double_t M, Double_t errorfactor, Double_t xmin=0.0, Bool_t recompute=kTRUE) |
Set all the parameters. | |
virtual void | setUnderlyingNormalParameters (Double_t mu, Double_t sigma, Bool_t recompute=kTRUE) |
Set the parameters of the underlying normal law. | |
Double_t | getUnderlyingNormalParameterMu () |
Return the mean parameter of the underlying normal law. | |
Double_t | getUnderlyingNormalParameterSigma () |
Return the standard deviation parameter of the underlying normal law. | |
virtual void | setLowerBound (Double_t val) |
Sets the lower bound of the attribute. | |
virtual void | setUpperBound (Double_t val) |
Sets the upper bound of the attribute. | |
virtual void | setBounds (Double_t lower, Double_t upper) |
Sets the lower and upper bounds of the attribute. | |
Distribution specific methods | |
PDF, CDF, etc. | |
virtual void | computeTheoreticalInformation () |
Computes the theoretical values of various statistical measures. | |
virtual Double_t | getPDF (Double_t x) |
Returns the probability density for the value x. | |
virtual Double_t | getCDF (Double_t x) |
Returns the cumulative distribution for the value x. | |
virtual Double_t | getInvCDF (Double_t p) |
Returns the value corresponding to the cumulative density p. | |
Printing Log | |
virtual void | printLog (Option_t *option="") |
Public Member Functions inherited from URANIE::DataServer::TInfiniteDistribution | |
TInfiniteDistribution () | |
Default Constructor. | |
TInfiniteDistribution (TString str) | |
Constructor setting the name. | |
TInfiniteDistribution (TString str, ELawType value) | |
Constructor setting the name and the law type. | |
TInfiniteDistribution (TAttribute *object, ELawType value) | |
Construction of a TInfiniteDistribution from an existing TAttribute object. | |
virtual | ~TInfiniteDistribution () |
Default Destructor. | |
virtual void | printLog () |
Display information specific to this class. | |
Public Member Functions inherited from URANIE::DataServer::TStochasticAttribute | |
TStochasticAttribute () | |
Default Constructor. | |
TStochasticAttribute (TString str) | |
Constructor setting the name. | |
TStochasticAttribute (TString str, ELawType value) | |
Constructor setting the name and the law type. | |
TStochasticAttribute (TString str, ELawType value, Double_t min, Double_t max) | |
Constructor setting the name, the law type, and the range (lower and upper bounds) | |
TStochasticAttribute (TAttribute *object, ELawType value) | |
Construction of a TStochasticAttribute from an existing TAttribute object. | |
virtual | ~TStochasticAttribute () |
Default Destructor. | |
double | getPDFforTF1 (double *x) |
double | getCDFforTF1 (double *x) |
double | getInvCDFforTF1 (double *x) |
virtual Double_t | getTheoreticalMean () |
Returns the theoretical value of the mean. | |
virtual Double_t | getTheoreticalStdDev () |
Returns the theoretical value of the standard deviation. | |
virtual Double_t | getTheoreticalMode () |
Returns the theoretical value of the mode. | |
void | setLawType (ELawType value) |
Sets the law type from an integer value. | |
void | setLawType (TString name) |
Sets the law type from a law name. | |
int | getLawType () |
Returns the law type as an integer. | |
void | setStochasticBasis (EStochasticBasis n) |
Defines an orthogonal polynomial family to represent the stochastic attribute. | |
void | setDefaultStochasticBasis () |
Sets the default orthogonal polynomial family representing the stochastic attribute. | |
EStochasticBasis | getStochasticBasis () const |
Returns the orthogonal polynomial which is used to represent the attribute. | |
virtual Double_t | getPMin () |
Returns the minimum value of the cumulative distribution function. | |
virtual Double_t | getPMax () |
Returns the maximum value of the cumulative distribution function. | |
Public Member Functions inherited from URANIE::DataServer::TAttribute | |
TAttribute () | |
Default constructor. | |
TAttribute (const char *name, const char *title) | |
