Documentation / Developer's manual
Available modules
Calibration,  DataServer,  Launcher,  MetaModelOptim,  Modeler,  Optimizer,  ReLauncher,  Reliability,  ReOptimizer,  Sampler,  Sensitivity,  UncertModeler,  XmlProblem,  
Uranie / Modeler v4.9.0
|
TKriging.h
Go to the documentation of this file.
67 void gpPredh(double *Hp, double *Kp, double variance, double *hbeta, double *gamma, double *iL, double *iR, double *M,
69 void gpPredhCov(double *Hp, double *Kp, double *Rp, double variance, double *hbeta, double *gamma, double *iL, double *iR, double *M,
149 TKriging(Int_t nX, Int_t nS, Double_t* xObs, Double_t* xNormParams, Double_t* yObs, Double_t* gamma, Double_t* iL,
150 Double_t gpVar, Double_t vErrMes, URANIE::Modeler::TCorrelationFunction* corrFunc, TString varNames,
151 Int_t nP = 0, Double_t* hbeta = NULL, Double_t* vbeta= NULL, Double_t* M = NULL, Double_t* iR = NULL, TString trend = "");
455 static void StatVect(std::string title, int n, Double_t *v, double &vmin, double &vmax, double &mean, double &var, double &norm);
Interface de la classe URANIE::Modeler::TCorrelationFunction.
void gpPred0(double *Kp, double variance, double *gamma, double *iL, int nnew, int n, double *yp, double *vp)
void gpPredhCov(double *Hp, double *Kp, double *Rp, double variance, double *hbeta, double *gamma, double *iL, double *iR, double *M, int nnew, int n, int p, double *yp, double *vp)
void gpPredh(double *Hp, double *Kp, double variance, double *hbeta, double *gamma, double *iL, double *iR, double *M, int nnew, int n, int p, double *yp, double *vp)
void gpPred0Cov(double *Kp, double *Rp, double variance, double *gamma, double *iL, int nnew, int n, double *yp, double *vp)
Description of the class TCorrelationFunction.
Definition TCorrelationFunction.h:53
Int_t getNParameters()
Return the number of parameters of the correlation function.
Definition TCorrelationFunction.h:85
Double_t * getParameters()
Returns an array containing the parameters of the function.
Definition TCorrelationFunction.h:103
Int_t getNCorrLengths()
Return the number of correlation lengths.
Definition TCorrelationFunction.h:97
Int_t _nYDeclared
Number of attribute added to the tkiging object before running it.
Definition TKriging.h:91
Bool_t bUse_normalisation
if kFALSE, the matrix H will be computed with unormalised input data. This happens when the user is p...
Definition TKriging.h:105
Double_t * _xNormParams
The matrix of normalisation parameters. Contains min and max value of each input variable: [aMin,...
Definition TKriging.h:94
void getLooErrors(double *arr, int size)
Return the vector of the leave one out errors.
Definition TKriging.h:325
void estimateWithCov(URANIE::DataServer::TDataServer *tdsQuery, TString listOfInputs="", TString listOfOutputs="", TString realValue="", Option_t *option="")
TObjArray * _trendCoefList
List of the formulas of the trend coefficients (_nP elements)
Definition TKriging.h:108
Double_t _mseLoo
if available, Leave one Out mean squared error of the model.
Definition TKriging.h:117
void estimate(URANIE::DataServer::TDataServer *tdsQuery, TString listOfInputs="", TString listOfOutputs="", Option_t *option="", Bool_t useGPU=false)
Int_t getNObs()
Return the number of observations used to build the GP model.
Definition TKriging.h:205
Double_t getVariance()
Return the variance of the gaussian process.
Definition TKriging.h:277
virtual void exportModelFortran(std::ofstream *sourcefile)
Export the model as a Fortran function (not implemented)
Definition TKriging.h:526
TCorrelationFunction * getCorrFunction()
Return a pointer to the correlation function of the gaussian process.
Definition TKriging.h:193
URANIE::DataServer::TDataServer * getLooData()
Return a pointer to a TDataServer containing the observations and the Leave One Out results.
Double_t * _iL
Inverse of the matrix L, Cholesky decomposition of K (size: _nS * _nS)
Definition TKriging.h:96
Double_t * _gamma
Array of parameters of the gaussian process (size: _nS)
Definition TKriging.h:97
Bool_t bHas_trend
kFALSE if no deterministic trend is defined, kTRUE otherwise
Definition TKriging.h:106
void computeCovarianceMatrix(int ns, double *xObs, bool bVariance_in_factor, bool bHas_measurement_error, double alpha, double reg, double sigma2, double *Vmes, double *C, double *K)
const char * getInputNames()
Return the input variable names.
Definition TKriging.h:175
Double_t * _errorLoo
If available, vector of the Leave One Out errors for the model.
Definition TKriging.h:115
Double_t * getTrendParamsCovMatrix()
Return the array of the trend parameters covariance matrix.
Definition TKriging.h:259
Double_t * getCorrLengthsNormalised()
Return the normalised correlation lengths.
Definition TKriging.h:389
Double_t getLooRMSE()
Return the leave one out mean squared error.
Definition TKriging.h:359
Double_t * getObsOutputs()
Return the observations outputs.
Definition TKriging.h:235
Double_t _vErrMes
variance of the measurement error
Definition TKriging.h:100
Double_t * getLooErrors()
Return the vector of the leave one out errors.
Definition TKriging.h:313
Double_t * getiL()
Return the iL matrix as an array (cf. internal variable description)
Definition TKriging.h:294
void setVariance(Double_t var)
Set the variance of the gaussian process.
Definition TKriging.h:432
Double_t * getiR()
Return the iR matrix as an array (cf. internal variable description)
Definition TKriging.h:306
Double_t * getLooVariances()
Return the vector of the leave one out prediction variances.
