English Français

Documentation / Developer's manual

Available modules

Calibration,  DataServer,  Launcher,  MetaModelOptim,  Modeler,  Optimizer,  ReLauncher,  Reliability,  ReOptimizer,  Sampler,  Sensitivity,  UncertModeler,  XmlProblem,   Uranie / DataServer: URANIE::DataServer::TWeibullDistribution Class Reference
Uranie / DataServer v4.9.0
/* @license-end */
URANIE::DataServer::TWeibullDistribution Class Reference

Description of the class TWeibullDistribution. More...

#include <TWeibullDistribution.h>

Inheritance diagram for URANIE::DataServer::TWeibullDistribution:
Collaboration diagram for URANIE::DataServer::TWeibullDistribution:

Public Member Functions

Constructor and Destructor
 TWeibullDistribution ()
 Default constructor.
 
 TWeibullDistribution (TString name)
 Constructor setting the name.
 
 TWeibullDistribution (TString name, Double_t lambda, Double_t k=1.0, Double_t xmin=0.0)
 Constructor setting name, scale, shape and location.
 
 TWeibullDistribution (URANIE::DataServer::TAttribute *att, Double_t lambda, Double_t k=1.0, Double_t xmin=0.0)
 Construction of a TWeibullDistribution from an existing TAttribute object.
 
virtual ~TWeibullDistribution ()
 Default destructor.
 
Law parameters

This law has three parameters: the scale $ \lambda $, the shape $ k $ and the location $ x_{min} $. All are defined here.

virtual void setParameterLambda (Double_t lambda, Bool_t recompute=kTRUE)
 Set the scale parameter $ \lambda $.
 
Double_t getParameterLambda ()
 Get the scale parameter value.
 
virtual void setParameterK (Double_t k, Bool_t recompute=kTRUE)
 Set the shape parameter $ k $.
 
Double_t getParameterK ()
 Get the shape parameter value.
 
virtual void setParameterXmin (Double_t xmin, Bool_t recompute=kTRUE)
 Set the location parameter $ x_{min} $.
 
Double_t getParameterXmin ()
 Get the location parameter value.
 
void setParameters (Double_t lambda, Double_t k, Double_t xmin, Bool_t recompute=kTRUE)
 Set all the parameters.
 
Distribution specific methods

PDF, CDF, etc.

virtual void computeTheoreticalInformation ()
 Computes the theoretical values of various statistical measures.
 
virtual Double_t getPDF (Double_t x)
 Returns the probability density for the value x.
 
virtual Double_t getCDF (Double_t x)
 Returns the cumulative distribution for the value x.
 
virtual Double_t getInvCDF (Double_t p)
 Returns the value corresponding to the cumulative density p.
 
Printing Log
virtual void printLog (Option_t *option="")
 
- Public Member Functions inherited from URANIE::DataServer::TInfiniteDistribution
 TInfiniteDistribution ()
 Default Constructor.
 
 TInfiniteDistribution (TString str)
 Constructor setting the name.
 
 TInfiniteDistribution (TString str, ELawType value)
 Constructor setting the name and the law type.
 
 TInfiniteDistribution (TAttribute *object, ELawType value)
 Construction of a TInfiniteDistribution from an existing TAttribute object.
 
virtual ~TInfiniteDistribution ()
 Default Destructor.
 
virtual void setLowerBound (Double_t val)
 Sets the lower bound of the attribute.
 
virtual void setUpperBound (Double_t val)
 Sets the upper bound of the attribute.
 
virtual void setBounds (Double_t lower, Double_t upper)
 Sets the lower and upper bounds of the attribute.
 
virtual void printLog ()
 Display information specific to this class.
 
- Public Member Functions inherited from URANIE::DataServer::TStochasticAttribute
 TStochasticAttribute ()
 Default Constructor.
 
 TStochasticAttribute (TString str)
 Constructor setting the name.
 
 TStochasticAttribute (TString str, ELawType value)
 Constructor setting the name and the law type.
 
