Documentation / Developer's manual
Available modules
Calibration,  DataServer,  Launcher,  MetaModelOptim,  Modeler,  Optimizer,  ReLauncher,  Reliability,  ReOptimizer,  Sampler,  Sensitivity,  UncertModeler,  XmlProblem,  
Uranie / Modeler v4.9.0
|
Description of the class TAnisp. More...
#include <TAnisp.h>
Public Types | |
enum | ANISP_TYPE { kAnalyticalFunction , kCode } |
Enum for TCode or analytical function. More... | |
Public Member Functions | |
Constructor and Destructor | |
TAnisp (TDataServer *tds, void(*analyticalFunction)(Double_t *, Double_t *), const char *fname, TString sinput="", TString soutput="", Option_t *option="") | |
Construct an instance of the TAnisp object from a TDataServer object and a void * (analytical function) | |
TAnisp (TDataServer *tds, const char *analyticalFunction, TString sinput="", TString soutput="", Option_t *option="") | |
Construct an instance of the TAnisp object from a TDataServer object and a void * (analytical function) | |
TAnisp (TDataServer *tds, TCode *code, Option_t *option="") | |
Construct an instance of the TAnisp object from a TDataServer object and a TCode object. | |
virtual | ~TAnisp () |
Destructor. | |
Export the model in extrenal langage | |
void | exportModelCplusplus (std::ofstream *sourcefile) const |
Export the model in C++ langage in a file. | |
void | exportModelFortran (std::ofstream *sourcefile) const |
Export the model in Fortran langage in a file (not yet implemented) | |
void | exportModelPMML (const char *file="", const char *name="", Option_t *option="") const |
Export the model in a PMML file (not yet implemented) | |
void | exportModelPython (std::ofstream *sourcefile) const |
Export the model in Python langage in a file (not yet implemented) | |
Printing Log | |
virtual void | printLog (Option_t *option="") |
Print log. | |
Setter and getter functions | |
void | setKMin (Int_t kmin) |
Set the value of the _nKMin attribute to "kmin". | |
Int_t | getKMin () |
Get the order of interaction for adaptative integration. | |
void | setTolerance (Double_t tol) |
Set the tolerance for the adaptative integration. | |
Double_t | getTolerance () |
Get the tolerance for the adaptative integration. | |
void | setNumberMaxOfSimulations (Int_t nmos) |
Set the criterion of maximum number of simulations before stopping the adaptative integration. | |
Int_t | getNumberMaxOfSimulations () |
Get the criterion of maximum number of simulations before stopping the adaptative integration. | |
void | setGreaterIndice (Int_t greatInd) |
Set the greater value possible for an indice. | |
Int_t | getGreaterIndice () |
Get the greater value possible for an indice. | |
void | setMaxIndices (Int_t maxInd) |
Set the number maximum of indices for the integration. | |
Int_t | getMaxIndices () |
Get the number maximum of indices for the integration. | |
void | setDegreeMax (Int_t degMax) |
Set the degree maximum for the Polynomial Chaos expansion. | |
Int_t | getDegreeMax () |
Get the degree maximum for the Polynomial Chaos expansion. | |
Int_t | getCible () |
Get the ANISP_TYPE which indicates if ANISP approximate a code (TCode) or a function (void *) | |
Int_t | getIterationNumber () |
Get the number of iteration of the integration algorithm. | |
void | setlog (Bool_t blog) |
Set the _blog parameter. | |
void | setRootFilename (TString rootName) |
Set the root name of the output files of the Anisp library. | |
TString | getRootFilename () |
Get the root name of the output files of the Anisp library. | |
TNtupleD * | getErrorIndicator () |
Get the list of error indicators. | |
TNtupleD * | getIntegrationIndices () |
Get the list of integration indices. | |
TPolynomialChaos | getTPolynomialChaos () |
Get the TPolynomialChaos computed by the Anisp method. | |
TString | getVariablesName (TString inputs="") |
Get a TString containing the name of all attributes separated by ':'. | |
Anisp library files | |
TString | getDataAnispFile () const |
Get the Anisp intern data file name. | |
TString | getResultFile () const |
Get the computed polynomial coefficients file name. | |
TString | getStochasticFile () const |
Get the stochastic points file name. | |
TString | getErrorIndicatorFile () const |
Get the error indicator values file name. | |