TAttribute (TString name) | |
Constructor by name only. | |
TAttribute (TString name, EType type) | |
Constructor by name and type only. | |
TAttribute (TString name, TString value, EType type) | |
Constructor by name and range. | |
TAttribute (TString name, Double_t lower, Double_t upper) | |
Constructor by name and range. | |
TAttribute (const TAttribute &attr) | |
Copy constructor. | |
TAttribute * | Clone (const char *newname) const |
Clone an attribute with a new name. | |
virtual | ~TAttribute () |
Default destructor. | |
void | checkSizeBeforePush (const char *type, int iel, Double_t val) |
Internal method used to check the validity of all setters when dealing with vectors. | |
Double_t | checkSizeBeforeGet (const char *type, int iel=0) |
Internal method used to check the validity of all getters when dealing with vectors and return the request. | |
void | setQuantile (double prob, double quantile, int iel=0) |
Set the quantile value. | |
void | getQuantilesSize (int &nb, int iel=0) |
Returns the number of quantile computed and stored for element iel. | |
void | getQuantiles (double *prob, double *quantile, int iel=0) |
Returns all the probabilities and corresponding quantiles computed for element iel. | |
void | getQuantile (double &prob, double &quantile, int iel=0) |
Returns the value of the quantile for element iel, given the probability. | |
void | getQuantileVector (double &prob, vector< double > &quantile) |
Returns the vector of quantile given the probability. | |
Double_t | getMinimum (int iel=0) |
Double_t | getMinimumSize () |
Returns the size of the vector of minimum. | |
Bool_t | hasDefault () |
Details whether this attribute has a default value. | |
void | setMinimum (Double_t val, int iel=0) |
Set the minimum value oef element iel. | |
Double_t | getMaximum (int iel=0) |
Double_t | getMaximumSize () |
Returns the size of the vector of maximum. | |
void | setMaximum (Double_t val, int iel=0) |
Set the maximum value oef element iel. | |
void | getStatisticalVector (const char *type, vector< double > &vec) |
Returns the vector of considered statistical value. | |
Double_t | getMean (int iel=0) |
Double_t | getMeanSize () |
Returns the size of the vector of mean. | |
void | setMean (Double_t val, int iel=0) |
Set the mean value oef element iel. | |
Double_t | getStd (int iel=0) |
Double_t | getStdSize () |
Returns the size of the vector of std. | |
void | setStd (Double_t val, int iel=0) |
Set the std value oef element iel. | |
void | setSlurmOption (TString value) |
EType | getDataType () const |
Returns the datatype of the considered attribute. | |
TString | getDataTypeStr () |
Returns the datatype as TString. | |
void | setTitle (const char *title) |
Defines the title of the attribute. | |
void | setTitle (TString str) |
TString | getTitle () |
void | setDataType (EType thetype) |
Change the type of data. | |
void | setDataType (TString name) |
Change the type of data. | |
TString | getLegend () |
Returns the legend of the attribut. | |
TString | getUnit () |
void | setUnit (TString str) |
TString | getUnity () |
void | setUnity (TString str) |
TString | getNote () |
void | setNote (TString str) |
Bool_t | setDefault (TString value) |
TString | getDefault (TString format="%e") |
Bool_t | setDefaultValue (Double_t val) |
Bool_t | getDefaultValue (Double_t &val) |
Bool_t | hasDefaultValue () |
Bool_t | setDefaultVector (vector< double > &vec) |
Bool_t | getDefaultVector (vector< double > *val) |
Bool_t | hasDefaultVector () |
Bool_t | setDefaultString (TString str) |
Bool_t | getDefaultString (string &str) |
Bool_t | hasDefaultString () |
void | setStepValue (Double_t val) |
Bool_t | getStepValue (Double_t &val) |
TString | getSlurmOption () |
EOrigin | getOrigin () |
void | setOrigin (EOrigin ind) |
Int_t | getShare () |
void | setOutput () |
Sets the attribute as an output attribute. | |
void | setInput () |
Sets the attribute as Input. | |