 TStochasticAttribute (TString str, ELawType value, Double_t min, Double_t max)
 Constructor setting the name, the law type, and the range (lower and upper bounds)
 
 TStochasticAttribute (TAttribute *object, ELawType value)
 Construction of a TStochasticAttribute from an existing TAttribute object.
 
virtual ~TStochasticAttribute ()
 Default Destructor.
 
double getPDFforTF1 (double *x)
 
double getCDFforTF1 (double *x)
 
double getInvCDFforTF1 (double *x)
 
virtual Double_t getTheoreticalMean ()
 Returns the theoretical value of the mean.
 
virtual Double_t getTheoreticalStdDev ()
 Returns the theoretical value of the standard deviation.
 
virtual Double_t getTheoreticalMode ()
 Returns the theoretical value of the mode.
 
void setLawType (ELawType value)
 Sets the law type from an integer value.
 
void setLawType (TString name)
 Sets the law type from a law name.
 
int getLawType ()
 Returns the law type as an integer.
 
void setStochasticBasis (EStochasticBasis n)
 Defines an orthogonal polynomial family to represent the stochastic attribute.
 
void setDefaultStochasticBasis ()
 Sets the default orthogonal polynomial family representing the stochastic attribute.
 
EStochasticBasis getStochasticBasis () const
 Returns the orthogonal polynomial which is used to represent the attribute.
 
virtual Double_t getPMin ()
 Returns the minimum value of the cumulative distribution function.
 
virtual Double_t getPMax ()
 Returns the maximum value of the cumulative distribution function.
 
- Public Member Functions inherited from URANIE::DataServer::TAttribute
 TAttribute ()
 Default constructor.
 
 TAttribute (const char *name, const char *title)
 
 TAttribute (TString name)
 Constructor by name only.
 
 TAttribute (TString name, EType type)
 Constructor by name and type only.
 
 TAttribute (TString name, TString value, EType type)
 Constructor by name and range.
 
 TAttribute (TString name, Double_t lower, Double_t upper)
 Constructor by name and range.
 
 TAttribute (const TAttribute &attr)
 Copy constructor.
 
TAttributeClone (const char *newname) const
 Clone an attribute with a new name.
 
virtual ~TAttribute ()
 Default destructor.
 
void checkSizeBeforePush (const char *type, int iel, Double_t val)
 Internal method used to check the validity of all setters when dealing with vectors.
 
Double_t checkSizeBeforeGet (const char *type, int iel=0)
 Internal method used to check the validity of all getters when dealing with vectors and return the request.
 
void setQuantile (double prob, double quantile, int iel=0)
 Set the quantile value.
 
void getQuantilesSize (int &nb, int iel=0)
 Returns the number of quantile computed and stored for element iel.
 
void getQuantiles (double *prob, double *quantile, int iel=0)
 Returns all the probabilities and corresponding quantiles computed for element iel.
 
void getQuantile (double &prob, double &quantile, int iel=0)
 Returns the value of the quantile for element iel, given the probability.
 
void getQuantileVector (double &prob, vector< double > &quantile)
 Returns the vector of quantile given the probability.
 
Double_t getMinimum (int iel=0)
 
Double_t getMinimumSize ()
 Returns the size of the vector of minimum.
 
Bool_t hasDefault ()
 Details whether this attribute has a default value.
 
void setMinimum (Double_t val, int iel=0)
 Set the minimum value oef element iel.
 
Double_t getMaximum (int iel=0)
 
Double_t getMaximumSize ()
 Returns the size of the vector of maximum.
 
void setMaximum (Double_t val, int iel=0)
 Set the maximum value oef element iel.
 
void getStatisticalVector (const char *type, vector< double > &vec)
 Returns the vector of considered statistical value.
 
Double_t getMean (int iel=0)
 
Double_t getMeanSize ()
 Returns the size of the vector of mean.
 
void setMean (Double_t val, int iel=0)
 Set the mean value oef element iel.
 
Double_t getStd (int iel=0)
 
Double_t getStdSize ()
 Returns the size of the vector of std.
 
void setStd (Double_t val, int iel=0)
 Set the std value oef element iel.
 
void setSlurmOption (TString value)
 
EType getDataType () const
 Returns the datatype of the considered attribute.
 