TString | getIndicesFile () const |
Get the integration indices file name. | |
Set parameters functions | |
void | setAllAnispParameters (Double_t tol, Int_t kmin, Int_t nmos, Int_t greatInd, Int_t maxInd, Bool_t blog, Int_t degMax, TString rootName) |
Set all the Anisp parameters. | |
void | setAnispParameters (Double_t tol, Int_t kmin, Int_t nmos, Int_t greatInd, Int_t maxInd, Bool_t blog) |
Set most of the Anisp parameters. | |
void | setLightAnispParameters (Double_t tol, Int_t kmin, Int_t nmos) |
Set the Anisp calcul parameters. | |
Public Member Functions inherited from URANIE::Modeler::TModeler | |
TModeler (URANIE::DataServer::TDataServer *tds, TString architecture, Option_t *option="") | |
Constructor with a dataserver. | |
TModeler (URANIE::DataServer::TDataServer *tds, const char *varexpinput, const char *varexpoutput, Option_t *option="") | |
Default constructor with input and output attributes. | |
virtual | ~TModeler () |
Default destructor. | |
TVectorD | getParameters () |
Return the parameter vector of the model. | |
Double_t | getR2 () const |
Return the R2 quality. | |
const char * | getInputName (Int_t i) const |
Return the name of input attributes. | |
const char * | getOutputName (Int_t i=0) |
Return the name of output attribute. | |
Int_t | getNInput () |
Gets the number of input. | |
Bool_t | getIntercept () |
Gets the boolean attribut _bIntercept. | |
void | setDrawProgressBar (Bool_t bbool=kTRUE) |
Set the "draw progress bar" flag. | |
Bool_t | getDrawProgressBar () |
Get the "draw progress bar" flag. | |
void | train (Option_t *option="text") |
virtual void | exportFunction (const char *lang, const char *file="", const char *name="", Option_t *option="") |
Export the model in an external file with a specified langage. | |
void | setLog () |
void | unsetLog () |
void | changeLog () |
Bool_t | getLog () |
Private Attributes | |
TObjArray * | _drawingGarbageCollector |
Garbage collector list for drawing. | |
Double_t | _dTolerance |
Tolerance of the adaptative integration algorithm. | |
Int_t | _nKMin |
Order minimum of interaction for the adaptative integration. | |
Int_t | _nNumberMaxOfSimulations |
Stop criterion of the adaptative integration algorithm based of the number of simulations. | |
Int_t | _nGreaterIndice |
Greater value possible for an indice. | |
Int_t | _nMaxIndices |
Number maximum of indices of integration (memory size) | |
Int_t | _nDegreeMax |
Degree maximum possible for the Polynomial Chaos expansion. | |
TString | _sRootFilename |
Root of the output files name. | |
TString | _sLaws |
Laws of probability for each variable. | |
Int_t | _nIterationNumber |
Number of iteration of adaptative integration algorithm. | |
TLauncherFunction * | _tAnalyticalFunction |
Object of type TLauncherFunction. | |
TCode * | _Code |
Object of type TCode. | |
TLauncher * | _tlauncher |
Object of type TLauncher. | |
ANISP_TYPE | _nCible |
Variable containing the ANISP_TYPE. | |
TPolynomialChaos * | _tpc |
Object of type TPolynomialChaos. | |
TNisp * | _nisp |
Object of type TNisp. | |
TNtupleD * | _tErrorIndicator |
List of error indicators from the integration algorithm. | |
TNtupleD * | _tIntegrationIndices |
List of integration indices. | |
Int_t | _nNumberOfLaunching |
Number of use of the launchCalculs method. | |
Int_t | _nNumberOfPoints |
Number of computed points. | |
TString | _sinput |
Names of the input arguments. | |
TString | _soutput |
Names of the output arguments. | |
TDataServer * | _tdsAnisp |
Object of type TDataServer which contains all the launchs data. | |
void(* | _analyticalFunction )(Double_t *, Double_t *) |
analytical function | |
TString | _sFunctionName |
name of the analytical function | |
Int_t | _ninputs |
number of stochastic inputs | |
Int_t | _nUranieAnisp |
number of launching of the ANISP method | |
TString | _sLaunchNumber |
name of the TAttribute containing the number of launching | |
Friends | |
void | StepByStepOutput (Double_t *val, vector< Int_t * > indices) |
Friend function to pass to the anisp function. | |
void | functionLauncher (vector< Double_t * > ptEXp) |
Friend function which launchs the calculs. | |
Run the ANISP method | |
void | runAnisp () |
Run the Anisp method to compute a Polynomial Chaos expansion. | |