EAttribute | getInputOutput () |
Returns the input/Output information of the attribute. | |
void | setFileNameOfKey (TString str) |
Sets the file name for a key. | |
list< URANIE::DataServer::TAttributeFileKey * > | getKeyList () |
Gets KeyList for the attribute. | |
void | setFieldOfKey (Int_t ind) |
Sets index ind in the unique field related to a unique key. | |
void | setFieldOfKey (Int_t sIndex, Int_t ind) |
void | setFileKey (TString sfile, TString skey="", TString sformatToSubstitute="%e", TAttributeFileKey::EFileType FileType=TAttributeFileKey::kKey) |
Defines the input files and eventually others informations like key, format to substitute. | |
void | setFileFlag (TString sfile, TString skey="", TString sformatToSubstitute="%e") |
Defines the input files as in the "flag" format and eventually others informations like key, format to substitute. | |
void | setFileXMLAttribute (TString sfile, TString sXPathAttribute, TString sformatToSubstitute="%e") |
Defines the input files as an "XML" input file with XPath attribute format and eventually the format to substitute. | |
void | setFileXMLField (TString sfile, TString sXPathField, TString sformatToSubstitute="%e") |
Defines the input files as an "XML" input file with XPath field and eventually the format to substitute. | |
void | setFileFMU (TString sfile, TString sXPathField, TString sformatToSubstitute="%e") |
const char * | getFormatToSubstitute () |
Returns the format of substitution. | |
void | setFormatToSubstitute (TString str) |
Sets the format of substitution. | |
Bool_t | isInput () |
Tests if the attribute is an input attribute. | |
Bool_t | isOutput () |
Tests if the attribute is an output attribute. | |
void | addShare () |
void | delShare () |
void | initShare () |
void | clearVectors () |
virtual void | setLowerBound (Double_t val, bool internalcall=false) |
Sets the lower bound value of the attribute. | |
Double_t | getLowerBound () |
Gets the lower bound value of the attribute. | |
Bool_t | isLowerBounded () |
Returns a boolean if the attribute have a lower bound. | |
virtual void | setUpperBound (Double_t val, bool internalcall=false) |
Sets the upper bound value of the attribute. | |
Double_t | getUpperBound () |
Gets the upper bound value of the attribute. | |
Bool_t | isUpperBounded () |
Returns a boolean if the attribute have an upper bound. | |
Bool_t | isBounded () |
Returns a boolean if the attribute have a lower AND an upper bounds. | |
void | setLog () |
void | unsetLog () |
void | changeLog () |
Bool_t | getLog () |
TAttribute * | getSonAttribute () |
void | setSonAttribute (TAttribute *tatt) |
void | removeSonAttribute () |
Int_t | getLevel () |
void | setLevel (Int_t nlevel) |
Bool_t | haveSon () |
Private Member Functions | |
void | createUnderlyingNormal (Double_t M, Double_t errorfactor) |
Creates the underlying normal distribution. | |
Private Attributes | |
TNormalDistribution * | _unormal |
The underlying Normal law. | |
Double_t | _dparameterXMin |
The minimum value parameter of the LogNormal law. | |
Double_t | _dparameterMean |
The mean parameter of the LogNormal law. | |
Double_t | _dparameterErrorFactor |
The error factor parameter of the LogNormal law. | |
Additional Inherited Members | |
Public Types inherited from URANIE::DataServer::TStochasticAttribute | |
enum | ELawType { kUniform , kLogUniform , kNormal , kStudent , kLogNormal , kTrapezium , kTriangular , kLogTriangular , kExponential , kBeta , kGamma , kInvGamma , kCauchy , kUniformByParts , kWeibull , kGumbel , kMultinomial , kGenPareto , kGeneralizedNormal , kGeneralizedNormalV2 , kCompose , kUnknown } |
The list of laws that a TStochasticAttribute can follow. More... | |
enum | EStochasticBasis { kUnknownBasis , kHermite , kLegendre , kLaguerre , kJacobi } |
The list of orthogonal polynomial families that can represent a given TStochasticAttribute. More... | |
Public Types inherited from URANIE::DataServer::TAttribute | |
