Documentation / Developer's manual
Available modules
Calibration,  DataServer,  Launcher,  MetaModelOptim,  Modeler,  Optimizer,  ReLauncher,  Reliability,  ReOptimizer,  Sampler,  Sensitivity,  UncertModeler,  XmlProblem,  
Uranie / Modeler v4.9.0
|
Description of the class TPolynomialChaos. More...
#include <TPolynomialChaos.h>
Public Member Functions | |
Constructor and Destructor | |
TPolynomialChaos (TDataServer *tds, TNisp *nisp, TString soutput="") | |
default constructor from a set of stochastic variables | |
TPolynomialChaos (const char *ct) | |
TPolynomialChaos (const TPolynomialChaos &TPC) | |
copy constructor | |
virtual | ~TPolynomialChaos () |
destructor | |
void | setDegree (Int_t degree) |
Set the degree. | |
void | setAutoDegreeFactor (double autodeg) |
Change the factor that links the number of samples, coefficient and the highest possible degree. | |
void | setAutoDegreeBoundaries (int amin, int amax=-1) |
Change the min and max degree tested for automatise degree determination. | |
TTree * | getAutoDegreeResults () |
Return a pointer to the TTree that contains the degree optimisation results. | |
int | getBestAutoDegree () |
Return the bet estimated degree when optimisation is done with regression. | |
void | computeOutput (double *input) |
Computation of output in relation with input : input[0...nx-1]. | |
Double_t | getOutput (TString jname="") |
Get an output. | |
Double_t | getOutput (Int_t j) |
Get an output. | |
Double_t | getEqmLoo (Int_t rank=0) |
Get the Mean squared uncertainty for the output with rank. | |
Double_t | getErrLoo (Int_t input, Int_t rank=0) |
Get the Leave-One-Out uncertainty for the input (input) and the output (rank) | |
double | factorial (int n) |
Dummy factorial methods. | |
void | automatisedDegree (Option_t *option="") |
Computation of coefficients. | |
void | computeChaosExpansion (TString type, Option_t *option="") |
Computation of coefficients. | |
Double_t | getMean (Int_t j) |
Get the mean. | |
Double_t | getMean (TString name="") |
Get the mean. | |
Double_t | getVariance (Int_t j) |
Get the variance. | |
Double_t | getVariance (TString name="") |
Get the variance. | |
Double_t | getCovariance (Int_t i, Int_t j) |
Get the Covariance. | |
Double_t | getCovariance (TString xname, TString yname) |
Get the Covariance. | |
Double_t | getCorrelation (Int_t i, Int_t j) |
Get the correlation. | |
Double_t | getCorrelation (TString xname, TString yname) |
Get the correlation. | |
Double_t | getIndexFirstOrder (Int_t i, Int_t j=0) |
First index of sensitivity. | |
Double_t | getIndexFirstOrder (TString xname, TString yname="") |
First index of sensitivity. | |
Double_t | getIndexTotalOrder (Int_t i, Int_t j=0) |
Total index of sensitivity. | |
Double_t | getIndexTotalOrder (TString xname, TString yname="") |
Total index of sensitivity. | |
Double_t | getIndex (TString sinput="", TString yname="") |
Index of sensitivity of a set of variables. | |
Double_t | getIndexInteraction (TString sinput="", TString yname="") |
Index of interaction sensitivity of a set of variables. | |
Int_t | getDimensionInput () |
Number of input. | |
Int_t | getDimensionOutput () |
Number of output. | |
Int_t | getDimensionExpansion () |
Number of the coefficients of the polynomial chaos. | |
Int_t | getDegree () |
Get the degree. | |
void | exportFunction (const char *file="nisp", const char *name="nisp_fct") |
Export the model in C++ langage in a file. | |
Double_t | getCoefficient (Int_t k, TString jname="") |
Get coefficents value. | |
No accessible - In building | |
void | generateSample (TString type, Int_t np, Int_t order=1) |
Build a sample for statitical analysis (quantile). Build a sample of size "np" by the method "type". | |
