English Français

Documentation / Developer's manual

Available modules

Calibration,  DataServer,  Launcher,  MetaModelOptim,  Modeler,  Optimizer,  ReLauncher,  Reliability,  ReOptimizer,  Sampler,  Sensitivity,  UncertModeler,  XmlProblem,   Uranie / Modeler: TGLM.h Source File
Uranie / Modeler  v4.10.0
/* @license-end */
TGLM.h
Go to the documentation of this file.
1 // Copyright (C) 2013-2024 CEA/DES
3 //
4 // This program is free software: you can redistribute it and/or modify
5 // it under the terms of the GNU Lesser General Public License as published
6 // by the Free Software Foundation, either version 3 of the License, or any
7 // later version.
8 //
9 // This program is distributed in the hope that it will be useful,
10 // but WITHOUT ANY WARRANTY; without even the implied warranty of
11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 // GNU Lesser General Public License for more details.
13 //
14 // You should have received a copy of the GNU Lesser General Public License
15 // along with this program. If not, see <http://www.gnu.org/licenses/>.
18 // $Id$
19 // $Author$
20 // $Date$
21 // $Revision$
22 // $State$
24 
32 /*
33  class="" URANIE::Modeler::TGLM
34 
35  @brief Description of the class TGLM.
36 
37  This class implements the \b "Generalized \b Linear \b Models" model
38 
39  The algorith implemented is the \b Iterative \b Weighted \b Least \b Squares (\b IWLS ).
40  \li Assign starting values to the parameters \f$ beta^{(0)}\f$, generally by resolving the Least Squares Normal equations (i.e. without weights);
41  \li Update the \f$ \eta^{(i)}\f$ and \f$ \mu^{(i)}\f$ with parameters \f$ beta^{(i)}\f$
42  \li Update the weights using the new estimated mean vector: \f$ \frac{1}{v^(i+1)} = \var(\mu^{i}) * f(\mu^{i}) \f$
43  \li Resolve the Weighted Least Squares Normal equations to give \f$ beta^{(i+1)}\f$
44  \li Repeat the thre last steps until convergence (\em i.e. \f$ X\hat{\Beta^{i}} - X\hat{\Beta^{i+1}}\f$ is sufficiently close to zero).
45  */
46 #ifndef TGLM_H
47 #define TGLM_H
48 
49 //ROOT
50 
51 // Uranie
52 #include "TModeler.h"
53 
54 namespace URANIE
55 {
56 namespace Modeler
57 {
58 class TGLM: public TModeler
59 {
60  // Attributs
61 public:
63  {
65  };
67  {
69  };
70 private:
73  Int_t _nIteration;
75 
76  TVectorD _vecBetaInit;
77  Double_t _dTolerance;
78  Double_t _dNullDeviance;
79  Double_t _dResidualDeviance;
80  // Operations
81 public:
82  //---------------------------------------------
86  /*
88  \param tds (URANIE::DataServer::TDataServer *) the dataserver
89  \param architecture(TString) The architecture (input and output attributes) of the model separated by the caracter ":"
90  \param option (Option_t *)[""] The option to pass
91  */
92  TGLM(URANIE::DataServer::TDataServer *tds, TString architecture,
93  Option_t *option = "");
95  /*
96  \param tds (URANIE::DataServer::TDataServer *) the dataserver
97  \param varexpinput(const char*)[""] The list of input attributes to pass to the function separated by the caracter ":"
98  \param varexpoutput (const char *)[""] The list of output attributes separated by the caracter ":"
99  \param option (Option_t *)[""] The option to pass
100  */
101  TGLM(URANIE::DataServer::TDataServer *tds, const char *varexpinput,
102  const char *varexpoutput, Option_t * option = "");
104  virtual ~TGLM();
106 
107  //---------------------------------------------
111 
116  void setFamily(EDistribution nYDistribution = kUnknown,
117  ELinkFunctin nLinkFunction = kCanonical);
120  {
121  return _nDistribution;
122  }
125  {
126  return _nLinkFunction;
127  }
129  void setMaxIteration(Int_t n)
130  {
131  if (n > -1)
132  _nMaxIteration = n;
133  }
136  {
137  return _nIteration;
138  }
141  {
142  return _nMaxIteration;
143  }
145  void setTolerance(Double_t dtol)
146  {
147  if (dtol > 0)
148  _dTolerance = dtol;
149  }
151  Double_t getTolerance()
152  {
153  return _dTolerance;
154  }
156  Double_t getNullDeviance()
157  {
158  return _dNullDeviance;
159  }
162  {
163  return _dResidualDeviance;
164  }
166  void setInitialBeta(TVectorD vecIni);
168  TVectorD getInitialBeta()
169  {
170  return _vecBetaInit;
171  }
173 
174  //---------------------------------------------
178  void estimate(Option_t * option = "");
180 