enum | EOrigin { kInternal , kIterator , kConstant , kAttribute , kDeleted } |
enum | EAttribute { kInput , kOutput } |
enum | EType { kDefault , kReal , kVector , kString , kCategory , kInconnu } |
Protected Attributes inherited from URANIE::DataServer::TStochasticAttribute | |
ELawType | _lawType |
The law type ELawType. | |
Double_t | _dtheoreticalMean |
The theoretical mean. | |
Double_t | _dtheoreticalStdDev |
The theoretical standard deviation. | |
Double_t | _dtheoreticalMode |
The theoretical mode. | |
Double_t | _pmin |
The min value of cumulative density function. | |
Double_t | _pmax |
The max value of cumulative density function. | |
EStochasticBasis | _nStochasticBasis |
The stochastic representation of an orthogonal basis. | |
Protected Attributes inherited from URANIE::DataServer::TAttribute | |
TString | _sunity |
Unity. | |
TString | _snote |
Note. | |
Bool_t | _blog |
Log printing. | |
Int_t | _nshare |
The number of time this attribute is shared in TDataServer. | |
TAttribute * | _attSon |
Son attribute. | |
Int_t | _nlevel |
level to its "father" | |
Bool_t | _haveSon |
true if the attribute have a son | |
TString | _sFormatSubstitute |
Format to substitute the value. | |
list< TEventList * > | _nfields |
List of all TEventLists created for the attribute. | |
list< TAttributeFileKey * > | _KeyList |
List of Keys Attributes structures. | |
Double_t | upperBound |
Upper bound. | |
Bool_t | _bHaveUpperBound |
If have an upper bound. | |
Double_t | lowerBound |
Lower bound. | |
Bool_t | _bHaveLowerBound |
If have a lower bound. | |
Double_t | _defaultValue |
Default value. | |
Bool_t | _bHaveDefaultValue |
If have a default value. | |
vector< double > | _defaultVector |
Default value for vector. | |
Bool_t | _bHaveDefaultVector |
If have a default value for vector. | |
string | _defaultString |
Default value for string. | |
Bool_t | _bHaveDefaultString |
If have a default value for string. | |
Double_t | _stepValue |
Step value when using in Optimization. | |
Bool_t | _bHaveStepValue |
If have a step value. | |
vector< Double_t > | _vminimum |
All minimun calculated. | |
vector< Double_t > | _vmaximum |
All maximun calculated. | |
vector< Double_t > | _vmean |
All mean calculated. | |
vector< Double_t > | _vstd |
All std calculated. | |
vector< Double_t > * | _vbuffer |
vector< map< double, double > * > | _vquantile |
| |
EOrigin | _norigin |
The origin of the attribute (Internal of uranie, attribute or Input, Output...) | |
EAttribute | _nAttribute |
The nature of attributes : kInput (default) or kOutput. | |
EType | _nType |
The type of attribute: real (double), vector (of double), string... | |
TString | _slurmValue |
Detailed Description
Description of the class TLogNormalDistribution.
This class defines a stochastic attribute following an LogNormal distribution.
A positive random variable is said to follow a LogNormal law when follows a Normal law.
In URANIE, the LogNormal law is defined by three parameters: the minimum value of the distribution , the mean of the LogNormal law and a coefficient, called Error Factor which represents the ratio between the value of the percentile and the median value of the LogNormal distribution. The mean is strictly positive, and the error factor is greater than 1.0.
The error factor can be computed from the mean and variance of the LogNormal law:
- where and is the variance of the LogNormal law.
In addition, each LogNormal law is related to a Normal law. The relation between the Normal law parameters and the LogNormal law parameters is given by:
In the equations below, the parameters and are the parameters of the related Normal law.
- Probability Density Function (PDF):
- for
- Cumulative Distribution Function (CDF):
- for
- Inverse CDF:
- For a given , if is generated from the inverse of the related Normal law:
Constructor & Destructor Documentation
◆ TLogNormalDistribution() [1/4]
URANIE::DataServer::TLogNormalDistribution::TLogNormalDistribution | ( | ) |
Default constructor.