void | restartAnisp () |
Restart the Anisp method to compute a Polynomial Chaos expansion from a previous calcul. | |
void | initialize () |
Initialize attributes of the TAnisp object. | |
void | addErrorIndicator (Double_t *errInd) |
Add an error indicator to _tErrorIndicator. | |
void | addIntegrationIndices (Double_t *ind) |
Add an error indicator to _tIntegrationIndices. | |
void | launchCalculs (vector< Double_t * > ptExp) |
Launch batchs of calculs during the numerical integration step of the ANISP method. | |
void | EndIterationActions (Double_t *errIndicator, vector< Double_t * > integrationIndices) |
Run at the end of an iteration of the integration algorithm and exploit the integration indices and error indicators to show graphical output of the progress of the ANISP method | |
void | changeOfVariable (Double_t *x) |
Do a changement of variable to change standart stochastic values into the problem uncertain values. | |
void | setTPolynomialChaos () |
Open the result file of the Anisp library and use the coefficients stored there to create a TPolynomialChaos object and set its coefficients. | |
Additional Inherited Members | |
Public Attributes inherited from URANIE::Modeler::TModeler | |
Bool_t | _blog |
Boolean for edit the log. | |
Bool_t | _bdrawProgressBar |
Boolean to know if the progress bar has to be drawn. | |
Bool_t | _bStoreYHat |
Boolean to specify if we add the \hat{} attribute in the TDS [default kTRUE]. | |
URANIE::DataServer::TDataServer * | _tds |
Int_t | _nS |
Pointer to a TDS. | |
TString | _sInputAttributes |
The string of input attributes (separated by the character ":". | |
TString | _sOutputAttributes |
The string of output attributes (separated by the character ":". | |
TString | _sIntermediateArchitecture |
The intermediate (between the first and last character ",") information. | |
TList * | _listOfInputAttributes |
The list of input Leaf. | |
TList * | _listOfOutputAttributes |
The list of output Leaf. | |
Int_t | _nX |
The number of input attributes. | |
Int_t | _nY |
The number of output attributes. | |
TString | _sFileName |
The name of the file when export the model without extension. | |
TString | _sFunctionName |
The name of the function when export the model. | |
TVectorD | _parameterValues |
The list of parameters. | |
Double_t | _dr2 |
The R2 quality. | |
Bool_t | _bIntercept |
For certain models, add the intercept (Default is TRUE) | |
Detailed Description
Description of the class TAnisp.
A wrapper class for the Anisp library which permit to interface the Anisp library with the URANIE platform. The Anisp library is a research code which uses the ANISP method developped by the CEA to approximate the Polynomial Chaos expansion using adaptive numerical integration and selecting an adapted and smaller Polynomial Chaos basis.
- Polynomial Chaos expansion for uncertainty propagation in numerical simulation
Let's consider a model of the form where represent the datas and the scalar output of the model. In the deterministic case is certain and so is . Now, we consider the stochastic case where is uncertain and we express that by putting the datas that depend of a stochactic event . The model of the stochastic case is thus
and the output is now an uncertain variable.
Knowing the uncertainties on the datas, we want to propagate them to know the uncertainty of the output. The approach chosen is to parametrize these uncertainties by using a finite vector of independent random variables :
and so our model becomes:
From now on we will stop writing the dependence on .
All random variable with a finite variance is equal to an infinite Polynomial Chaos expansion:
where are orthonormal polynomials and
so,
The ANISP method consist to approximate this infinite polynomial expansion by a finite adapted polynomial expansion where the polynomial coefficients are computed by using adaptive numerical integration. The integration algorithm used is adaptive cubature algorithm.
The strong points of this method are that it automates the construction of a adapted cubature formula for numerical integration, the selection of finite and adapted set of polynomials and the computation of the coefficients.
- Description of the links between the methods of the TAnips class.