Double_t | getSample (Int_t k, Int_t j) |
Double_t | getSample (Int_t k, TString yname) |
The value of the output yname for the example k. | |
void | realisation () |
Polynomial chaos is a random variable : a realisation of this random variable (GetOutput()). | |
void | getAnova (Int_t nt) |
Edition of the ANOVA decomposition. | |
void | getAnovaOrdered (Double_t seuil, Int_t j) |
void | getAnovaOrdered (Double_t seuil, TString yname="") |
Return the ANOVA ordered decomposition. | |
void | getAnovaOrderedCoefficients (Double_t seuil, Int_t j) |
void | getAnovaOrderedCoefficients (Double_t seuil, TString yname="") |
Edition of the ANOVA ordered decomposition / coefficients. | |
Double_t | getQuantile (Double_t alpha, Int_t j) |
Return the quantile of order "alpha". | |
Double_t | getQuantile (Double_t alpha, TString yname) |
Return the quantile of order "alpha". | |
Double_t | getQuantileWilks (Double_t alpha, Double_t beta, Int_t j=1) |
Return the Wilks' quantile of order "alpha" with confidence "beta". | |
Double_t | getQuantileWilks (Double_t alpha, Double_t beta, TString yname) |
Return the Wilks' quantile of order "alpha" with confidence "beta". | |
Double_t | getInvQuantile (Double_t seuil, Int_t j=1) |
Return the probability of a value overrun. | |
Double_t | getInvQuantile (Double_t seuil, TString yname) |
Return the probability of a value overrun. | |
void | readTarget (Char_t *file) |
Read a set of target from a file. | |
void | setInput (Int_t nt, Double_t dt) |
Set an input. | |
void | propagateInput () |
Propagation of input which has been specified SetInput() | |
void | propagateInput (Double_t *dt) |
Propagation of dt[1...nx]. | |
void | save (Char_t *file) |
Saving of the PC in a file. | |
void | save (string file) |
void | setAnova () |
Preparation on the ANOVA decomposition. | |
Public Attributes | |
TNisp * | _nisp |
Message logger. | |
Int_t | _degree |
Degree of the Chaos polynomial. | |
PolynomialChaos * | _pc |
Object of type polynomialChaos (library Nisp) | |
Int_t | _nx |
Number of stochastic variables i.e number of input. | |
Int_t | _np |
Number of simulation. | |
Int_t | _ny |
Bool_t | _bStoreYHat |
Boolean to specify if we add the \hat{} attribute in the TDS [default kTRUE]. | |
TTree * | _degreeResults |
TDSNtupleD used to store the results of the automatisedDegree method. | |
double | _autoDegreeFactor |
Factor used to scale the maximum degree knowing _nx and _np. | |
int | _minAutoDeg |
Minimal value for automatic degree scan. | |
int | _maxAutoDeg |
Maximal value for automatic degree scan. | |
int | _bestAutoDeg |
Best value for automatic degree scan. | |
vector< double > * | _verrloo |
vector to contains the err loo and store them in the tree | |
int | _degval |
memory arry for the degree in the tree | |
double | _eqmval |
memory arry for the eqm in the tree | |
Protected Attributes | |
URANIE::DataServer::UMessageLogger * | _fLogger |
Private Attributes | |
TDataSpecification * | _listAttOut |
Object of type TDataSpecification used to index the name of the variables. | |
Bool_t | _blog |
Boolean for edit the log. | |
Printing Log | |
void | setLog () |
void | unsetLog () |
void | changeLog () |
Bool_t | getLog () |
virtual void | printLog (Option_t *option="") |
void | setCoefficient (Int_t noutput, Int_t num, Double_t coef) |
Set the coefficient beta of _pc. | |
Double_t | getCoefficient (Int_t noutput, Int_t num) |
Get the coefficient beta of _pc. | |
void | getTarget () |
Get the target. | |
void | setGroupAddVar (Int_t i) |
Add a random variable. | |
void | writeCodeCToDenormalizeInput (std::ofstream *sourcefile) |
Write set Denormalization. | |
void | setGroupEmpty () |
Freeing the set. | |
Detailed Description
Description of the class TPolynomialChaos.
