Documentation / Manuel développeur
Modules disponibles
Calibration,  DataServer,  Launcher,  MetaModelOptim,  Modeler,  Optimizer,  ReLauncher,  Reliability,  ReOptimizer,  Sampler,  Sensitivity,  UncertModeler,  XmlProblem,  ![]() |
Uranie / Modeler
v4.10.0
|
TGPBuilder.h
Go to the documentation of this file.
75 int gpModh(double *Hin, double *Kin, double *yin, int n, int p, double *hbeta, double *vbeta, double *gamma, double *iL, double *iR, double *M);
76 int gpModhBayes(double *BetaPrior, double *QPrior, double *Hin, double *Kin, double *yin, int n, int p, double *BetaPost, double *QPost, double *gamma, double *iL, double *iR, double *M);
78 int gpLoo0Error(double *Kin, double *yin, int n, double *errorLoo, double *varLoo, double *eqmLoo);
79 int gpLoohError(double *Hin, double *Kin, double *yin, int n, int p, double *errorLoo, double *varLoo, double *eqmLoo);
80 int gpLoohBayesError(double *BetaPrior, double *Qprior, double *Hin, double *Kin, double *yin, int n, int p, double *errorLoo, double *varLoo, double *eqmLoo);
Interface de la classe URANIE::Modeler::TKriging.
void setPriorData(Double_t *betaPrior, Double_t *qPrior)
Set the a priori mean and variance of the trend coefficients.
std::vector< double > const & getCorrelationMatrix()
Return the array of the correlation matrix of the gaussian process.
Definition: TGPBuilder.h:324
void setVariance(Double_t var)
Set the variance of the gaussian process.
Definition: TGPBuilder.h:445
TString _sInputAttributes
input attributes names separated by ":"
Definition: TGPBuilder.h:100
std::vector< double > const & getTrendPriorMeans()
Return the array of the a priori means of the trend parameters.
Definition: TGPBuilder.h:354
TString getTrendString()
Return the deterministic trend character string.
Definition: TGPBuilder.h:348
Bool_t bUse_prior
kFALSE if no prior is used, kTRUE otherwise
Definition: TGPBuilder.h:135
URANIE::DataServer::TDataServer * _tds
Pointer to the data server containing the observations.
Definition: TGPBuilder.h:98
void createTrend()
Create the matrices for the deterministic trend.
std::vector< double > const & getMeasurementErrorCovMatrix()
Return the array of the covariance matrix of the measurement errors.
Definition: TGPBuilder.h:330
Int_t _retOptim
optimisation results
Definition: TGPBuilder.h:138
std::vector< double > yObs
Array representation of the outputs (size: _nS)
Definition: TGPBuilder.h:121
void computeCovarianceMatrix(bool print=false)
Computes the covariance matrix of the observed data.
Double_t sigma2
Variance of the gaussian process.
Definition: TGPBuilder.h:114
Bool_t hasVarianceInFactor()
Return kTRUE if the variance of the GP is determined analytically.
Definition: TGPBuilder.h:228
Int_t getNObs()
Return the number of observations used to build the GP model.
Definition: TGPBuilder.h:270
std::vector< double > QPrior
a priori variance matrix for the deterministic trend parameters (size: _nP x _nP) ...
Definition: TGPBuilder.h:134
void exportGPData(const char *fileName)
Export the minimum information necessary to build a new TKriging object.
void findOptimalParameters(TString criterion="ML", Int_t screeningSize=100, TString optimAlgo="BFGS", Int_t nbMaxOptimSteps=1000, Bool_t reset=kTRUE, Option_t *option="")
Search for the optimal parameters of the Gaussian Process.
Double_t alpha
Quotient of the variance of the measurment error and the variance of the gaussian process...
Definition: TGPBuilder.h:115
void setTolerance(Double_t tol)
Set the tolerance used to stop the optimisation process.
Definition: TGPBuilder.h:454
Double_t getVariance()
Return the variance of the gaussian process.
Definition: TGPBuilder.h:366
std::vector< TFormula > trendCoefList
List of the formulas of the trend coefficients (_nP elements)
Definition: TGPBuilder.h:129
Int_t _nSeed
number of seed for pseudo-random generator
Definition: TGPBuilder.h:136
int gpMod0(double *Kin, double *yin, int n, double *gamma, double *iL)
Double_t tolerance
Tolerance value used to stop the optimisation process.
