Documentation / Manuel développeur
Modules disponibles
Calibration,  DataServer,  Launcher,  MetaModelOptim,  Modeler,  Optimizer,  ReLauncher,  Reliability,  ReOptimizer,  Sampler,  Sensitivity,  UncertModeler,  XmlProblem,  
Uranie / Modeler v4.9.0
|
k Nearsest Neighbor algorithm More...
#include <TkNN.h>
Public Member Functions | |
Constructor and Destructor | |
TkNN (URANIE::DataServer::TDataServer *tds, TString architecture, Option_t *option="") | |
Default constructor with the TDataServer. | |
TkNN (URANIE::DataServer::TDataServer *tds, const char *varexpinput, const char *varexpoutput, Int_t nkernel, Option_t *option="") | |
Default constructor with input and output attributes. | |
virtual | ~TkNN () |
Default destructor. | |
Setter and Getter function | |
void | setK (Int_t k) |
Set the number of neighbor (\it k) | |
Int_t | getK () |
Get the number of neighbor (\it k) | |
void | setQueryPoints (URANIE::DataServer::TDataServer *tds) |
Set the set of query points from a dataserver. | |
Estimate | |
void | draw (const char *vars, Option_t *option="") |
draw | |
void | estimate (Option_t *option="", Bool_t useGPU=false) |
make the learning | |
Export the model in extrenal langage | |
void | exportModelCplusplus (std::ofstream *sourcefile) const |
Export the model in C++ langage in a file. | |
void | exportModelFortran (std::ofstream *sourcefile) const |
Export the model in Fortran langage in a file. | |
void | exportModelPMML (const char *file="", const char *name="", Option_t *option="") const |
Export the model as a PMML function (not implemented) | |
void | exportModelPython (std::ofstream *sourcefile) const |
Export the model as a Python function (not implemented) | |
Public Member Functions inherited from URANIE::Modeler::TModeler | |
TModeler (URANIE::DataServer::TDataServer *tds, TString architecture, Option_t *option="") | |
Constructor with a dataserver. | |
TModeler (URANIE::DataServer::TDataServer *tds, const char *varexpinput, const char *varexpoutput, Option_t *option="") | |
Default constructor with input and output attributes. | |
virtual | ~TModeler () |
Default destructor. | |
TVectorD | getParameters () |
Return the parameter vector of the model. | |
Double_t | getR2 () const |
Return the R2 quality. | |
const char * | getInputName (Int_t i) const |
Return the name of input attributes. | |
const char * | getOutputName (Int_t i=0) |
Return the name of output attribute. | |
Int_t | getNInput () |
Gets the number of input. | |
Bool_t | getIntercept () |
Gets the boolean attribut _bIntercept. | |
void | setDrawProgressBar (Bool_t bbool=kTRUE) |
Set the "draw progress bar" flag. | |
Bool_t | getDrawProgressBar () |
Get the "draw progress bar" flag. | |
void | train (Option_t *option="text") |
virtual void | exportFunction (const char *lang, const char *file="", const char *name="", Option_t *option="") |
Export the model in an external file with a specified langage. | |
void | setLog () |
void | unsetLog () |
void | changeLog () |
Bool_t | getLog () |
Public Attributes | |
Double_t | _dr2a |
The Adjusted R2 quality. | |
Int_t | _nK |
the number of neighboor to take into account | |
EDistance | _nDistance |
TString | _sDraw |
! The distance normalized for input and output | |
URANIE::DataServer::TDataServer * | _tdsQuery |
the TDS contins the query points | |
Public Attributes inherited from URANIE::Modeler::TModeler | |
Bool_t | _blog |
Boolean for edit the log. | |
Bool_t | _bdrawProgressBar |
Boolean to know if the progress bar has to be drawn. | |
Bool_t | _bStoreYHat |
Boolean to specify if we add the \hat{} attribute in the TDS [default kTRUE]. | |
URANIE::DataServer::TDataServer * | _tds |
Int_t | _nS |
Pointer to a TDS. | |
TString | _sInputAttributes |
The string of input attributes (separated by the character ":". | |
TString | _sOutputAttributes |
The string of output attributes (separated by the character ":". | |
TString | _sIntermediateArchitecture |
The intermediate (between the first and last character ",") information. | |
TList * | _listOfInputAttributes |
The list of input Leaf. | |
TList * | _listOfOutputAttributes |
The list of output Leaf. | |
Int_t | _nX |
The number of input attributes. | |
Int_t | _nY |
The number of output attributes. | |
TString | _sFileName |
The name of the file when export the model without extension. | |
TString | _sFunctionName |
The name of the function when export the model. | |
TVectorD | _parameterValues |
The list of parameters. | |
Double_t | _dr2 |
The R2 quality. | |
Bool_t | _bIntercept |
For certain models, add the intercept (Default is TRUE) | |
Printing Log | |
virtual void | printLog (Option_t *option="") |
void | estimate_cpu (Option_t *option="") |
void | LSort (int n, double *array, int *index, Int_t nbthreads) |
void | beginLoop (Int_t iq, Int_t nsq) |
void | endLoop (Int_t iq, int nsr, double *vecDistance, int *vecIndex, Float_t *vecReferenceOutput, Double_t *tabValue, TBranch *tby, Int_t nbthreads) |
Detailed Description
k Nearsest Neighbor algorithm
The TDS in the constructor is the data set to the reference points.