Definition TKriging.h:319
void estimate_CPU(URANIE::DataServer::TDataServer *tdsQuery, TString listOfInputs="", TString listOfOutputs="", Option_t *option="")
Double_t * _iR
Inverse of the matrix R, from the QR decomposition of M (size: _nP * _nP)
Definition TKriging.h:113
static void StatMat(std::string title, int n1, int n2, Double_t *v, std::vector< double > &tvmin, std::vector< double > &tvmax, std::vector< double > &tmean, std::vector< double > &tvar, std::vector< double > &tnorm)
TObjArray * _inputNamesList
list of the inputs' names.
Definition TKriging.h:87
Double_t * _yObs
Array representation of the outputs (size: _nS)
Definition TKriging.h:95
void getLooVariances(double *arr, int size)
Return the vector of the leave one out prediction variances.
Definition TKriging.h:343
TString getTrendString()
Return the deterministic trend string.
Definition TKriging.h:271
Double_t * getObsInputs()
Return the observations inputs as a flat array: [a1, b1, c1, a2, b2, c2,...].
Definition TKriging.h:229
Double_t * getObsNormParams()
Return the normalisation parameters of the inputs as a flat array: [aMin, aMax, bMin,...
Definition TKriging.h:241
static void StatMat(std::string title, int n1, int n2, Double_t *v)
Double_t * _corrLengths
The correlation lengths in the real input space.
Definition TKriging.h:102
Double_t * _M
Matrix M = L^{-T} H (size: _nS * _nP)
Definition TKriging.h:112
void freeze()
TKriging(Int_t nX, Int_t nS, Double_t *xObs, Double_t *xNormParams, Double_t *yObs, Double_t *gamma, Double_t *iL, Double_t gpVar, Double_t vErrMes, URANIE::Modeler::TCorrelationFunction *corrFunc, TString varNames, Int_t nP=0, Double_t *hbeta=NULL, Double_t *vbeta=NULL, Double_t *M=NULL, Double_t *iR=NULL, TString trend="")
Default constructor.
Int_t getNCorrFunctionParams()
Return the number of parameters of the correlation function.
Definition TKriging.h:211
Double_t * _varLoo
If available, vector of the variances of the Leave One Out errors for the model.
Definition TKriging.h:116
Double_t * getCorrLengths()
Return the correlation lengths.
Definition TKriging.h:399
Int_t _nXDeclared
Number of attribute added to the tkiging object before running it.
Definition TKriging.h:92
TObjArray * getTrendFormula()
Return the deterministic trend list of formulas.
Definition TKriging.h:265
Double_t * getGPParams()
Return the array of the Gaussian Process parameters.
Definition TKriging.h:247
Double_t _sigma2
Variance of the gaussian process.
Definition TKriging.h:99
Double_t getLooQ2()
Return the Q2 of the model on the observation.
Definition TKriging.h:365
const char * getOutputName()
Return the output variable name.
Definition TKriging.h:181
Double_t * getCorrFunctionParams()
Return all the parameters of the correlation function.
Definition TKriging.h:410
TString _trendString
Character string containing the trend parameters separated by ":" or a trend type ("const" or "linear...
Definition TKriging.h:107
void setCorrFunction(TCorrelationFunction *corrFunc)
Set the correlation function of the gaussian process.
Definition TKriging.h:423
virtual void printLog(Option_t *option="")
Double_t * _hbeta
Estimates of the deterministic trend parameters (size: _nP)
Definition TKriging.h:110
TString _outputVarName
Name of the output variable. This information can be used to remind the user of the original names of...
Definition TKriging.h:85
static void StatVect(std::string title, int n, Double_t *v)
Int_t getNTrendParams()
Return the number of parameters of the deterministic trend.
Definition TKriging.h:223
Int_t getNInputs()
Return the number of input parameters.
Definition TKriging.h:199
Double_t * getTrendParams()
Return the array of the trend parameters.
Definition TKriging.h:253
Int_t getNCorrLengths()
Return the number of correlation lengths.
Definition TKriging.h:217
Int_t eval(Double_t *x0, Double_t *y0, int=0)
Evaluate the gaussian process at the new location x0.
static void StatVect(std::string title, int n, Double_t *v, double &vmin, double &vmax, double &mean, double &var, double &norm)
Double_t getMeasurementErrorVariance()
Return the variance of the measurement error.
Definition TKriging.h:288
Double_t * _normCorrLengths
The correlation lengths in the normalised input space. This corresponds to the correlation lengths st...
Definition TKriging.h:103
void setLooErrors(Double_t *err, Double_t *var, Double_t mse)
Set the information about the leave one out error of the model.
Double_t * getM()
Return the M matrix as an array (cf. internal variable description)
Definition TKriging.h:300
TString _inputVarNames
Name of the inputs variables separated by ":". This information can be used to remind the user of the...
Definition TKriging.h:86
Double_t * _vbeta
Covariance matrix of the trend parameters (size: _nP*_nP)
Definition TKriging.h:111
void exportFunction(const char *lang, const char *file, const char *name, Option_t *option="")
virtual void exportModelPMML(const char *file, const char *name, Option_t *option) const
virtual void exportModelCplusplus(std::ofstream *sourcefile, const char *name="")
Export the model as a C function (not implemented)
Double_t * _xObs
The matrix of inputs (dimension: _nX * _nS)
Definition TKriging.h:93
Bool_t hasTrend()
Return kTRUE if a deterministic trend has been defined.
Definition TKriging.h:187
TCorrelationFunction * _correlationFunction
The correlation function.
Definition TKriging.h:101
Int_t _nP
Number of coefficients of the deterministic trend.
Definition TKriging.h:109