TString getDataTypeStr ()
 Returns the datatype as TString.
 
void setTitle (const char *title)
 Defines the title of the attribute.
 
void setTitle (TString str)
 
TString getTitle ()
 
void setDataType (EType thetype)
 Change the type of data.
 
void setDataType (TString name)
 Change the type of data.
 
TString getLegend ()
 Returns the legend of the attribut.
 
TString getUnit ()
 
void setUnit (TString str)
 
TString getUnity ()
 
void setUnity (TString str)
 
TString getNote ()
 
void setNote (TString str)
 
Bool_t setDefault (TString value)
 
TString getDefault (TString format="%e")
 
Bool_t setDefaultValue (Double_t val)
 
Bool_t getDefaultValue (Double_t &val)
 
Bool_t hasDefaultValue ()
 
Bool_t setDefaultVector (vector< double > &vec)
 
Bool_t getDefaultVector (vector< double > *val)
 
Bool_t hasDefaultVector ()
 
Bool_t setDefaultString (TString str)
 
Bool_t getDefaultString (string &str)
 
Bool_t hasDefaultString ()
 
void setStepValue (Double_t val)
 
Bool_t getStepValue (Double_t &val)
 
TString getSlurmOption ()
 
EOrigin getOrigin ()
 
void setOrigin (EOrigin ind)
 
Int_t getShare ()
 
void setOutput ()
 Sets the attribute as an output attribute.
 
void setInput ()
 Sets the attribute as Input.
 
EAttribute getInputOutput ()
 Returns the input/Output information of the attribute.
 
void setFileNameOfKey (TString str)
 Sets the file name for a key.
 
list< URANIE::DataServer::TAttributeFileKey * > getKeyList ()
 Gets KeyList for the attribute.
 
void setFieldOfKey (Int_t ind)
 Sets index ind in the unique field related to a unique key.
 
void setFieldOfKey (Int_t sIndex, Int_t ind)
 
void setFileKey (TString sfile, TString skey="", TString sformatToSubstitute="%e", TAttributeFileKey::EFileType FileType=TAttributeFileKey::kKey)
 Defines the input files and eventually others informations like key, format to substitute.
 
void setFileFlag (TString sfile, TString skey="", TString sformatToSubstitute="%e")
 Defines the input files as in the "flag" format and eventually others informations like key, format to substitute.
 
void setFileXMLAttribute (TString sfile, TString sXPathAttribute, TString sformatToSubstitute="%e")
 Defines the input files as an "XML" input file with XPath attribute format and eventually the format to substitute.
 
void setFileXMLField (TString sfile, TString sXPathField, TString sformatToSubstitute="%e")
 Defines the input files as an "XML" input file with XPath field and eventually the format to substitute.
 
void setFileFMU (TString sfile, TString sXPathField, TString sformatToSubstitute="%e")
 
const char * getFormatToSubstitute ()
 Returns the format of substitution.
 
void setFormatToSubstitute (TString str)
 Sets the format of substitution.
 
Bool_t isInput ()
 Tests if the attribute is an input attribute.
 
Bool_t isOutput ()
 Tests if the attribute is an output attribute.
 
void addShare ()
 
void delShare ()
 
void initShare ()
 
void clearVectors ()
 
virtual void setLowerBound (Double_t val, bool internalcall=false)
 Sets the lower bound value of the attribute.
 
Double_t getLowerBound ()
 Gets the lower bound value of the attribute.
 
Bool_t isLowerBounded ()
 Returns a boolean if the attribute have a lower bound.
 
virtual void setUpperBound (Double_t val, bool internalcall=false)
 Sets the upper bound value of the attribute.
 
Double_t getUpperBound ()
 Gets the upper bound value of the attribute.
 
Bool_t isUpperBounded ()
 Returns a boolean if the attribute have an upper bound.
 
Bool_t isBounded ()
 Returns a boolean if the attribute have a lower AND an upper bounds.
 
void setLog ()
 
void unsetLog ()
 
void changeLog ()
 
Bool_t getLog ()
 
TAttributegetSonAttribute ()
 
void setSonAttribute (TAttribute *tatt)
 
void removeSonAttribute ()
 
Int_t getLevel ()
 
void setLevel (Int_t nlevel)
 
Bool_t haveSon ()
 

Private Attributes

Double_t _dparameterLambda
 The scale parameter $ \lambda $.
 