Constructor & Destructor Documentation
◆ TkNN() [1/2]
URANIE::Modeler::TkNN::TkNN | ( | URANIE::DataServer::TDataServer * | tds, |
TString | architecture, | ||
Option_t * | option = "" |
||
) |
Default constructor with the TDataServer.
Referenced by ClassImp().
◆ TkNN() [2/2]
URANIE::Modeler::TkNN::TkNN | ( | URANIE::DataServer::TDataServer * | tds, |
const char * | varexpinput, | ||
const char * | varexpoutput, | ||
Int_t | nkernel, | ||
Option_t * | option = "" |
||
) |
Default constructor with input and output attributes.
◆ ~TkNN()
|
virtual |
Default destructor.
Referenced by ClassImp().
Member Function Documentation
◆ beginLoop()
|
private |
Referenced by ClassImp().
◆ draw()
void URANIE::Modeler::TkNN::draw | ( | const char * | vars, |
Option_t * | option = "" |
||
) |
draw
Referenced by ClassImp().
◆ endLoop()
|
private |
Referenced by ClassImp().
◆ estimate()
void URANIE::Modeler::TkNN::estimate | ( | Option_t * | option = "" , |
Bool_t | useGPU = false |
||
) |
make the learning
Referenced by ClassImp().
◆ estimate_cpu()
|
private |
Referenced by ClassImp().
◆ exportModelCplusplus()
|
virtual |
Export the model in C++ langage in a file.
- Warning
- Don't use this method. Use the main method TModeler::exportFunction.
- Parameters
-
sourcefile (ofstream *) the pointer to the file to export the modeler.
Implements URANIE::Modeler::TModeler.
Referenced by ClassImp().
◆ exportModelFortran()
|
virtual |
Export the model in Fortran langage in a file.
- Warning
- Don't use this method. Use the main method TModeler::exportFunction.
- Parameters
-
sourcefile (ofstream *) the pointer to the file to export the modeler.
Implements URANIE::Modeler::TModeler.
Referenced by ClassImp().
◆ exportModelPMML()
|
inlinevirtual |
Export the model as a PMML function (not implemented)
Implements URANIE::Modeler::TModeler.
◆ exportModelPython()
|
inlinevirtual |
Export the model as a Python function (not implemented)
Implements URANIE::Modeler::TModeler.
◆ getK()
|
inline |
Get the number of neighbor (\it k)
References _nK.
◆ LSort()
|
private |
Referenced by ClassImp().
◆ printLog()
|
virtual |
Reimplemented from URANIE::Modeler::TModeler.
Referenced by ClassImp().
◆ setK()
|
inline |
Set the number of neighbor (\it k)
- Parameters
-
k (Int_t) k is the number of neighbor into the reference points to select for a query point
References _nK.
◆ setQueryPoints()
void URANIE::Modeler::TkNN::setQueryPoints | ( | URANIE::DataServer::TDataServer * | tds | ) |
Set the set of query points from a dataserver.
- Parameters
-
tds (URANIE::DataServer::TDataServer) the TDS which contains the set of query points
Referenced by ClassImp().
Member Data Documentation
◆ _dr2a
Double_t URANIE::Modeler::TkNN::_dr2a |
The Adjusted R2 quality.
◆ _nDistance
EDistance URANIE::Modeler::TkNN::_nDistance |
Referenced by ClassImp().
◆ _nK
Int_t URANIE::Modeler::TkNN::_nK |
the number of neighboor to take into account
Referenced by ClassImp(), getK(), and setK().
◆ _sDraw
TString URANIE::Modeler::TkNN::_sDraw |
! The distance normalized for input and output
Variables to visualize during the learning process
Referenced by ClassImp().
◆ _tdsQuery
URANIE::DataServer::TDataServer* URANIE::Modeler::TkNN::_tdsQuery |
the TDS contins the query points
Referenced by ClassImp().