English Français

Documentation / Developer's manual

Available modules

Calibration,  DataServer,  Launcher,  MetaModelOptim,  Modeler,  Optimizer,  ReLauncher,  Reliability,  ReOptimizer,  Sampler,  Sensitivity,  UncertModeler,  XmlProblem,   Uranie / Modeler: TPolynomialChaos.h Source File
Uranie / Modeler  v4.10.0
/* @license-end */
TPolynomialChaos.h
Go to the documentation of this file.
1 // Copyright (C) 2013-2024 CEA/DES
3 //
4 // This program is free software: you can redistribute it and/or modify
5 // it under the terms of the GNU Lesser General Public License as published
6 // by the Free Software Foundation, either version 3 of the License, or any
7 // later version.
8 //
9 // This program is distributed in the hope that it will be useful,
10 // but WITHOUT ANY WARRANTY; without even the implied warranty of
11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 // GNU Lesser General Public License for more details.
13 //
14 // You should have received a copy of the GNU Lesser General Public License
15 // along with this program. If not, see <http://www.gnu.org/licenses/>.
17 
36 #ifndef TPOLYNOMIALCHAOS_H
37 #define TPOLYNOMIALCHAOS_H
38 
39 //ROOT
40 #include "Rtypes.h"
41 #include "TNamed.h"
42 
43 // uranie
44 #include "TDataServer.h"
45 #include "Modeler.h"
46 
47 //nisp
48 #include "TNisp.h"
49 #include "nisp_pc.h"
50 #include "nisp_util.h"
51 
52 #include <ctime>
53 
54 using namespace URANIE::DataServer;
55 
56 namespace URANIE
57 {
58 namespace Modeler
59 {
60 class TPolynomialChaos: public TNamed
61 {
62  protected:
63  URANIE::DataServer::UMessageLogger *_fLogger;
64 //-----------------------members of the class
65 public:
69  Int_t _degree;
71  PolynomialChaos * _pc;
73  Int_t _nx;
75  Int_t _np;
76  // Number of output
77  Int_t _ny;
78  Bool_t _bStoreYHat;
79 
80  TTree *_degreeResults;
85 
86  vector<double> *_verrloo;
87  int _degval;
88  double _eqmval;
89 
90 private:
92  TDataSpecification * _listAttOut;
94  Bool_t _blog;
95 //--------------------methodes of the class
96 public:
100 
115  TPolynomialChaos(TDataServer *tds, TNisp *nisp, TString soutput = "");
116 
120  TPolynomialChaos(const char *ct);
121 
123 
127  TPolynomialChaos(const TPolynomialChaos & TPC);
128 
130  virtual ~TPolynomialChaos();
132 
137  void setDegree(Int_t degree);
138 
140 
145  void setAutoDegreeFactor(double autodeg);
146 
148 
153  void setAutoDegreeBoundaries(int amin, int amax=-1);
154 
157  {
158  return _degreeResults;
159  }
160 
163  {
164  return _bestAutoDeg;
165  }
166 
168 
172  void computeOutput(double *input);
174 
180  Double_t getOutput(TString jname = "");
182 
186  Double_t getOutput(Int_t j);
187 
189 
192  Double_t getEqmLoo(Int_t rank=0);
193 
195 
199  Double_t getErrLoo(Int_t input, Int_t rank=0);
200 
202  double factorial(int n);
203 
205 
209  void automatisedDegree(Option_t *option = "");
211 
215  void computeChaosExpansion(TString type, Option_t * option = "");
217 
221  Double_t getMean(Int_t j);
223 
229  Double_t getMean(TString name = "");
231 
235  Double_t getVariance(Int_t j);
237 
243  Double_t getVariance(TString name = "");
245 
250  Double_t getCovariance(Int_t i, Int_t j);
252 
259  Double_t getCovariance(TString xname, TString yname);
261 
266  Double_t getCorrelation(Int_t i, Int_t j);
268 
275  Double_t getCorrelation(TString xname, TString yname);
277 
282  Double_t getIndexFirstOrder(Int_t i, Int_t j = 0);
284 
291  Double_t getIndexFirstOrder(TString xname, TString yname = "");
293 
298  Double_t getIndexTotalOrder(Int_t i, Int_t j = 0);
300 
307  Double_t getIndexTotalOrder(TString xname, TString yname = "");
309 
314  Double_t getIndex(TString sinput = "", TString yname = "");
316 
321  Double_t getIndexInteraction(TString sinput = "", TString yname = "");
323 
326  Int_t getDimensionInput();
328 
331  Int_t getDimensionOutput();
333 
336  Int_t getDimensionExpansion();
338 
341  Int_t getDegree();
343 
348  void exportFunction(const char *file = "nisp",
349  const char *name = "nisp_fct");
351 
356  Double_t getCoefficient(Int_t k, TString jname = "");
360  void setLog()
361  {
362  _blog = kTRUE;
363  }
364  void unsetLog()
365  {
366  _blog = kFALSE;
367  }
368  void changeLog()
369  {