183  void fillData(TMatrixD &Aw, TVectorD &yw, TMatrixD &matY);
185 
186  //---------------------------------------------
190 
195  void exportModelCplusplus(std::ofstream * sourcefile) const;
197 
201  void exportModelFortran(std::ofstream * sourcefile) const;
202 
203 
205 
209  void exportModelPMML(const char* file = "",
210  const char* name = "",Option_t *option = "") const
211  {
212  TString soption = option;
213  soption.ToLower();
214  UNUSED(file,name);
215  std::cerr
216  << " --- Method TGLM::exportModelPMML(ofstream * sourcefile) not yet implemented"
217  << endl;
218  throw URANIE::Exceptions::UWarningExceptions(__FILE__, __LINE__,
219  "TGLM::exportFunction\n The PMML language is not yet implemented.");
220  };
221 
223 
227  void exportModelPython(std::ofstream * sourcefile) const
228  {
229  UNUSED(sourcefile);
230  std::cerr
231  << " --- Method TGLM::exportModelPython(ofstream * sourcefile) not yet implemented"
232  << endl;
233  throw URANIE::Exceptions::UWarningExceptions(__FILE__, __LINE__,
234  "TGLM::exportFunction\n The Python language is not yet implemented.");
235  };
237 
238  //---------------------------------------------
242  void printLog(Option_t *option = "");
244 
245  ClassDef(URANIE::Modeler::TGLM, ID_MODELER)
246  //Classe de
247 };
248 } // Fin du namespace Modeler
249 } // Fin du namespace URANIE
250 #endif // TGLM_H
ROOT.
Definition: TAnisp.h:163
Double_t getResidualDeviance()
Get the Residual Deviance value.
Definition: TGLM.h:161
Definition: TGLM.h:58
TGLM(URANIE::DataServer::TDataServer *tds, TString architecture, Option_t *option="")
Default constructor with the TDataServer and the architecture.
Definition: TGLM.h:68
Double_t getNullDeviance()
Get the Null Deviance value.
Definition: TGLM.h:156
void exportModelPMML(const char *file="", const char *name="", Option_t *option="") const
Export the model in a PMML file (not yet implemented)
Definition: TGLM.h:209
void exportModelCplusplus(std::ofstream *sourcefile) const
Export the model in C++ langage in a file.
Definition: TGLM.h:64
EDistribution _nDistribution
The type of Y distribution.
Definition: TGLM.h:71
Double_t getTolerance()
Get the Tolerance.
Definition: TGLM.h:151
Definition: TGLM.h:64
void fillData(TMatrixD &Aw, TVectorD &yw, TMatrixD &matY)
Fill the data in a TMatrix and a TVector.
void exportModelPython(std::ofstream *sourcefile) const
Export the model in Python langage in a file (not yet implemented)
Definition: TGLM.h:227
Definition: TModeler.h:62
Definition: TGLM.h:64
Definition: TGLM.h:68
Interface of the class URANIE::Optimize::TModeler.
void printLog(Option_t *option="")
Double_t _dTolerance
The tolerance to stop algorithm (default 1.e-6)
Definition: TGLM.h:77
EDistribution getYDistribution()
Return the type of Y distribution.
Definition: TGLM.h:119
Definition: TGLM.h:68
TVectorD getInitialBeta()
Get the initial parameter.
Definition: TGLM.h:168
void setTolerance(Double_t dtol)
Set the Tolerance.
Definition: TGLM.h:145
void setMaxIteration(Int_t n)
Set the number of maximum iteration.
Definition: TGLM.h:129
void exportModelFortran(std::ofstream *sourcefile) const
Export the model in Fortran langage in a file.
Double_t _dResidualDeviance
The Residual Deviance value.
Definition: TGLM.h:79
ELinkFunctin _nLinkFunction
The link function (default kCanonical)
Definition: TGLM.h:72
TVectorD _vecBetaInit
Inital Vector for beta.
Definition: TGLM.h:76
Int_t getNIteration()
Get the number iterations at convergence.
Definition: TGLM.h:135
Double_t _dNullDeviance
The Null Deviance value.
Definition: TGLM.h:78
Definition: TGLM.h:64
void setFamily(EDistribution nYDistribution=kUnknown, ELinkFunctin nLinkFunction=kCanonical)
Set the family of error (Distribution of and Link Function)
void setInitialBeta(TVectorD vecIni)
Set the initial parameter.
Definition: TGLM.h:68
Definition: TGLM.h:68
Int_t _nMaxIteration
the number of maximum iteration (default 25)
Definition: TGLM.h:74
void estimate(Option_t *option="")
virtual ~TGLM()
Default destructor.
EDistribution
Definition: TGLM.h:62
Int_t getMaxIteration()
Get the number of maximum iteration.
Definition: TGLM.h:140
ELinkFunctin getLinkFunction()
Return the link function.
Definition: TGLM.h:124
ELinkFunctin
Definition: TGLM.h:66
Int_t _nIteration
the number of iteration at convergence (default 0)
Definition: TGLM.h:73