The class TPolynomialChaos is associated to the classe TNisp. It's a mirror of the class PolynomialChaos, a class of the NISP library. It's used to access to Chaos Polynomial functionalities of the NIPS library in URANIE.
Constructor & Destructor Documentation
◆ TPolynomialChaos() [1/3]
URANIE::Modeler::TPolynomialChaos::TPolynomialChaos | ( | TDataServer * | tds, |
TNisp * | nisp, | ||
TString | soutput = "" |
||
) |
default constructor from a set of stochastic variables
The constructor builds a object TPolynomialChaos thanks to information which come from a object TDaaServer and TNisp. The elements which constitue the object TPolynomialChaos are determinated in the following way
- _nisp : It's the TNisp object given in parameter;
- _pc : Ths polynomialchaos object is built from data with come from the stochastic variables of the TNisp object;
- _nx : The number of random variable. It's the number of attribute of the TDataServer;
- _np : The number of simulation (size of the sample) is given by TNisp
- _ny : The number of output.
- _degree : It's the degree of the polynomial chaos.
- Parameters
-
tds : TDataServer object. nisp : TNisp object. soutput : list of output which be use to build the PC. By default all the output of the tds are used.
Referenced by ClassImp().
◆ TPolynomialChaos() [2/3]
URANIE::Modeler::TPolynomialChaos::TPolynomialChaos | ( | const char * | ct | ) |
Constructor from a file in "nisp" format
- Parameters
-
ct : the name of the "nisp" file
◆ TPolynomialChaos() [3/3]
URANIE::Modeler::TPolynomialChaos::TPolynomialChaos | ( | const TPolynomialChaos & | TPC | ) |
◆ ~TPolynomialChaos()
|
virtual |
destructor
Referenced by ClassImp().
Member Function Documentation
◆ automatisedDegree()
void URANIE::Modeler::TPolynomialChaos::automatisedDegree | ( | Option_t * | option = "" | ) |
Computation of coefficients.
Calculated coefficients of the polynomial chaos by the methode "type".
- Parameters
-
type : Name of the method ( Integration or Regression only accepted).
Referenced by ClassImp().
◆ changeLog()
|
inline |
References _blog.
◆ computeChaosExpansion()
void URANIE::Modeler::TPolynomialChaos::computeChaosExpansion | ( | TString | type, |
Option_t * | option = "" |
||
) |
Computation of coefficients.
Calculated coefficients of the polynomial chaos by the methode "type".
- Parameters
-
type : Name of the method ( Integration or Regression only accepted).
Referenced by ClassImp().
◆ computeOutput()
void URANIE::Modeler::TPolynomialChaos::computeOutput | ( | double * | input | ) |
Computation of output in relation with input : input[0...nx-1].
Compute the ouput Y with the values Xi of the input (i=0 to nx-1).
- Parameters
-
input : table of input value.
Referenced by ClassImp().
◆ exportFunction()
void URANIE::Modeler::TPolynomialChaos::exportFunction | ( | const char * | file = "nisp" , |
const char * | name = "nisp_fct" |
||
) |
Export the model in C++ langage in a file.
Writing in a C++ programm, the model of the polynomial chaos.
- Parameters
-
file (const char *) the file to export the modeler. If empty, use the name of the model, plus the extension of the langage; name (const char *) the name of the function in the export file. If empty, use the name of the model.
Referenced by ClassImp().
◆ factorial()
double URANIE::Modeler::TPolynomialChaos::factorial | ( | int | n | ) |
Dummy factorial methods.
Referenced by ClassImp().