370  _blog = _blog ? kFALSE : kTRUE;
371  }
372  Bool_t getLog()
373  {
374  return _blog;
375  }
376  virtual void printLog(Option_t *option = "");
378 private:
380 
383  void getTarget();
385 
389  void setGroupAddVar(Int_t i);
391 
394  void writeCodeCToDenormalizeInput(std::ofstream * sourcefile);
396 
399  void setGroupEmpty();
400 public:
401 
403 
409  void setCoefficient(Int_t noutput, Int_t num, Double_t coef);
410 
412 
417  Double_t getCoefficient(Int_t noutput, Int_t num);
418 
419  //---------------A FAIRE----------juste un lien vers nisp actuellement
430  void generateSample(TString type, Int_t np, Int_t order=1);
434  Double_t getSample(Int_t k, Int_t j);
439  Double_t getSample(Int_t k, TString yname);
444  void realisation();
449  void getAnova(Int_t nt);
453  void getAnovaOrdered(Double_t seuil, Int_t j);
461  void getAnovaOrdered(Double_t seuil, TString yname = "");
465  void getAnovaOrderedCoefficients(Double_t seuil, Int_t j);
473  void getAnovaOrderedCoefficients(Double_t seuil, TString yname = "");
479  Double_t getQuantile(Double_t alpha, Int_t j);
487  Double_t getQuantile(Double_t alpha, TString yname);
494  Double_t getQuantileWilks(Double_t alpha, Double_t beta, Int_t j = 1);
503  Double_t getQuantileWilks(Double_t alpha, Double_t beta, TString yname);
509  Double_t getInvQuantile(Double_t seuil, Int_t j = 1);
517  Double_t getInvQuantile(Double_t seuil, TString yname);
521  void readTarget(Char_t *file);
525  void setInput(Int_t nt, Double_t dt);
529  void propagateInput();
533  void propagateInput(Double_t *dt);
538  void save(Char_t *file);
539  void save(string file);
543  void setAnova();
545 
546  ClassDef(URANIE::Modeler::TPolynomialChaos, ID_MODELER)
547 
548 };
549 //end of the class TPolynomialChaos
550 }//end of the namespace Modeler
551 } //end of the namespace URANIE
552 #endif
ROOT.
Definition: TAnisp.h:163
int _bestAutoDeg
Best value for automatic degree scan.
Definition: TPolynomialChaos.h:84
Bool_t _blog
Boolean for edit the log.
Definition: TPolynomialChaos.h:94
Interface of the class URANIE::Modeler::TNisp.
int _maxAutoDeg
Maximal value for automatic degree scan.
Definition: TPolynomialChaos.h:83
PolynomialChaos * _pc
Object of type polynomialChaos (library Nisp)
Definition: TPolynomialChaos.h:71
Int_t _ny
Definition: TPolynomialChaos.h:77
Description of the class TNisp.
Definition: TNisp.h:61
TTree * getAutoDegreeResults()
Return a pointer to the TTree that contains the degree optimisation results.
Definition: TPolynomialChaos.h:156
Int_t _nx
Number of stochastic variables i.e number of input.
Definition: TPolynomialChaos.h:73
double _autoDegreeFactor
Factor used to scale the maximum degree knowing _nx and _np.
Definition: TPolynomialChaos.h:81
Bool_t getLog()
Definition: TPolynomialChaos.h:372
TNisp * _nisp
Message logger.
Definition: TPolynomialChaos.h:67
void unsetLog()
Definition: TPolynomialChaos.h:364
void changeLog()
Definition: TPolynomialChaos.h:368
int _minAutoDeg
Minimal value for automatic degree scan.
Definition: TPolynomialChaos.h:82
double _eqmval
memory arry for the eqm in the tree
Definition: TPolynomialChaos.h:88
URANIE::DataServer::UMessageLogger * _fLogger
Definition: TPolynomialChaos.h:63
TTree * _degreeResults
TDSNtupleD used to store the results of the automatisedDegree method.
Definition: TPolynomialChaos.h:80
Description of the class TPolynomialChaos.
Definition: TPolynomialChaos.h:60
Bool_t _bStoreYHat
Boolean to specify if we add the {} attribute in the TDS [default kTRUE].
Definition: TPolynomialChaos.h:78
void setLog()
Definition: TPolynomialChaos.h:360
int _degval
memory arry for the degree in the tree
Definition: TPolynomialChaos.h:87
Int_t _degree
Degree of the Chaos polynomial.
Definition: TPolynomialChaos.h:69
vector< double > * _verrloo
vector to contains the err loo and store them in the tree
Definition: TPolynomialChaos.h:86
Int_t _np
Number of simulation.
Definition: TPolynomialChaos.h:75
TDataSpecification * _listAttOut
Object of type TDataSpecification used to index the name of the variables.
Definition: TPolynomialChaos.h:92
int getBestAutoDegree()
Return the bet estimated degree when optimisation is done with regression.
Definition: TPolynomialChaos.h:162