Default mean is 0.01, default error factor is 10.0, default minimum value is 0.0
Referenced by ClassImp().
◆ TLogNormalDistribution() [2/4]
URANIE::DataServer::TLogNormalDistribution::TLogNormalDistribution | ( | TString | name | ) |
Constructor setting the name.
Default mean is 0.01, default error factor is 10.0, default minimum value is 0.0
- Parameters
-
name (TString) Name of the attribute
◆ TLogNormalDistribution() [3/4]
URANIE::DataServer::TLogNormalDistribution::TLogNormalDistribution | ( | TString | name, |
Double_t | M, | ||
Double_t | errorfactor, | ||
Double_t | xmin = 0.0 |
||
) |
Constructor setting name, mean and error factor.
- Parameters
-
name (TString) Name of the attribute M (Double_t) Mean parameter errorfactor (Double_t) Error factor parameter xmin (Double_t) Minimum value parameter (Default = 0.0)
◆ TLogNormalDistribution() [4/4]
URANIE::DataServer::TLogNormalDistribution::TLogNormalDistribution | ( | URANIE::DataServer::TAttribute * | att, |
Double_t | M, | ||
Double_t | errorfactor, | ||
Double_t | xmin = 0.0 |
||
) |
Construction of a TLogNormalDistribution from an existing TAttribute object.
- Warning
- this copy constructor is incomplete. Please do not use. (Nicolas Gilardi, 2010.06.11)
- Parameters
-
att (TAttribute *) Pointer to an existing TAttribute object M (Double_t) Mean parameter errorfactor (Double_t) Error factor parameter xmin (Double_t) Minimum value parameter (Default = 0.0)
◆ ~TLogNormalDistribution()
|
virtual |
Default destructor.
Referenced by ClassImp().
Member Function Documentation
◆ computeTheoreticalInformation()
|
virtual |
Computes the theoretical values of various statistical measures.
Implements URANIE::DataServer::TStochasticAttribute.
Referenced by ClassImp().
◆ createUnderlyingNormal()
|
private |
Creates the underlying normal distribution.
- Parameters
-
M (Double_t) the mean of the LogNormal law errorfactor (Double_t) the error factor of the LogNormal law
Referenced by ClassImp().
◆ getCDF()
|
virtual |
Returns the cumulative distribution for the value x.
- Parameters
-
x (Double_t) An acceptable value for the attribute
Implements URANIE::DataServer::TStochasticAttribute.
Referenced by ClassImp().
◆ getInvCDF()
|
virtual |
Returns the value corresponding to the cumulative density p.
- Parameters
-
p (Double_t) A valid probability
- Exceptions
-
UErrorExceptions if p is outside of the interval [0,1]
Implements URANIE::DataServer::TStochasticAttribute.
Referenced by ClassImp().
◆ getParameterErrorFactor()
|
inline |
Return the error factor parameter.
References _dparameterErrorFactor.
◆ getParameterMean()
|
inline |
Return the mean parameter.
References _dparameterMean.
◆ getParameterXMin()
|
inline |
Return the minimum value parameter.
References _dparameterXMin.
◆ getPDF()
|
virtual |
Returns the probability density for the value x.
- Parameters
-
x (Double_t) An acceptable value for the attribute
Implements URANIE::DataServer::TStochasticAttribute.
Referenced by ClassImp().
◆ getUnderlyingNormalParameterMu()
|
inline |
Return the mean parameter of the underlying normal law.
References _unormal, and URANIE::DataServer::TNormalDistribution::getParameterMu().
◆ getUnderlyingNormalParameterSigma()
|
inline |
Return the standard deviation parameter of the underlying normal law.
References _unormal, and URANIE::DataServer::TNormalDistribution::getParameterSigma().
◆ printLog()
|
virtual |
◆ setBounds()
|
virtual |
Sets the lower and upper bounds of the attribute.
