Description of the class TBestEstimate.
More...
#include <TBestEstimate.h>
|
|
| | TBestEstimate () |
| | Empty constructor. More...
|
| |
| | TBestEstimate (Int_t nParam, TMatrixD a, Int_t nResp, TMatrixD m, TMatrixD r, TMatrixD ca, TMatrixD cm, TMatrixD s, TMatrixD car) |
| | Constructor with only matrices. More...
|
| |
| | TBestEstimate (TDataServer *tdsParam, TDataServer *tdsMeasures, TDataServer *tdsResponses, TMatrixD sMatrix, TMatrixD carMatrix) |
| | Constructor with a user given sensitivity matrix. More...
|
| |
| | TBestEstimate (TDataServer *tdsParam, TDataServer *tdsMeasures, TDataServer *tdsResponses, TDataServer *tdsOATSampling, TMatrixD carMatrix) |
| | Constructor with results of an OAT design instead of a sensitivity matrix. More...
|
| |
| virtual | ~TBestEstimate () |
| | Default destructor. More...
|
| |
|
| void | setParameterData (TDataServer *tds) |
| |
| TDataServer * | getParameterData () |
| |
| void | setMeasureData (TDataServer *tds) |
| |
| TDataServer * | getMeasureData () |
| |
| void | setResponseData (TDataServer *tds) |
| |
| TDataServer * | getResponseData () |
| |
| void | setOATSamplingData (TDataServer *tds) |
| |
| TDataServer * | getOATSamplingData () |
| |
| void | setSensitivityMatrix (TMatrixD matrix) |
| |
| TMatrixD | getSensitivityMatrix () |
| |
| void | setParameterResponseCovMatrix (TMatrixD matrix) |
| |
| TMatrixD | getParameterResponseCovMatrix () |
| |
| TMatrixD | getParameterMatrix () |
| |
| TMatrixD | getMeasureMatrix () |
| |
| TMatrixD | getResponseMatrix () |
| |
| TMatrixD | getParameterCovMatrix () |
| |
| TMatrixD | getMeasureCovMatrix () |
| |
| TMatrixD | getResponsesCovMatrix () |
| |
| TMatrixD | getDifferencesCovMatrix () |
| |
| TMatrixD | getBestEstParameterMatrix () |
| |
| TMatrixD | getBestEstResponseMatrix () |
| |
| TMatrixD | getBestEstParameterCovMatrix () |
| |
| TMatrixD | getBestEstResponsesCovMatrix () |
| |
| TMatrixD | getBestEstParameterResponsesCovMatrix () |
| |
| Double_t | getChi2 () |
| |
| Double_t | getConsistencyMeasure () |
| |
| Int_t | getNInputParameter () |
| |
| Int_t | getNResponses () |
| |
| Int_t | getNTimeStepsInputParameter () |
| |
| Int_t | getNTimeStepsResponses () |
| |
|
| void | buildMatrices () |
| |
| void | buildSensitivityMatrix () |
| |
| void | runBestEstimate () |
| |
|
| void | setLog () |
| | Print the state of the algorithm of optimization. More...
|
| |
| void | unsetLog () |
| |
| void | changeLog () |
| |
| Bool_t | getLog () |
| |
| virtual void | printLog (Option_t *option="") |
| |
Description of the class TBestEstimate.
To be written by the developper.
◆ TBestEstimate() [1/4]
| URANIE::Optimizer::TBestEstimate::TBestEstimate |
( |
| ) |
|
◆ TBestEstimate() [2/4]
| URANIE::Optimizer::TBestEstimate::TBestEstimate |
( |
Int_t |
nParam, |
|
|
TMatrixD |
a, |
|
|
Int_t |
nResp, |
|
|
TMatrixD |
m, |
|
|
TMatrixD |
r, |
|
|
TMatrixD |
ca, |
|
|
TMatrixD |
cm, |
|
|
TMatrixD |
s, |
|
|
TMatrixD |
car |
|
) |
| |
Constructor with only matrices.
This constructor receives all the necessary matrices as parameters
- Parameters
-
| nParam | (Int_t) number of input parameters. |
| a | (TMatrixD) the matrix containing the nominal values of the parameters. |
| nResp | (Int_t) number of responses. |
| m | (TMatrixD) the matrix containing the measured responses. |
| r | (TMatrixD) the matrix containing the computed responses. |
| ca | (TMatrixD) the covariance matrix of the parameters.
|
| cm | (TMatrixD) the covariance matrix of the measured responses. |
| s | (TMatrixD) the matrix containing the sensitivities of the computed repsonses to each parameter. |
| car | (TMatrixD) the matrix of the correlation between parameters and responses. |
◆ TBestEstimate() [3/4]
| URANIE::Optimizer::TBestEstimate::TBestEstimate |
( |
TDataServer * |
tdsParam, |
|
|
TDataServer * |
tdsMeasures, |
|
|
TDataServer * |
tdsResponses, |
|
|
TMatrixD |
sMatrix, |
|
|
TMatrixD |
carMatrix |
|
) |
| |
Constructor with a user given sensitivity matrix.
This constructor receives a user given sensitivity matrix.