Double_t _dparameterK
 The shape parameter $ k $.
 
Double_t _dparameterXmin
 The location parameter $ x_{min} $.
 

Additional Inherited Members

- Public Types inherited from URANIE::DataServer::TStochasticAttribute
enum  ELawType {
  kUniform , kLogUniform , kNormal , kStudent ,
  kLogNormal , kTrapezium , kTriangular , kLogTriangular ,
  kExponential , kBeta , kGamma , kInvGamma ,
  kCauchy , kUniformByParts , kWeibull , kGumbel ,
  kMultinomial , kGenPareto , kGeneralizedNormal , kGeneralizedNormalV2 ,
  kCompose , kUnknown
}
 The list of laws that a TStochasticAttribute can follow. More...
 
enum  EStochasticBasis {
  kUnknownBasis , kHermite , kLegendre , kLaguerre ,
  kJacobi
}
 The list of orthogonal polynomial families that can represent a given TStochasticAttribute. More...
 
- Public Types inherited from URANIE::DataServer::TAttribute
enum  EOrigin {
  kInternal , kIterator , kConstant , kAttribute ,
  kDeleted
}
 
enum  EAttribute { kInput , kOutput }
 
enum  EType {
  kDefault , kReal , kVector , kString ,
  kCategory , kInconnu
}
 
- Protected Attributes inherited from URANIE::DataServer::TStochasticAttribute
ELawType _lawType
 The law type ELawType.
 
Double_t _dtheoreticalMean
 The theoretical mean.
 
Double_t _dtheoreticalStdDev
 The theoretical standard deviation.
 
Double_t _dtheoreticalMode
 The theoretical mode.
 
Double_t _pmin
 The min value of cumulative density function.
 
Double_t _pmax
 The max value of cumulative density function.
 
EStochasticBasis _nStochasticBasis
 The stochastic representation of an orthogonal basis.
 
- Protected Attributes inherited from URANIE::DataServer::TAttribute
TString _sunity
 Unity.
 
TString _snote
 Note.
 
Bool_t _blog
 Log printing.
 
Int_t _nshare
 The number of time this attribute is shared in TDataServer.
 
TAttribute_attSon
 Son attribute.
 
Int_t _nlevel
 level to its "father"
 
Bool_t _haveSon
 true if the attribute have a son
 
TString _sFormatSubstitute
 Format to substitute the value.
 
list< TEventList * > _nfields
 List of all TEventLists created for the attribute.
 
list< TAttributeFileKey * > _KeyList
 List of Keys Attributes structures.
 
Double_t upperBound
 Upper bound.
 
Bool_t _bHaveUpperBound
 If have an upper bound.
 
Double_t lowerBound
 Lower bound.
 
Bool_t _bHaveLowerBound
 If have a lower bound.
 
Double_t _defaultValue
 Default value.
 
Bool_t _bHaveDefaultValue
 If have a default value.
 
vector< double > _defaultVector
 Default value for vector.
 
Bool_t _bHaveDefaultVector
 If have a default value for vector.
 
string _defaultString
 Default value for string.
 
Bool_t _bHaveDefaultString
 If have a default value for string.
 
Double_t _stepValue
 Step value when using in Optimization.
 
Bool_t _bHaveStepValue
 If have a step value.
 
vector< Double_t > _vminimum
 All minimun calculated.
 
vector< Double_t > _vmaximum
 All maximun calculated.
 
vector< Double_t > _vmean
 All mean calculated.
 
vector< Double_t > _vstd
 All std calculated.
 
vector< Double_t > * _vbuffer
 
vector< map< double, double > * > _vquantile
 

‍buffer pointer to check addresses


 
EOrigin _norigin
 The origin of the attribute (Internal of uranie, attribute or Input, Output...)
 
EAttribute _nAttribute
 The nature of attributes : kInput (default) or kOutput.
 
EType _nType
 The type of attribute: real (double), vector (of double), string...
 