The two constructors call the method initialize :
The runAnisp and restartAnisp methods, which are the core of this class as they call the anisp function of the Anisp library, activate indirectly the call of several methods:
Member Enumeration Documentation
◆ ANISP_TYPE
Constructor & Destructor Documentation
◆ TAnisp() [1/3]
URANIE::Modeler::TAnisp::TAnisp | ( | TDataServer * | tds, |
void(*)(Double_t *, Double_t *) | analyticalFunction, | ||
const char * | fname, | ||
TString | sinput = "" , |
||
TString | soutput = "" , |
||
Option_t * | option = "" |
||
) |
Construct an instance of the TAnisp object from a TDataServer object and a void * (analytical function)
- Parameters
-
tds : pointer to a TDataServer object analyticalFunction : void * (analytical function) sinput : TString value containing the names of the inputs variables soutput : TString value containing the name of the unique output variable option : pointer to Option_t value
Referenced by ClassImp().
◆ TAnisp() [2/3]
URANIE::Modeler::TAnisp::TAnisp | ( | TDataServer * | tds, |
const char * | analyticalFunction, | ||
TString | sinput = "" , |
||
TString | soutput = "" , |
||
Option_t * | option = "" |
||
) |
Construct an instance of the TAnisp object from a TDataServer object and a void * (analytical function)
- Parameters
-
tds : pointer to a TDataServer object analyticalFunction : const char* (name of the analytical function) sinput : TString value containing the names of the inputs variables soutput : TString value containing the name of the unique output variable option : pointer to Option_t value
◆ TAnisp() [3/3]
URANIE::Modeler::TAnisp::TAnisp | ( | TDataServer * | tds, |
TCode * | code, | ||
Option_t * | option = "" |
||
) |
Construct an instance of the TAnisp object from a TDataServer object and a TCode object.
- Parameters
-
tds : pointer to a TDataServer object code : pointer to a TCode object option : pointer to Option_t value
◆ ~TAnisp()
|
virtual |
Member Function Documentation
◆ addErrorIndicator()
|
inlineprivate |
Add an error indicator to _tErrorIndicator.
this vector contains 2 columns of double
- number of simulations
- value of the error indicator
- Parameters
-
errInd : pointer to a Double_t containing a number of simulations and a value of the error indicator
References _tErrorIndicator.
Referenced by ClassImp().
◆ addIntegrationIndices()
|
inlineprivate |
Add an error indicator to _tIntegrationIndices.
this vector contains one column by uncertain variable
- Parameters
-
ind : pointer to a Double_t fill with the values of a multi-indice
References _tIntegrationIndices.
Referenced by ClassImp().
◆ changeOfVariable()
|
private |
Do a changement of variable to change standart stochastic values into the problem uncertain values.
- Parameters
-
x : pointer to a Double_t
Referenced by ClassImp().
◆ EndIterationActions()
|
private |
Run at the end of an iteration of the integration algorithm and exploit the integration indices and error indicators to show graphical output of the progress of the ANISP method
- Parameters
-
errIndicator : pointer to a Double_t fill with the values of a multi-indice integrationIndices : vector of Double_t * which contains the iterator number, the value of the point where the calcul is launched, the result of this calcul and the number of running of the ANISP method
Referenced by ClassImp().
◆ exportModelCplusplus()
|
virtual |
Export the model in C++ langage in a file.
- Warning
- Don't use this method. Use the main method TModeler::exportFunction.
- Parameters
-
sourcefile (ofstream *) the pointer to the file to export the modeler.
Implements URANIE::Modeler::TModeler.
Referenced by ClassImp().
◆ exportModelFortran()
|
inlinevirtual |
Export the model in Fortran langage in a file (not yet implemented)
- Warning
- Don't use this method. Use the main method TModeler::exportFunction.
- Parameters
-
sourcefile (ofstream *) the pointer to the file to export the modeler.
Implements URANIE::Modeler::TModeler.
◆ exportModelPMML()
|
inlinevirtual |
Export the model in a PMML file (not yet implemented)
- Warning
- Don't use this method. Use the main method TModeler::exportFunction.
- Parameters
-
sourcefile (ofstream *) the pointer to the file to export the modeler.
Implements URANIE::Modeler::TModeler.
◆ exportModelPython()
|
inlinevirtual |
Export the model in Python langage in a file (not yet implemented)
- Warning
- Don't use this method. Use the main method TModeler::exportFunction.
- Parameters
-
sourcefile (ofstream *) the pointer to the file to export the modeler.
Implements URANIE::Modeler::TModeler.
◆ getCible()
|
inline |
Get the ANISP_TYPE which indicates if ANISP approximate a code (TCode) or a function (void *)
- Returns
- the ANISP_TYPE of the _nCible attribute
References _nCible.