◆ generateSample()
void URANIE::Modeler::TPolynomialChaos::generateSample | ( | TString | type, |
Int_t | np, | ||
Int_t | order = 1 |
||
) |
Build a sample for statitical analysis (quantile). Build a sample of size "np" by the method "type".
- Parameters
-
type : method used; np : number of simulation; order :
Referenced by ClassImp().
◆ getAnova()
void URANIE::Modeler::TPolynomialChaos::getAnova | ( | Int_t | nt | ) |
◆ getAnovaOrdered() [1/2]
void URANIE::Modeler::TPolynomialChaos::getAnovaOrdered | ( | Double_t | seuil, |
Int_t | j | ||
) |
Referenced by ClassImp().
◆ getAnovaOrdered() [2/2]
void URANIE::Modeler::TPolynomialChaos::getAnovaOrdered | ( | Double_t | seuil, |
TString | yname = "" |
||
) |
Return the ANOVA ordered decomposition.
- Parameters
-
seuil : value of the seuil; yname : name of the output.
refer to URANIE:Modeler::TPolynomialChaos::getAnovaOrdered(Double_t seuil,Int_t j)
◆ getAnovaOrderedCoefficients() [1/2]
void URANIE::Modeler::TPolynomialChaos::getAnovaOrderedCoefficients | ( | Double_t | seuil, |
Int_t | j | ||
) |
Referenced by ClassImp().
◆ getAnovaOrderedCoefficients() [2/2]
void URANIE::Modeler::TPolynomialChaos::getAnovaOrderedCoefficients | ( | Double_t | seuil, |
TString | yname = "" |
||
) |
Edition of the ANOVA ordered decomposition / coefficients.
- Parameters
-
seuil : value of the seuil; yname : name of the output.
refer to URANIE:Modeler::TPolynomialChaos::getAnovaOrderedCoefficients(Double_t seuil,Int_t j)
◆ getAutoDegreeResults()
|
inline |
Return a pointer to the TTree that contains the degree optimisation results.
References _degreeResults.
◆ getBestAutoDegree()
|
inline |
Return the bet estimated degree when optimisation is done with regression.
References _bestAutoDeg.
◆ getCoefficient() [1/2]
Double_t URANIE::Modeler::TPolynomialChaos::getCoefficient | ( | Int_t | k, |
TString | jname = "" |
||
) |
Get coefficents value.
Get the coefficeint k of the PC for the output janme
- Parameters
-
k number of the coefficient (<p) jname output name
Referenced by ClassImp().
◆ getCoefficient() [2/2]
Double_t URANIE::Modeler::TPolynomialChaos::getCoefficient | ( | Int_t | noutput, |
Int_t | num | ||
) |
Get the coefficient beta of _pc.
Get the coefficient beta of _pc
- Parameters
-
noutput : number of output num : number of Polynomial Chaos
◆ getCorrelation() [1/2]
Double_t URANIE::Modeler::TPolynomialChaos::getCorrelation | ( | Int_t | i, |
Int_t | j | ||
) |
Get the correlation.
Return the correlation.
- Parameters
-
i : index of the output; j : index of the second output.
Referenced by ClassImp().
◆ getCorrelation() [2/2]
Double_t URANIE::Modeler::TPolynomialChaos::getCorrelation | ( | TString | xname, |
TString | yname | ||
) |
Get the correlation.
Return the correlation
- Parameters
-
xname : name of the output; yname : name of the second ouput.
refer to URANIE:Modeler::TPolynomialChaos:getCorrelation(Int_t i, Int_t j)
◆ getCovariance() [1/2]
Double_t URANIE::Modeler::TPolynomialChaos::getCovariance | ( | Int_t | i, |
Int_t | j | ||
) |
Get the Covariance.
Return the covariance.
- Parameters
-
i : index of the output; j : index of the second output.
Referenced by ClassImp().