TString _slurmValue
 

Detailed Description

Description of the class TWeibullDistribution.

This class defines a stochastic attribute following an Weibull distribution.

This law is defined by three parameters: the location $ x_{min} $, the scale $ \lambda > 0 $, and the shape $ k > 0 $. The law is defined over the interval $ [x_{min}, \inf) $.

This law gives the distribution of failures, where the failure rate is proportional to a power of time. The shape parameter, $ k $, is that power plus one, and so can be interpreted directly as follows:

  • A value of k < 1 indicates that the failure rate decreases over time. This happens when early failures leaves only the most robust elements and eliminate the others.
  • A value of k = 1 indicates that the failure rate is constant over time. This might suggest random external events are causing failure.
  • A value of k > 1 indicates that the failure rate increases with time. This happens if there is an "aging" process.

(inspired from http://en.wikipedia.org/wiki/Weibull_distribution)

Probability Density Function (PDF):
  • $ f(x) = k/\lambda * ((x-x_{min})/\lambda)^{k-1} * \exp\left(-((x-x_{min})/\lambda)^{k}\right)$ for $ x \geq x_{min} $
  • $ f(x) = 0 $ otherwise
Cumulative Distribution Function (CDF):
  • $ F(x) = 0 $ for $ x < x_{min} $
  • $ F(x) = 1 - \exp\left(-((x-x_{min})/\lambda)^k\right) $ otherwise
Inverse CDF:
  • $ F^{-1}(p) = x_{min} + \lambda * (-\ln(1-p))^{1/k} $ for $ p \in [0,1] $

Constructor & Destructor Documentation

◆ TWeibullDistribution() [1/4]

URANIE::DataServer::TWeibullDistribution::TWeibullDistribution ( )

Default constructor.

Default scale is 1.0, default shape is 1.0, default location is 0.0

Referenced by ClassImp().

◆ TWeibullDistribution() [2/4]

URANIE::DataServer::TWeibullDistribution::TWeibullDistribution ( TString  name)

Constructor setting the name.

Default scale is 1.0, default shape is 1.0, default location is 0.0

Parameters
name(TString) Name of the attribute

◆ TWeibullDistribution() [3/4]

URANIE::DataServer::TWeibullDistribution::TWeibullDistribution ( TString  name,
Double_t  lambda,
Double_t  k = 1.0,
Double_t  xmin = 0.0 
)

Constructor setting name, scale, shape and location.

Parameters
name(TString) Name of the attribute
lambda(Double_t) Scale parameter $ \lambda $
k(Double_t) Shape parameter $ k $ (Default = 1.0)
xmin(Double_t) Location parameter $ x_{min} $ (Default = 0.0)

◆ TWeibullDistribution() [4/4]

URANIE::DataServer::TWeibullDistribution::TWeibullDistribution ( URANIE::DataServer::TAttribute att,
Double_t  lambda,
Double_t  k = 1.0,
Double_t  xmin = 0.0 
)

Construction of a TWeibullDistribution from an existing TAttribute object.

Warning
this copy constructor is incomplete. Please do not use. (Nicolas Gilardi, 2010.06.11)
Parameters
att(URANIE::DataServer::TAttribute) the attribute which we want to make a random parameter
lambda(Double_t) Scale parameter $ \lambda $
k(Double_t) Shape parameter $ k $ (Default = 1.0)
xmin(Double_t) Location parameter $ x_{min} $ (Default = 0.0)

◆ ~TWeibullDistribution()

virtual URANIE::DataServer::TWeibullDistribution::~TWeibullDistribution ( )
virtual

Default destructor.

Referenced by ClassImp().

Member Function Documentation

◆ computeTheoreticalInformation()

virtual void URANIE::DataServer::TWeibullDistribution::computeTheoreticalInformation ( )
virtual

Computes the theoretical values of various statistical measures.

Implements URANIE::DataServer::TStochasticAttribute.

Referenced by ClassImp().

◆ getCDF()

virtual Double_t URANIE::DataServer::TWeibullDistribution::getCDF ( Double_t  x)
virtual

Returns the cumulative distribution for the value x.

