English Français

Documentation / Developer's manual

Available modules

Calibration,  DataServer,  Launcher,  MetaModelOptim,  Modeler,  Optimizer,  ReLauncher,  Reliability,  ReOptimizer,  Sampler,  Sensitivity,  UncertModeler,  XmlProblem,   Uranie / Modeler: TMLPAnalyzer.h Source File
Uranie / Modeler v4.9.0
/* @license-end */
TMLPAnalyzer.h
Go to the documentation of this file.
1// @(#)root/mlp:$Name$:$Id$
2// Author: Christophe.Delaere@cern.ch 25/04/04
3
4/*************************************************************************
5 * Copyright (C) 1995-2003, Rene Brun and Fons Rademakers. *
6 * All rights reserved. *
7 * *
8 * For the licensing terms see $ROOTSYS/LICENSE. *
9 * For the list of contributors see $ROOTSYS/README/CREDITS. *
10 *************************************************************************/
11
12#ifndef ROOT_TObject
13#include "TObject.h"
14#endif
15
16class TTree;
17class TNeuron;
18class TSynapse;
19class TMultiLayerPerceptron;
20class TProfile;
21class THStack;
22
23//____________________________________________________________________
24//
25// TMLPAnalyzer
26//
27// This utility class contains a set of tests usefull when developing
28// a neural network.
29// It allows you to check for unneeded variables, and to control
30// the network structure.
31//
32//--------------------------------------------------------------------
33
34class TMLPAnalyzer: public TObject
35{
36
37private:
38 TMultiLayerPerceptron *fNetwork;
40 TTree *fIOTree;
41
42protected:
43 Int_t GetLayers();
44 Int_t GetNeurons(Int_t layer);
45 TString GetNeuronFormula(Int_t idx);
46 const char* GetInputNeuronTitle(Int_t in);
47 const char* GetOutputNeuronTitle(Int_t out);
48
49public:
50 TMLPAnalyzer(TMultiLayerPerceptron& net) :
51 fNetwork(&net), fAnalysisTree(0), fIOTree(0)
52 {
53 }
54 TMLPAnalyzer(TMultiLayerPerceptron* net) :
55 fNetwork(net), fAnalysisTree(0), fIOTree(0)
56 {
57 }
58 virtual ~TMLPAnalyzer();
59 void DrawNetwork(Int_t neuron, const char* signal, const char* bg);
60 void DrawDInput(Int_t i);
61 void DrawDInputs();
62 TProfile* DrawTruthDeviation(Int_t outnode = 0, Option_t *option = "");
63 THStack* DrawTruthDeviations(Option_t *option = "");
64 TProfile* DrawTruthDeviationInOut(Int_t innode, Int_t outnode = 0,
65 Option_t *option = "");
66 THStack* DrawTruthDeviationInsOut(Int_t outnode = 0, Option_t *option = "");
67
68 void CheckNetwork();
69 void GatherInformations();
70 TTree* GetIOTree() const
71 {
72 return fIOTree;
73 }
74
75 ClassDef(TMLPAnalyzer, 0)
76};
77
Definition TMLPAnalyzer.h:35
TTree * fAnalysisTree
Definition TMLPAnalyzer.h:39
Int_t GetNeurons(Int_t layer)
Definition TMLPAnalyzer.cxx:64
Int_t GetLayers()
Definition TMLPAnalyzer.cxx:55
TProfile * DrawTruthDeviation(Int_t outnode=0, Option_t *option="")
Definition TMLPAnalyzer.cxx:410
void DrawDInput(Int_t i)
Definition TMLPAnalyzer.cxx:309
const char * GetOutputNeuronTitle(Int_t out)
Definition TMLPAnalyzer.cxx:146
TMLPAnalyzer(TMultiLayerPerceptron &net)
Definition TMLPAnalyzer.h:50
void DrawDInputs()
Definition TMLPAnalyzer.cxx:321
TTree * fIOTree
Definition TMLPAnalyzer.h:40
THStack * DrawTruthDeviationInsOut(Int_t outnode=0, Option_t *option="")
Definition TMLPAnalyzer.cxx:524
void CheckNetwork()
Definition TMLPAnalyzer.cxx:153
void GatherInformations()
Definition TMLPAnalyzer.cxx:175
THStack * DrawTruthDeviations(Option_t *option="")
Definition TMLPAnalyzer.cxx:444
virtual ~TMLPAnalyzer()
TProfile * DrawTruthDeviationInOut(Int_t innode, Int_t outnode=0, Option_t *option="")
Definition TMLPAnalyzer.cxx:492
const char * GetInputNeuronTitle(Int_t in)
Definition TMLPAnalyzer.cxx:139
TMultiLayerPerceptron * fNetwork
Definition TMLPAnalyzer.h:38
TTree * GetIOTree() const
Definition TMLPAnalyzer.h:70
TMLPAnalyzer(TMultiLayerPerceptron *net)
Definition TMLPAnalyzer.h:54
TString GetNeuronFormula(Int_t idx)
Definition TMLPAnalyzer.cxx:110
void DrawNetwork(Int_t neuron, const char *signal, const char *bg)
Definition TMLPAnalyzer.cxx:349