◆ getCovariance() [2/2]
Double_t URANIE::Modeler::TPolynomialChaos::getCovariance | ( | TString | xname, |
TString | yname | ||
) |
Get the Covariance.
Return the covariance.
- Parameters
-
xname : name of the output; yname : name of the second output.
refer to URANIE:Modeler::TPolynomialChaos:getCovariance(Int_t i, Int_t j)
◆ getDegree()
Int_t URANIE::Modeler::TPolynomialChaos::getDegree | ( | ) |
◆ getDimensionExpansion()
Int_t URANIE::Modeler::TPolynomialChaos::getDimensionExpansion | ( | ) |
Number of the coefficients of the polynomial chaos.
Return the number of coefficients of the PC.
Referenced by ClassImp().
◆ getDimensionInput()
Int_t URANIE::Modeler::TPolynomialChaos::getDimensionInput | ( | ) |
Number of input.
Return the number of input i.e the number of input random variable.
Referenced by ClassImp().
◆ getDimensionOutput()
Int_t URANIE::Modeler::TPolynomialChaos::getDimensionOutput | ( | ) |
Number of output.
Return the number of output i.e the number of output variable
Referenced by ClassImp().
◆ getEqmLoo()
Double_t URANIE::Modeler::TPolynomialChaos::getEqmLoo | ( | Int_t | rank = 0 | ) |
Get the Mean squared uncertainty for the output with rank.
- Parameters
-
rank the rank of the considered output
Referenced by ClassImp().
◆ getErrLoo()
Double_t URANIE::Modeler::TPolynomialChaos::getErrLoo | ( | Int_t | input, |
Int_t | rank = 0 |
||
) |
Get the Leave-One-Out uncertainty for the input (input) and the output (rank)
- Parameters
-
input the input indexes of the doe rank the rank of the considered output
Referenced by ClassImp().
◆ getIndex()
Double_t URANIE::Modeler::TPolynomialChaos::getIndex | ( | TString | sinput = "" , |
TString | yname = "" |
||
) |
Index of sensitivity of a set of variables.
Return the index of sensitivity of the output yname.
- Parameters
-
sinput : list of input. By default all the input; yname : name of the output. By default the first ouput.
Referenced by ClassImp().
◆ getIndexFirstOrder() [1/2]
Double_t URANIE::Modeler::TPolynomialChaos::getIndexFirstOrder | ( | Int_t | i, |
Int_t | j = 0 |
||
) |
First index of sensitivity.
Return the index od sensitivity.
- Parameters
-
i : index of the input (<_nx);
j : index of the output (<_ny).
Referenced by ClassImp().
◆ getIndexFirstOrder() [2/2]
Double_t URANIE::Modeler::TPolynomialChaos::getIndexFirstOrder | ( | TString | xname, |
TString | yname = "" |
||
) |
First index of sensitivity.
Return the index od sensitivity.
- Parameters
-
xname : name of the input; yname : name of the output.
refer to URANIE:Modeler::TPolynomialChaos:getIndexFirstOrder(Int_t i, Int_t j)
◆ getIndexInteraction()
Double_t URANIE::Modeler::TPolynomialChaos::getIndexInteraction | ( | TString | sinput = "" , |
TString | yname = "" |
||
) |
Index of interaction sensitivity of a set of variables.
Return the interaction sensitivity index of the ouput j.
- Parameters
-
sinput : list of input. By default all the input; yname : name of the output. By default the first ouput.
Referenced by ClassImp().
◆ getIndexTotalOrder() [1/2]
Double_t URANIE::Modeler::TPolynomialChaos::getIndexTotalOrder | ( | Int_t | i, |
Int_t | j = 0 |
||
) |
Total index of sensitivity.
Return the total index of sensitivity.
- Parameters
-
j : index of the output (<_ny); i : index of the variable (<_nx).
Referenced by ClassImp().
◆ getIndexTotalOrder() [2/2]
Double_t URANIE::Modeler::TPolynomialChaos::getIndexTotalOrder | ( | TString | xname, |
TString | yname = "" |
||
) |
Total index of sensitivity.