◆ getDataAnispFile()
|
inline |
Get the Anisp intern data file name.
- Returns
- the data file name
References _sRootFilename.
Referenced by ClassImp().
◆ getDegreeMax()
|
inline |
Get the degree maximum for the Polynomial Chaos expansion.
- Returns
- the degree maximum of the polynomial
References _nDegreeMax.
◆ getErrorIndicator()
|
inline |
◆ getErrorIndicatorFile()
|
inline |
Get the error indicator values file name.
- Returns
- the error indicator values file name
References _sRootFilename.
Referenced by ClassImp().
◆ getGreaterIndice()
|
inline |
Get the greater value possible for an indice.
- Returns
- the greater value of an indice
References _nGreaterIndice.
◆ getIndicesFile()
|
inline |
Get the integration indices file name.
- Returns
- the integration indices file name
References _sRootFilename.
Referenced by ClassImp().
◆ getIntegrationIndices()
|
inline |
Get the list of integration indices.
- Returns
- the list of integration indices
References _tIntegrationIndices.
◆ getIterationNumber()
|
inline |
Get the number of iteration of the integration algorithm.
Get the number of iteration of the integration algorithm
- Returns
- the number of iteration of the integration algorithm
References _nIterationNumber.
◆ getKMin()
|
inline |
Get the order of interaction for adaptative integration.
- Returns
- the minimum order of interaction
References _nKMin.
◆ getMaxIndices()
|
inline |
Get the number maximum of indices for the integration.
- Returns
- the number maximum of indices
References _nMaxIndices.
◆ getNumberMaxOfSimulations()
|
inline |
Get the criterion of maximum number of simulations before stopping the adaptative integration.
- Returns
- the maximum number of simulations
References _nNumberMaxOfSimulations.
◆ getResultFile()
|
inline |
Get the computed polynomial coefficients file name.
- Returns
- the computed coefficients file name
References _sRootFilename.
Referenced by ClassImp().
◆ getRootFilename()
|
inline |
Get the root name of the output files of the Anisp library.
- Returns
- the root name of the output files of the Anisp library
References _sRootFilename.
◆ getStochasticFile()
|
inline |
Get the stochastic points file name.
- Returns
- the stochastic points file name
References _sRootFilename.
Referenced by ClassImp().
◆ getTolerance()
|
inline |
Get the tolerance for the adaptative integration.
- Returns
- the tolerance value for the adaptative integration
References _dTolerance.
◆ getTPolynomialChaos()
TPolynomialChaos URANIE::Modeler::TAnisp::getTPolynomialChaos | ( | ) |
Get the TPolynomialChaos computed by the Anisp method.
- Returns
- the TPolynomialChaos computed
Referenced by ClassImp().
◆ getVariablesName()
TString URANIE::Modeler::TAnisp::getVariablesName | ( | TString | inputs = "" | ) |
Get a TString containing the name of all attributes separated by ':'.
- Parameters
-
inputs : TString value containing the name of the inputs attributes separated by ':'
- Returns
- names of all attributes
Referenced by ClassImp().
◆ initialize()
|
private |
Initialize attributes of the TAnisp object.
Referenced by ClassImp().
◆ launchCalculs()
|
private |
Launch batchs of calculs during the numerical integration step of the ANISP method.
- Parameters
-
ptExp : vector of Double_t * which contains the iterator number, the value of the point where the calcul is launched, the result of this calcul and the number of running of the ANISP method
Referenced by ClassImp().
◆ printLog()
|
virtual |
Print log.
- Parameters
-
option : pointer to an Option_t object
Reimplemented from URANIE::Modeler::TModeler.
Referenced by ClassImp().
◆ restartAnisp()
void URANIE::Modeler::TAnisp::restartAnisp | ( | ) |
Restart the Anisp method to compute a Polynomial Chaos expansion from a previous calcul.
Referenced by ClassImp().
◆ runAnisp()
void URANIE::Modeler::TAnisp::runAnisp | ( | ) |
Run the Anisp method to compute a Polynomial Chaos expansion.
Referenced by ClassImp().
◆ setAllAnispParameters()
void URANIE::Modeler::TAnisp::setAllAnispParameters | ( | Double_t | tol, |
Int_t | kmin, | ||
Int_t | nmos, | ||
Int_t | greatInd, | ||
Int_t | maxInd, | ||
Bool_t | blog, | ||
Int_t | degMax, | ||
TString | rootName | ||
) |
Set all the Anisp parameters.
