English Français

Documentation / Manuel développeur

Modules disponibles

Calibration,  DataServer,  Launcher,  MetaModelOptim,  Modeler,  Optimizer,  ReLauncher,  Reliability,  ReOptimizer,  Sampler,  Sensitivity,  UncertModeler,  XmlProblem,   Uranie / Optimizer: TOptimizerOpt.cxx File Reference
Uranie / Optimizer v4.9.0
/* @license-end */
TOptimizerOpt.cxx File Reference

Implementation of the class URANIE::Optimizer::TOptimizerOpt. More...

#include "TSystem.h"
#include "TOptimizerOpt.h"
#include "UExceptions.h"
#include "NLP.h"
#include "NLF.h"
#include "OptNewton.h"
#include "OptNIPS.h"
#include "OptPDS.h"
#include "OptppExceptions.h"
#include <dlfcn.h>
Include dependency graph for TOptimizerOpt.cxx:

Namespaces

namespace  URANIE
 Rosenbrock's function (n=2) with first and second order derivatives.
 
namespace  URANIE::Optimizer
 

Functions

 ClassImp (URANIE::Optimizer::TOptimizerOpt) void init_eqm(int ndim
 
cout<< "**** init_eqm - Dim["<< ndim<< "]"<< endl;for(int i=1;i<=ndim;i++) { x(i)=-1.0+2.0 *rand()/(RAND_MAX+1.0);cout<< "** i["<< i<< "] x["<< x(i)<< "] **"<< endl;} cout<< endl<< "*************************************************"<< endl;}void update_model(int, int, NEWMAT::ColumnVector){}void UranieOptimizerOptInteractiveMethod0(int n, const NEWMAT::ColumnVector &x, double &fx, int &result){ TMethodCall *m=gOptOptimizer-> getMethodCall ()
 
 if (!m) return
 
 for (Int_t i=0;i< n;i++) valInp[i]
 
SetParamPtrs (args, 3)
 
Execute (dddResult)
 
gOptOptimizer incrementIteration ()
 
cout<< "** Iter["<< gOptOptimizer-> getIteration ()<< "] -- fx["<< fx<< "]"<< endl
 
void UranieOptimizerOptInteractiveMethod (int n, int mode, const NEWMAT::ColumnVector &x, real &fx, NEWMAT::ColumnVector &g, NEWMAT::SymmetricMatrix &H, int &result)
 

Variables

URANIE::Optimizer::TOptimizerOptgOptOptimizer
 
NEWMAT::ColumnVector & x
 
Double_t * valInp = new Double_t[n]
 
Double_t * valOut = new Double_t[1]
 
Long_t args [3] = (Long_t) n
 
Double_t dddResult
 
 fx = valOut[0]
 
 result = NLPFunction
 

Detailed Description

Implementation of the class URANIE::Optimizer::TOptimizerOpt.

Author
Fabrice Gaudier fabri.nosp@m.ce.g.nosp@m.audie.nosp@m.r@ce.nosp@m.a.fr
Date
thu jan 3 14:06:39 CET 2008

Function Documentation

◆ ClassImp()

◆ Execute()

m Execute ( dddResult  )

◆ for()

for ( )

◆ getIteration()

cout<< "** Iter["<< gOptOptimizer-> getIteration ( )

◆ getMethodCall()

cout<< "**** init_eqm - Dim["<< ndim<< "]"<< endl; for(int i=1;i<=ndim;i++) { x(i)=-1.0+2.0 *rand()/(RAND_MAX+1.0); cout<< "** i["<< i<< "] x["<< x(i)<< "] **"<< endl; } cout<< endl<< "*************************************************"<< endl;}void update_model(int, int, NEWMAT::ColumnVector){}void UranieOptimizerOptInteractiveMethod0(int n, const NEWMAT::ColumnVector &x, double &fx, int &result){ TMethodCall *m=gOptOptimizer-> getMethodCall ( )

◆ if()

if ( m)

◆ incrementIteration()

gOptOptimizer incrementIteration ( )

◆ SetParamPtrs()

m SetParamPtrs ( args  ,
 
)

◆ UranieOptimizerOptInteractiveMethod()

void UranieOptimizerOptInteractiveMethod ( int  n,
int  mode,
const NEWMAT::ColumnVector &  x,
real &  fx,
NEWMAT::ColumnVector &  g,
NEWMAT::SymmetricMatrix &  H,
int &  result 
)

Variable Documentation

◆ args

args[2] = (Long_t) n

◆ dddResult

Double_t dddResult

◆ fx

◆ gOptOptimizer

◆ result

result = NLPFunction

◆ valInp

valInp = new Double_t[n]

◆ valOut

valOut = new Double_t[1]

◆ x

NEWMAT::ColumnVector& x
Initial value:
{
cout << endl << endl << "*************************************************"
<< endl

Referenced by ClassImp(), and UranieOptimizerOptInteractiveMethod().