Return the total index of sensitivity.
- Parameters
-
xname : name of the input; yname : name of the output.
refer to URANIE:Modeler::TPolynomialChaos:getIndexTotalOrder(Int_t i, Int_t j)
◆ getInvQuantile() [1/2]
Double_t URANIE::Modeler::TPolynomialChaos::getInvQuantile | ( | Double_t | seuil, |
Int_t | j = 1 |
||
) |
Return the probability of a value overrun.
- Parameters
-
seuil : ; j : index of the output.
Referenced by ClassImp().
◆ getInvQuantile() [2/2]
Double_t URANIE::Modeler::TPolynomialChaos::getInvQuantile | ( | Double_t | seuil, |
TString | yname | ||
) |
Return the probability of a value overrun.
- Parameters
-
seuil : seuil; yname : name of the output.
refer to URANIE:Modeler::TPolynomialChaos::getInvQuantile(Double_t seuil, Int_t j)
◆ getLog()
|
inline |
References _blog.
◆ getMean() [1/2]
Double_t URANIE::Modeler::TPolynomialChaos::getMean | ( | Int_t | j | ) |
Get the mean.
Return the mean of the attribute given by the index.
- Parameters
-
j : index of the attribut.
Referenced by ClassImp().
◆ getMean() [2/2]
Double_t URANIE::Modeler::TPolynomialChaos::getMean | ( | TString | name = "" | ) |
Get the mean.
Return the mean of the attribute given by the name.
- Parameters
-
name : name of the attribut. By defalut the forst output.
refer to URANIE:Modeler::TPolynomialChaos:getMean(Int_t j)
◆ getOutput() [1/2]
Double_t URANIE::Modeler::TPolynomialChaos::getOutput | ( | Int_t | j | ) |
Get an output.
Return the value of a ouput.
- Parameters
-
j : index od the ouput.
◆ getOutput() [2/2]
Double_t URANIE::Modeler::TPolynomialChaos::getOutput | ( | TString | jname = "" | ) |
Get an output.
Return the value of a ouput.
- Parameters
-
jname : name of the ouput.
refer to URANIE:Modeler::TPolynomialChaos:getOutput(Int_t j)
Referenced by ClassImp().
◆ getQuantile() [1/2]
Double_t URANIE::Modeler::TPolynomialChaos::getQuantile | ( | Double_t | alpha, |
Int_t | j | ||
) |
Return the quantile of order "alpha".
- Parameters
-
alpha : order; j : index of the output.
Referenced by ClassImp().
◆ getQuantile() [2/2]
Double_t URANIE::Modeler::TPolynomialChaos::getQuantile | ( | Double_t | alpha, |
TString | yname | ||
) |
Return the quantile of order "alpha".
- Parameters
-
alpha : order; yname : name of the output.
refer to URANIE:Modeler::TPolynomialChaos::getQuantile(Double_t alpha, Int_t j)
◆ getQuantileWilks() [1/2]
Double_t URANIE::Modeler::TPolynomialChaos::getQuantileWilks | ( | Double_t | alpha, |
Double_t | beta, | ||
Int_t | j = 1 |
||
) |
Return the Wilks' quantile of order "alpha" with confidence "beta".
- Parameters
-
alpha : order of the quantile; beta : confidence j : index of the output. By default j=1.
Referenced by ClassImp().
◆ getQuantileWilks() [2/2]
Double_t URANIE::Modeler::TPolynomialChaos::getQuantileWilks | ( | Double_t | alpha, |
Double_t | beta, | ||
TString | yname | ||
) |
Return the Wilks' quantile of order "alpha" with confidence "beta".
- Parameters
-
alpha : order of the quantile; beta : confidence yname : name of the output
refer to URANIE:Modeler::TPolynomialChaos::getQuantileWilks(Double_t alpha, Double_t beta, Int_t j)
◆ getSample() [1/2]
Double_t URANIE::Modeler::TPolynomialChaos::getSample | ( | Int_t | k, |
Int_t | j | ||
) |
Referenced by ClassImp().