Parameters
x(Double_t) An acceptable value for the attribute

Implements URANIE::DataServer::TStochasticAttribute.

Referenced by ClassImp().

◆ getInvCDF()

virtual Double_t URANIE::DataServer::TWeibullDistribution::getInvCDF ( Double_t  p)
virtual

Returns the value corresponding to the cumulative density p.

Parameters
p(Double_t) A valid probability
Exceptions
UErrorExceptionsif p is outside of the interval [0,1]

Implements URANIE::DataServer::TStochasticAttribute.

Referenced by ClassImp().

◆ getParameterK()

Double_t URANIE::DataServer::TWeibullDistribution::getParameterK ( )
inline

Get the shape parameter value.

References _dparameterK.

◆ getParameterLambda()

Double_t URANIE::DataServer::TWeibullDistribution::getParameterLambda ( )
inline

Get the scale parameter value.

References _dparameterLambda.

◆ getParameterXmin()

Double_t URANIE::DataServer::TWeibullDistribution::getParameterXmin ( )
inline

Get the location parameter value.

References _dparameterXmin.

◆ getPDF()

virtual Double_t URANIE::DataServer::TWeibullDistribution::getPDF ( Double_t  x)
virtual

Returns the probability density for the value x.

Parameters
x(Double_t) An acceptable value for the attribute

Implements URANIE::DataServer::TStochasticAttribute.

Referenced by ClassImp().

◆ printLog()

virtual void URANIE::DataServer::TWeibullDistribution::printLog ( Option_t *  option = "")
virtual

◆ setParameterK()

virtual void URANIE::DataServer::TWeibullDistribution::setParameterK ( Double_t  k,
Bool_t  recompute = kTRUE 
)
virtual

Set the shape parameter $ k $.

Parameters
k(Double_t) Shape parameter $ k $
recompute(Bool_t) should we recompute the theoretical information ? (Default = kTRUE)
Exceptions
UErrorExceptionsif k < 1e-4

Referenced by ClassImp().

◆ setParameterLambda()

virtual void URANIE::DataServer::TWeibullDistribution::setParameterLambda ( Double_t  lambda,
Bool_t  recompute = kTRUE 
)
virtual

Set the scale parameter $ \lambda $.

Parameters
lambda(Double_t) Scale parameter $ \lambda $
recompute(Bool_t) should we recompute the theoretical information ? (Default = kTRUE)
Exceptions
UErrorExceptionsif lambda < 1e-4

Referenced by ClassImp().

◆ setParameters()

void URANIE::DataServer::TWeibullDistribution::setParameters ( Double_t  lambda,
Double_t  k,
Double_t  xmin,
Bool_t  recompute = kTRUE 
)

Set all the parameters.

Parameters
lambda(Double_t) Scale parameter $ \lambda $
k(Double_t) Shape parameter $ k $
xmin(Double_t) Location parameter $ x_{min} $
recompute(Bool_t) should we recompute the theoretical information ? (Default = kTRUE)

Referenced by ClassImp().

◆ setParameterXmin()

virtual void URANIE::DataServer::TWeibullDistribution::setParameterXmin ( Double_t  xmin,
Bool_t  recompute = kTRUE 
)
virtual

Set the location parameter $ x_{min} $.

Parameters
xmin(Double_t) Location parameter $ x_{min} $
recompute(Bool_t) should we recompute the theoretical information ? (Default = kTRUE)
Warning
in order to avoid border effects, if the lowerBound attribute is set to minus infinity, it is re-initialised to xmin.

Referenced by ClassImp().

Member Data Documentation

◆ _dparameterK

Double_t URANIE::DataServer::TWeibullDistribution::_dparameterK
private

The shape parameter $ k $.

Referenced by ClassImp(), and getParameterK().

◆ _dparameterLambda

Double_t URANIE::DataServer::TWeibullDistribution::_dparameterLambda
private

The scale parameter $ \lambda $.

Referenced by ClassImp(), and getParameterLambda().

◆ _dparameterXmin

Double_t URANIE::DataServer::TWeibullDistribution::_dparameterXmin
private

The location parameter $ x_{min} $.

Referenced by ClassImp(), and getParameterXmin().