As we are dealing with a law defined over the interval , setting a finite upper bound or a lower bound greater than 0.0 means that the law is truncated. The _pmin and _pmax values must be recalculated.
- Parameters
-
lower (Double_t) The value of the new lower bound upper (Double_t) The value of the new upper bound
- Exceptions
-
UErrorExceptions if the upper bound is inferior to the lower bound
Reimplemented from URANIE::DataServer::TInfiniteDistribution.
Referenced by ClassImp().
◆ setLowerBound()
|
virtual |
Sets the lower bound of the attribute.
As we are dealing with a law defined over the interval , setting a lower bound greater than 0 means the law is truncated. The _pmin value must be recalculated.
- Parameters
-
val (Double_t) The value of the new lower bound
- Exceptions
-
UErrorExceptions if val is superior to the upper bound UErrorExceptions if val is smaller than
Reimplemented from URANIE::DataServer::TInfiniteDistribution.
Referenced by ClassImp().
◆ setParameterErrorFactor()
|
virtual |
Set the error factor parameter.
- Parameters
-
errorfactor (Double_t) Error factor parameter recompute (Bool_t) should we recompute the theoretical information ? (Default = kTRUE)
- Exceptions
-
UErrorExceptions if (errorfactor - 1) < 1e-6
Referenced by ClassImp().
◆ setParameterMean()
|
virtual |
Set the mean parameter.
- Parameters
-
M (Double_t) Mean parameter recompute (Bool_t) should we recompute the theoretical information ? (Default = kTRUE)
- Exceptions
-
UErrorExceptions if
Referenced by ClassImp().
◆ setParameters()
|
virtual |
Set all the parameters.
- Parameters
-
M (Double_t) Mean parameter errorfactor (Double_t) Error factor parameter xmin (Double_t) Minimum value parameter (Default = 0.0)
recompute (Bool_t) should we recompute the theoretical information ? (Default = kTRUE)
- Exceptions
-
UErrorExceptions if
Referenced by ClassImp().
◆ setParameterXMin()
|
virtual |
Set the minimum value parameter.
- Parameters
-
xmin (Double_t) Minimum value parameter recompute (Bool_t) should we recompute the theoretical information ? (Default = kTRUE)
- Exceptions
-
UErrorExceptions if
Referenced by ClassImp().
◆ setUnderlyingNormalParameters()
|
virtual |
Set the parameters of the underlying normal law.
This function allows to set the parameters of the underlying Normal law. The LogNormal law parameters (mean and error factor) are automatically updated.
- Parameters
-
mu (Double_t) Mean parameter of the underlying normal law sigma (Double_t) Standard deviation parameter of the underlying normal law recompute (Bool_t) should we recompute the theoretical information ? (Default = kTRUE)
- Warning
- the minimum value of the LogNormal law is unknown to the underlying normal law. If , it must be set using TLogNormalDistribution::setParameterXMin()
Referenced by ClassImp().
◆ setUpperBound()
|
virtual |
Sets the upper bound of the attribute.
As we are dealing with a law defined over the interval , setting a finite upper bound means that the law is truncated. The _pmax value must be recalculated.
- Parameters
-
val (Double_t) The value of the new upper bound
- Exceptions
-
UErrorExceptions if val is inferior to the lower bound
Reimplemented from URANIE::DataServer::TInfiniteDistribution.
Referenced by ClassImp().
Member Data Documentation
◆ _dparameterErrorFactor
|
private |
The error factor parameter of the LogNormal law.
Referenced by ClassImp(), and getParameterErrorFactor().
◆ _dparameterMean
|
private |
The mean parameter of the LogNormal law.
Referenced by ClassImp(), and getParameterMean().
◆ _dparameterXMin
|
private |
The minimum value parameter of the LogNormal law.
Referenced by ClassImp(), and getParameterXMin().
◆ _unormal
|
private |
The underlying Normal law.
Referenced by ClassImp(), getUnderlyingNormalParameterMu(), and getUnderlyingNormalParameterSigma().