◆ getSample() [2/2]
Double_t URANIE::Modeler::TPolynomialChaos::getSample | ( | Int_t | k, |
TString | yname | ||
) |
The value of the output yname for the example k.
refer to URANIE:Modeler::TPolynomialChaos::getSample(Int_t k,Int_t j)
◆ getTarget()
|
private |
◆ getVariance() [1/2]
Double_t URANIE::Modeler::TPolynomialChaos::getVariance | ( | Int_t | j | ) |
Get the variance.
Return the variance of the attribute given by the index.
- Parameters
-
j : index of the attribut.
Referenced by ClassImp().
◆ getVariance() [2/2]
Double_t URANIE::Modeler::TPolynomialChaos::getVariance | ( | TString | name = "" | ) |
Get the variance.
Return the variance of the attribute given by the name.
- Parameters
-
name : name of the attribut. By defalut the forst output.
refer to URANIE:Modeler::TPolynomialChaos:getVariance(Int_t j)
◆ printLog()
|
virtual |
Referenced by ClassImp().
◆ propagateInput() [1/2]
void URANIE::Modeler::TPolynomialChaos::propagateInput | ( | ) |
Propagation of input which has been specified SetInput()
Referenced by ClassImp().
◆ propagateInput() [2/2]
void URANIE::Modeler::TPolynomialChaos::propagateInput | ( | Double_t * | dt | ) |
Propagation of dt[1...nx].
◆ readTarget()
void URANIE::Modeler::TPolynomialChaos::readTarget | ( | Char_t * | file | ) |
Read a set of target from a file.
Referenced by ClassImp().
◆ realisation()
void URANIE::Modeler::TPolynomialChaos::realisation | ( | ) |
Polynomial chaos is a random variable : a realisation of this random variable (GetOutput()).
Referenced by ClassImp().
◆ save() [1/2]
void URANIE::Modeler::TPolynomialChaos::save | ( | Char_t * | file | ) |
◆ save() [2/2]
void URANIE::Modeler::TPolynomialChaos::save | ( | string | file | ) |
◆ setAnova()
void URANIE::Modeler::TPolynomialChaos::setAnova | ( | ) |
Preparation on the ANOVA decomposition.
Referenced by ClassImp().
◆ setAutoDegreeBoundaries()
void URANIE::Modeler::TPolynomialChaos::setAutoDegreeBoundaries | ( | int | amin, |
int | amax = -1 |
||
) |
Change the min and max degree tested for automatise degree determination.
If no maximum is specified, the automatic specification will be done using the _autoDegreeFactor.
- Parameters
-
amin minimum to be tested (>=1) amax max to be tested. Should be > amin. If empty, automatic determination is done
Referenced by ClassImp().
◆ setAutoDegreeFactor()
void URANIE::Modeler::TPolynomialChaos::setAutoDegreeFactor | ( | double | autodeg | ) |
Change the factor that links the number of samples, coefficient and the highest possible degree.
If no maximum is specified for automatic degree optimisation, then the maximal degree to be tested is computed knowing that Ncoeff <= np /autodeg, where np is number of pattern and Ncoeff = (nx+deg)!/(nx!*deg!);
- Parameters
-
autodeg change the value of autodeg (default is 1.5). Should be >= 1.
Referenced by ClassImp().
◆ setCoefficient()
void URANIE::Modeler::TPolynomialChaos::setCoefficient | ( | Int_t | noutput, |
Int_t | num, | ||
Double_t | coef | ||
) |
Set the coefficient beta of _pc.
Set the coefficient beta of _pc
- Parameters
-
noutput : number of output num : number of Polynomial Chaos coef : new value of coefficient
Referenced by ClassImp(), and ClassImp().
