Documentation / Developer's manual
Available modules
Calibration,  DataServer,  Launcher,  MetaModelOptim,  Modeler,  Optimizer,  ReLauncher,  Reliability,  ReOptimizer,  Sampler,  Sensitivity,  UncertModeler,  XmlProblem,  
Uranie / Modeler v4.9.0
|
TANNModeler.h
Go to the documentation of this file.
134 static const int OPTIM_MAX_ITER = 10000; //<! Maximal number of iterations in the optimization algorithms
135 static const int OPTIM_MAX_FEVAL = 50000; //<! Maximal number of evaluations in the optimization algorithms
150 TANNModeler (URANIE::DataServer::TDataServer *tds, const char* pmmlfile, const char* ANNname, Double_t dratio = 0.80, Option_t *option ="");
287 void train(Int_t niter = 10, Int_t nInit = 10, Option_t* option = "text", Bool_t useGPU = true);
289 void train(Int_t niter = 10, Int_t nInit = 10, Option_t* option = "text", Bool_t useGPU = false);
357 void exportModelPMML(const char* file = "", const char* name = "", Option_t *option = "") const;
R__EXTERN URANIE::Modeler::TANNModeler * gUranieANNModeler
Definition TANNModeler.h:409
Interface of the class URANIE::Optimize::TModeler.
Definition TANNModeler.h:67
void setValue(Int_t ind, Int_t &ncrt, Double_t *xy, Bool_t normalize=true)
EProblem getProblem()
Get the problem type.
Definition TANNModeler.h:246
ENorm _nNormType
! The function tolerance for the trust region algorithm
Definition TANNModeler.h:127
Int_t _nInput
! Seed for the random weight initialization
Definition TANNModeler.h:82
TList * _listOfAttributes
! Max values, used for normalization
Definition TANNModeler.h:121
EProblem _nProlemType
! The normalized for input and output
Definition TANNModeler.h:128
Double_t getWeight(Int_t ind)
Returns the weight givent by the index.
Definition TANNModeler.h:199
void setDataSet(URANIE::DataServer::TPatternsEventList *tel)
Definition TANNModeler.h:219
Double_t * _dval
! The type of problem (Regression, Classification)
Definition TANNModeler.h:131
ColumnVector _vecMaxValues
! Min values, used for normalization
Definition TANNModeler.h:118
void setWeights(ColumnVector weights)
Sets the weigts.
Definition TANNModeler.h:186
void exportModelCplusplus(const char *file="", const char *name="", Option_t *option="") const
The only user interface method.
void saveIfBetter(const ColumnVector &weights, Double_t eqm_app, Double_t eqm_tst)
Save a vector of weight if the RMS on the test database is better than what we currently have.
Int_t getSeed()
Returns the seed value.
Definition TANNModeler.h:255
ColumnVector _vecWeights
! The number of weights
Definition TANNModeler.h:113
void init()
Bool_t _blog
Boolean for edit the log.
Definition TANNModeler.h:137
Double_t getMinValue(Int_t ind)
Definition TANNModeler.h:204
const char * getOutputName()
Get the attribute name of the output.
Definition TANNModeler.h:267
TANNModeler(URANIE::DataServer::TDataServer *tds, TString architecture, Double_t dratio=0.80, Option_t *option="")
Constructor with a dataserver.
void exportModelPython(std::ofstream *sourcefile) const
Export the model in Python langage in a file (not yet implemented)
Definition TANNModeler.h:380
Int_t getNHidden()
Gets the number of hidden neurons.
Definition TANNModeler.h:165
Double_t _dLearn
! Number of samples in the training set dedicated to validation
Definition TANNModeler.h:90
Double_t getWeightDecay()
Get the weight decay parameter.
Definition TANNModeler.h:297
Int_t getNInput()
Gets the number of input.
Definition TANNModeler.h:160
TString _sInput
! The architecture, e.g. "x:y:z,3,yhat" specifying inputs, number of hidden neurons,...
Definition TANNModeler.h:97
ENorm getNormalization()
Get the normalisation.
Definition TANNModeler.h:240
Int_t getNOutput()
Gets the number of output.
Definition TANNModeler.h:170
void exportModelFortran(std::ofstream *sourcefile) const
const char * getInputName(Int_t i)
Return the name of input attributes indexed by i.
Definition TANNModeler.h:260
Int_t _nHidden
! The number of inputs
Definition TANNModeler.h:83
static const int OPTIM_MAX_FEVAL
Definition TANNModeler.h:135
Double_t getMaxValue(Int_t ind)
Definition TANNModeler.h:208
Double_t _dTest
! The learning quality
Definition TANNModeler.h:91
TString _sArchi
! True if data set must be mixed
Definition TANNModeler.h:96
Bool_t _bMix
! The mix list of patterns
Definition TANNModeler.h:94
Double_t _dWeightDecay
! The test quality
Definition TANNModeler.h:92
Int_t _nHiddenLayer
! The number of hidden neurons
Definition TANNModeler.h:84
URANIE::DataServer::TDataServer * _tds
Definition TANNModeler.h:138
URANIE::DataServer::TPatternsEventList * _elAll
! The weight decay parameter - when used, favorize a smoother ANN
Definition TANNModeler.h:93
Int_t _nTest
! Number of samples in the training set dedicated to back-propagation
Definition TANNModeler.h:89
Int_t getNAPP()
Gets the number of pure training patterns ("APPrentissage")
Definition TANNModeler.h:175
void train(Int_t niter=10, Int_t nInit=10, Option_t *option="text", Bool_t useGPU=false)
Int_t _nOutput
! the number of hidden layer
Definition TANNModeler.h:85
virtual void printLog(Option_t *option="")
static const int OPTIM_MAX_ITER
Definition TANNModeler.h:134
Int_t getNTest()
Gets the number of pure training patterns ("APPrentissage")
Definition TANNModeler.h:180
Int_t _nNeurons
! The number of outputs
Definition TANNModeler.h:86
Definition TModeler.h:63
virtual void exportModelPMML(const char *file="", const char *name="", Option_t *option="") const =0
Export the model in a PMML file.