Definition: TGPBuilder.h:113
int gpLoohError(double *Hin, double *Kin, double *yin, int n, int p, double *errorLoo, double *varLoo, double *eqmLoo)
void setLengthRange(double themin, double themax)
Set the Minimun and maximum boundaries for the correlation length.
Bool_t hasTrend()
Return kTRUE if a deterministic trend has been defined.
Definition: TGPBuilder.h:240
std::vector< TFormula > const & getTrendFormula()
Return the deterministic trend list of formulas.
Definition: TGPBuilder.h:342
void initVariables()
Initialisation of the GPBuilder variables.
std::vector< double > BetaPrior
a priori mean vector for the deterministic trend parameters (size: _nP)
Definition: TGPBuilder.h:133
Double_t getTolerance()
Return the tolerance used to stop the optimisation process.
Definition: TGPBuilder.h:372
int getReturnOptim()
Return the return of the optimisation procedure.
Definition: TGPBuilder.h:252
TCorrelationFunction * correlationFunction
The correlation function.
Definition: TGPBuilder.h:105
Bool_t bUse_normalisation
if kFALSE, the matrix H will be computed with unormalised input data. This happens when the user is p...
Definition: TGPBuilder.h:131
std::vector< double > const & getTrendMatrix()
Return the array of the deterministic trend matrix.
Definition: TGPBuilder.h:336
Bool_t bIsbuildWithDuplicateKandCandCorrFunc
kTRUE if build with duplicate K, C and CorrFunc, otherwise kFALSE
Definition: TGPBuilder.h:140
virtual void printLog(Option_t *option="")
int gpLoo0Error(double *Kin, double *yin, int n, double *errorLoo, double *varLoo, double *eqmLoo)
void setLengthMaxScreeningSF(double sf)
Set the scale factor to reduce the maximum value of the correlation length during screening...
Description of the class TCorrelationFunction.
Definition: TCorrelationFunction.h:52
std::vector< double > Vmes
The covariance matrix of the measurement errors (dimension: _nS * _nS)
Definition: TGPBuilder.h:116
Bool_t bVariance_in_factor
if kTRUE, GP variance is calculated analytically. Otherwise, it is a parameter of the cost function...
Definition: TGPBuilder.h:107
void setAlpha(Double_t a)
Set the value of the alpha parameter.
Definition: TGPBuilder.h:498
std::vector< double > const & getObsOutput()
Return the observations outputs.
Definition: TGPBuilder.h:292
TString _sOutputAttributes
output attribute name
Definition: TGPBuilder.h:101
TString trendString
Character string containing the trend parameters separated by ":" or a trend type ("Const" or "Linear...
Definition: TGPBuilder.h:128
std::vector< double > const & getObsInputs()
Return the observations inputs as a flat array.
Definition: TGPBuilder.h:286
Double_t _modlengthMin
Minimum value of the correlation length if default behaviour is requested to be changed by the user...
Definition: TGPBuilder.h:125
Bool_t bHas_measurement_error
if kTRUE, the construction of the GP will take into account the existence of a measurement error vari...
Definition: TGPBuilder.h:108
Double_t getAlpha()
Return the alpha parameter, quotient of the variance of the measurement error and the variance of the...
Definition: TGPBuilder.h:378
void cleanAttributeList(TList *inputlist)
Clean list of attribute.
std::vector< double > C
The correlation matrix (dimension: _nS * _nS)
Definition: TGPBuilder.h:118
Int_t getNTrendParams()
Return the number of parameters of the deterministic trend.
Definition: TGPBuilder.h:276
void setRegularisation(Double_t regularisation)
Set the regularisation coefficient.
Definition: TGPBuilder.h:468
void LSort(Double_t *costValues, Int_t *minIndexes, Int_t nbthreads, Int_t n)
void setMeasurementErrorVariance(Double_t varMes)
Set the variance of the measurement errors.
Double_t reg
regularisation parameter, used to improve numerical stability of matrix operations ...
Definition: TGPBuilder.h:112
Bool_t hasMeasurementError()
Return kTRUE if a measurement error should be considered to build the GP.