◆ setDegree()
void URANIE::Modeler::TPolynomialChaos::setDegree | ( | Int_t | degree | ) |
Set the degree.
Set the degree of the polynomial chaos.
- Parameters
-
degree : degree max of the polynomial.
Referenced by ClassImp(), and ClassImp().
◆ setGroupAddVar()
|
private |
Add a random variable.
Add a random variable (rank i) in the set
- Parameters
-
i : index of the input variable added
Referenced by ClassImp().
◆ setGroupEmpty()
|
private |
◆ setInput()
void URANIE::Modeler::TPolynomialChaos::setInput | ( | Int_t | nt, |
Double_t | dt | ||
) |
Set an input.
Referenced by ClassImp().
◆ setLog()
|
inline |
References _blog.
◆ unsetLog()
|
inline |
References _blog.
◆ writeCodeCToDenormalizeInput()
|
private |
Write set Denormalization.
Write the C code to denormalize the inputs parameters
Referenced by ClassImp().
Member Data Documentation
◆ _autoDegreeFactor
double URANIE::Modeler::TPolynomialChaos::_autoDegreeFactor |
Factor used to scale the maximum degree knowing _nx and _np.
Referenced by ClassImp().
◆ _bestAutoDeg
int URANIE::Modeler::TPolynomialChaos::_bestAutoDeg |
Best value for automatic degree scan.
Referenced by ClassImp(), and getBestAutoDegree().
◆ _blog
|
private |
Boolean for edit the log.
Referenced by changeLog(), ClassImp(), getLog(), setLog(), and unsetLog().
◆ _bStoreYHat
Bool_t URANIE::Modeler::TPolynomialChaos::_bStoreYHat |
Boolean to specify if we add the \hat{} attribute in the TDS [default kTRUE].
Referenced by ClassImp().
◆ _degree
Int_t URANIE::Modeler::TPolynomialChaos::_degree |
Degree of the Chaos polynomial.
Referenced by ClassImp().
◆ _degreeResults
TTree* URANIE::Modeler::TPolynomialChaos::_degreeResults |
TDSNtupleD used to store the results of the automatisedDegree method.
Referenced by ClassImp(), and getAutoDegreeResults().
◆ _degval
int URANIE::Modeler::TPolynomialChaos::_degval |
memory arry for the degree in the tree
Referenced by ClassImp().
◆ _eqmval
double URANIE::Modeler::TPolynomialChaos::_eqmval |
memory arry for the eqm in the tree
Referenced by ClassImp().
◆ _fLogger
|
protected |
Referenced by ClassImp().
◆ _listAttOut
|
private |
Object of type TDataSpecification used to index the name of the variables.
Referenced by ClassImp().
◆ _maxAutoDeg
int URANIE::Modeler::TPolynomialChaos::_maxAutoDeg |
Maximal value for automatic degree scan.
Referenced by ClassImp().
◆ _minAutoDeg
int URANIE::Modeler::TPolynomialChaos::_minAutoDeg |
Minimal value for automatic degree scan.
Referenced by ClassImp().
◆ _nisp
TNisp* URANIE::Modeler::TPolynomialChaos::_nisp |
◆ _np
Int_t URANIE::Modeler::TPolynomialChaos::_np |
Number of simulation.
Referenced by ClassImp().
◆ _nx
Int_t URANIE::Modeler::TPolynomialChaos::_nx |
Number of stochastic variables i.e number of input.
Referenced by ClassImp().
◆ _ny
Int_t URANIE::Modeler::TPolynomialChaos::_ny |
Referenced by ClassImp().
◆ _pc
PolynomialChaos* URANIE::Modeler::TPolynomialChaos::_pc |
Object of type polynomialChaos (library Nisp)
Referenced by ClassImp(), and ClassImp().
◆ _verrloo
vector<double>* URANIE::Modeler::TPolynomialChaos::_verrloo |
vector to contains the err loo and store them in the tree
Referenced by ClassImp().