- Parameters
-
tol double value to set the tolerance criterion of the integration algorithm kmin int value to set the minimum level of interaction of the integration algorithm nmos int value to set the criterion of maximum number of simulations of the integration algorithm greatInd int value to set the greater value for an indice reachable by the integration algorithm maxInd int value to set the maximum number of indices for the integration algorithm (memory criterion) blog Bool_t value to indicate if we wante the graphical and console outputs degMax int value to set the maximum degree of the Polynomial Chaos expansion rootName TString value which serves as root for all the names of the output files of the Anisp library
Referenced by ClassImp().
◆ setAnispParameters()
void URANIE::Modeler::TAnisp::setAnispParameters | ( | Double_t | tol, |
Int_t | kmin, | ||
Int_t | nmos, | ||
Int_t | greatInd, | ||
Int_t | maxInd, | ||
Bool_t | blog | ||
) |
Set most of the Anisp parameters.
- Parameters
-
tol double value to set the tolerance criterion of the integration algorithm kmin int value to set the minimum level of interaction of the integration algorithm nmos int value to set the criterion of maximum number of simulations of the integration algorithm greatInd int value to set the greater value for an indice reachable by the integration algorithm maxInd int value to set the maximum number of indices for the integration algorithm (memory criterion) blog Bool_t value to indicate if we wante the graphical and console outputs
Referenced by ClassImp().
◆ setDegreeMax()
void URANIE::Modeler::TAnisp::setDegreeMax | ( | Int_t | degMax | ) |
Set the degree maximum for the Polynomial Chaos expansion.
- Parameters
-
degMax : int value to set the maximum degree of the Polynomial Chaos expansion
Referenced by ClassImp().
◆ setGreaterIndice()
void URANIE::Modeler::TAnisp::setGreaterIndice | ( | Int_t | greatInd | ) |
Set the greater value possible for an indice.
- Parameters
-
greatInd : int value to set the greater value for an indice reachable by the integration algorithm
Referenced by ClassImp().
◆ setKMin()
void URANIE::Modeler::TAnisp::setKMin | ( | Int_t | kmin | ) |
Set the value of the _nKMin attribute to "kmin".
- Parameters
-
kmin : int value to set the minimum level of interaction of the integration algorithm
Referenced by ClassImp().
◆ setLightAnispParameters()
void URANIE::Modeler::TAnisp::setLightAnispParameters | ( | Double_t | tol, |
Int_t | kmin, | ||
Int_t | nmos | ||
) |
Set the Anisp calcul parameters.
- Parameters
-
tol double value to set the tolerance criterion of the integration algorithm kmin int value to set the minimum level of interaction of the integration algorithm nmos int value to set the criterion of maximum number of simulations of the integration algorithm
Referenced by ClassImp().
◆ setlog()
void URANIE::Modeler::TAnisp::setlog | ( | Bool_t | blog | ) |
Set the _blog parameter.
- Parameters
-
blog : Bool_t value to indicate if we wante the graphical and console outputs
Referenced by ClassImp().
◆ setMaxIndices()
void URANIE::Modeler::TAnisp::setMaxIndices | ( | Int_t | maxInd | ) |
Set the number maximum of indices for the integration.
- Parameters
-
maxInd : int value to set the maximum number of indices for the integration algorithm (memory criterion)
Referenced by ClassImp().
◆ setNumberMaxOfSimulations()
void URANIE::Modeler::TAnisp::setNumberMaxOfSimulations | ( | Int_t | nmos | ) |
Set the criterion of maximum number of simulations before stopping the adaptative integration.
- Parameters
-
nmos : int value to set the criterion of maximum number of simulations of the integration algorithm
Referenced by ClassImp().
◆ setRootFilename()
void URANIE::Modeler::TAnisp::setRootFilename | ( | TString | rootName | ) |
Set the root name of the output files of the Anisp library.
- Parameters
-
rootName : TString value which serves as root for all the names of the output files of the Anisp library
Referenced by ClassImp().
◆ setTolerance()
void URANIE::Modeler::TAnisp::setTolerance | ( | Double_t | tol | ) |
Set the tolerance for the adaptative integration.