Definition: TGPBuilder.h:234
Double_t getRegularisation()
Return the regularisation coefficient.
Definition: TGPBuilder.h:384
std::vector< double > const & getCovarianceMatrix()
Return the array of the covariance matrix of the gaussian process.
Definition: TGPBuilder.h:309
int gpModhBayes(double *BetaPrior, double *QPrior, double *Hin, double *Kin, double *yin, int n, int p, double *BetaPost, double *QPost, double *gamma, double *iL, double *iR, double *M)
std::vector< double > H
Deterministic trend matrix (dimension: _nS * _nP)
Definition: TGPBuilder.h:117
void setCorrFunction(TCorrelationFunction *corrFunc)
Set the correlation function of the gaussian process.
void updateObservations()
Update the GP builder matrices.
Double_t _modlengthMax
Maximum value of the correlation length if default behaviour is requested to be changed by the user...
Definition: TGPBuilder.h:124
int gpLoohBayesError(double *BetaPrior, double *Qprior, double *Hin, double *Kin, double *yin, int n, int p, double *errorLoo, double *varLoo, double *eqmLoo)
Interface de la classe URANIE::Modeler::TCorrelationFunction.
std::vector< double > xObs
The matrix of normalised inputs (dimension: _nX * _nS)
Definition: TGPBuilder.h:120
std::vector< double > const & getTrendPriorCovMat()
Return the array of the a priori covariance matrix of the trend parameters.
Definition: TGPBuilder.h:360
void setKandCandCorrFunc(const std::vector< double > &inK, const std::vector< double > &inC, TCorrelationFunction *corrFunc)
Definition: TGPBuilder.h:314
Int_t _nP
Number of coefficients of the deterministic trend.
Definition: TGPBuilder.h:111
Bool_t bHas_corrFunction
kFALSE if correlationFunction == NULL, kTRUE otherwise
Definition: TGPBuilder.h:106
std::vector< double > const & getObsNormParams()
Return the normalisation parameters of the inputs as a flat array.
Definition: TGPBuilder.h:303
std::vector< double > K
The covariance matrix (dimension: _nS * _nS)
Definition: TGPBuilder.h:119
void setHasMeasurementError(Bool_t has_measurement_error=kTRUE)
Indicate if a measurement error should be taken into account or not.
Definition: TGPBuilder.h:484
void setUsePrior(Bool_t use_prior=kTRUE)
Set wether or not to use a priori knowledge on the deterministic trend parameters.
Int_t _nY
Number of output attributes (should be equal to 1)
Definition: TGPBuilder.h:103
Bool_t usePrior()
Return kTRUE if prior knowledge on the deterministic trend is used (bayesian approach).
Definition: TGPBuilder.h:246
Int_t getSeed()
Return the seed number.
Definition: TGPBuilder.h:391
Int_t getNInputs()
Return the number of input variables.
Definition: TGPBuilder.h:264
void setMeasurementErrorCovMatrix(Double_t *covMes)
Set the covariance matrix of the measurement errors.
void setTrendString(const char *trend)
Set the deterministic trend character string.
Definition: TGPBuilder.h:544
TCorrelationFunction * getCorrFunction()
Return a pointer to the correlation function of the gaussian process.
Definition: TGPBuilder.h:258
Double_t _lengthMaxScreeningSF
Scale factor to change the Maximum value of the correlation length during screening procedure: new le...
Definition: TGPBuilder.h:126
URANIE::Modeler::TKriging * buildGP(Bool_t computeLooErrors=kTRUE)
Build the gaussian process model.
Bool_t bHas_trend
kFALSE if no deterministic trend is defined, kTRUE otherwise.
Definition: TGPBuilder.h:130
Bool_t hasCorrFunction()
Return kTRUE if a correlation function is defined, kFALSE otherwise.
Definition: TGPBuilder.h:222
std::vector< double > xNormParams
The matrix of normalisation parameters. Contains min and max value of each input variable: [x1Min...
Definition: TGPBuilder.h:122
int gpModh(double *Hin, double *Kin, double *yin, int n, int p, double *hbeta, double *vbeta, double *gamma, double *iL, double *iR, double *M)
TGPBuilder * buildWithDuplicateKandCandCorrFunc()