Set the value of the tolerance for the adaptative integration
- Parameters
-
tol : double value to set the tolerance criterion of the integration algorithm
Referenced by ClassImp().
◆ setTPolynomialChaos()
|
private |
Open the result file of the Anisp library and use the coefficients stored there to create a TPolynomialChaos object and set its coefficients.
Referenced by ClassImp().
Friends And Related Symbol Documentation
◆ functionLauncher
|
friend |
Friend function which launchs the calculs.
- Parameters
-
ptExp : vector of Double_t * which contains the iterator number, the value of the point where the calcul is launched, the result of this calcul and the number of running of the ANISP method
Referenced by ClassImp().
◆ StepByStepOutput
|
friend |
Friend function to pass to the anisp function.
- Parameters
-
val : pointer to a Double_t fill with the values of a multi-indice indices : vector of Double_t * which contains the iterator number, the value of the point where the calcul is launched, the result of this calcul and the number of running of the ANISP method
Referenced by ClassImp().
Member Data Documentation
◆ _analyticalFunction
|
private |
analytical function
Referenced by ClassImp().
◆ _Code
|
private |
Object of type TCode.
Referenced by ClassImp().
◆ _drawingGarbageCollector
|
private |
Garbage collector list for drawing.
Referenced by ClassImp().
◆ _dTolerance
|
private |
Tolerance of the adaptative integration algorithm.
Referenced by ClassImp(), and getTolerance().
◆ _nCible
|
private |
Variable containing the ANISP_TYPE.
Referenced by ClassImp(), and getCible().
◆ _nDegreeMax
|
private |
Degree maximum possible for the Polynomial Chaos expansion.
Referenced by ClassImp(), and getDegreeMax().
◆ _nGreaterIndice
|
private |
Greater value possible for an indice.
Referenced by ClassImp(), and getGreaterIndice().
◆ _ninputs
|
private |
number of stochastic inputs
Referenced by ClassImp().
◆ _nisp
|
private |
Object of type TNisp.
Referenced by ClassImp().
◆ _nIterationNumber
|
private |
Number of iteration of adaptative integration algorithm.
Referenced by ClassImp(), and getIterationNumber().
◆ _nKMin
|
private |
Order minimum of interaction for the adaptative integration.
Referenced by ClassImp(), and getKMin().
◆ _nMaxIndices
|
private |
Number maximum of indices of integration (memory size)
Referenced by ClassImp(), and getMaxIndices().
◆ _nNumberMaxOfSimulations
|
private |
Stop criterion of the adaptative integration algorithm based of the number of simulations.
Referenced by ClassImp(), and getNumberMaxOfSimulations().
◆ _nNumberOfLaunching
|
private |
Number of use of the launchCalculs method.
Referenced by ClassImp().
◆ _nNumberOfPoints
|
private |
Number of computed points.
Referenced by ClassImp().
◆ _nUranieAnisp
|
private |
number of launching of the ANISP method
Referenced by ClassImp().
◆ _sFunctionName
|
private |
name of the analytical function
Referenced by ClassImp().
◆ _sinput
|
private |
Names of the input arguments.
Referenced by ClassImp().
◆ _sLaunchNumber
|
private |
name of the TAttribute containing the number of launching
Referenced by ClassImp().
◆ _sLaws
|
private |
Laws of probability for each variable.
Referenced by ClassImp().
◆ _soutput
|
private |
Names of the output arguments.
Referenced by ClassImp().
◆ _sRootFilename
|
private |
Root of the output files name.
Referenced by ClassImp(), getDataAnispFile(), getErrorIndicatorFile(), getIndicesFile(), getResultFile(), getRootFilename(), and getStochasticFile().
◆ _tAnalyticalFunction
|
private |
Object of type TLauncherFunction.
Referenced by ClassImp().
◆ _tdsAnisp
|
private |
Object of type TDataServer which contains all the launchs data.
Referenced by ClassImp().
◆ _tErrorIndicator
|
private |
List of error indicators from the integration algorithm.
Referenced by addErrorIndicator(), ClassImp(), and getErrorIndicator().
◆ _tIntegrationIndices
|
private |
List of integration indices.
Referenced by addIntegrationIndices(), ClassImp(), and getIntegrationIndices().
◆ _tlauncher
|
private |
Object of type TLauncher.
Referenced by ClassImp().
◆ _tpc
|
private |
Object of type TPolynomialChaos.
Referenced by ClassImp().