- Parameters
-
| tdsParam | (URANIE::DataServer::TDataServer*) the data server containing the nominal values of the parameters and their covariance matrix, if any. |
| tdsMeasures | (URANIE::DataServer::TDataServer*) the data server containing the measured (experimental) responses and their covariance matrix, if any. |
| tdsResponses | (URANIE::DataServer::TDataServer*) the data server containing the computed responses. |
| sMatrix | (TMatrixD) the matrix containing the sensitivities of the computed repsonses to each parameter. |
| carMatrix | (TMatrixD) the matrix of the correlation between parameters and responses. |
◆ TBestEstimate() [4/4]
| URANIE::Optimizer::TBestEstimate::TBestEstimate |
( |
TDataServer * |
tdsParam, |
|
|
TDataServer * |
tdsMeasures, |
|
|
TDataServer * |
tdsResponses, |
|
|
TDataServer * |
tdsOATSampling, |
|
|
TMatrixD |
carMatrix |
|
) |
| |
Constructor with results of an OAT design instead of a sensitivity matrix.
This constructor receives a user given tds with the results of an OAT sampling to build the sensitivity matrix. This is necessary when dealing with time dependent model parameters and responses.
- Parameters
-
| tdsParam | (URANIE::DataServer::TDataServer*) the data server containing the nominal values of the parameters and their covariance matrix, if any. |
| tdsMeasures | (URANIE::DataServer::TDataServer*) the data server containing the measured (experimental) responses and their covariance matrix, if any. |
| tdsResponses | (URANIE::DataServer::TDataServer*) the data server containing the computed responses. |
| tdsOATSampling | (URANIE::DataServer::TDataServer*) the data server containing the results of an OAT sampling on time dependent parameters and responses. The sensitivity matrix will be constructed from it. |
| carMatrix | (TMatrixD) the matrix of the correlation between parameters and responses. |
◆ ~TBestEstimate()
| virtual URANIE::Optimizer::TBestEstimate::~TBestEstimate |
( |
| ) |
|
|
virtual |
◆ buildMatrices()
| void URANIE::Optimizer::TBestEstimate::buildMatrices |
( |
| ) |
|
◆ buildSensitivityMatrix()
| void URANIE::Optimizer::TBestEstimate::buildSensitivityMatrix |
( |
| ) |
|
◆ changeLog()
| void URANIE::Optimizer::TBestEstimate::changeLog |
( |
| ) |
|
|
inline |
◆ getBestEstParameterCovMatrix()
| TMatrixD URANIE::Optimizer::TBestEstimate::getBestEstParameterCovMatrix |
( |
| ) |
|
|
inline |
◆ getBestEstParameterMatrix()
| TMatrixD URANIE::Optimizer::TBestEstimate::getBestEstParameterMatrix |
( |
| ) |
|
|
inline |
◆ getBestEstParameterResponsesCovMatrix()
| TMatrixD URANIE::Optimizer::TBestEstimate::getBestEstParameterResponsesCovMatrix |
( |
| ) |
|
|
inline |
◆ getBestEstResponseMatrix()
| TMatrixD URANIE::Optimizer::TBestEstimate::getBestEstResponseMatrix |
( |
| ) |
|
|
inline |
◆ getBestEstResponsesCovMatrix()
| TMatrixD URANIE::Optimizer::TBestEstimate::getBestEstResponsesCovMatrix |
( |
| ) |
|
|
inline |
◆ getChi2()
| Double_t URANIE::Optimizer::TBestEstimate::getChi2 |
( |
| ) |
|
|
inline |
◆ getConsistencyMeasure()
| Double_t URANIE::Optimizer::TBestEstimate::getConsistencyMeasure |
( |
| ) |
|
|
inline |
◆ getDifferencesCovMatrix()
| TMatrixD URANIE::Optimizer::TBestEstimate::getDifferencesCovMatrix |
( |
| ) |
|
|
inline |
◆ getLog()
| Bool_t URANIE::Optimizer::TBestEstimate::getLog |
( |
| ) |
|
|
inline |
◆ getMeasureCovMatrix()
| TMatrixD URANIE::Optimizer::TBestEstimate::getMeasureCovMatrix |
( |
| ) |
|
|
inline |
◆ getMeasureData()
| TDataServer* URANIE::Optimizer::TBestEstimate::getMeasureData |
( |
| ) |
|
|
inline |
◆ getMeasureMatrix()
| TMatrixD URANIE::Optimizer::TBestEstimate::getMeasureMatrix |
( |
| ) |
|
|
inline |
◆ getNInputParameter()
| Int_t URANIE::Optimizer::TBestEstimate::getNInputParameter |
( |
| ) |
|
|
inline |
◆ getNResponses()
| Int_t URANIE::Optimizer::TBestEstimate::getNResponses |
( |
| ) |
|
|
inline |
◆ getNTimeStepsInputParameter()
| Int_t URANIE::Optimizer::TBestEstimate::getNTimeStepsInputParameter |
( |
| ) |
|
|
inline |
◆ getNTimeStepsResponses()
| Int_t URANIE::Optimizer::TBestEstimate::getNTimeStepsResponses |
( |
| ) |
|
|
inline |
◆ getOATSamplingData()
| TDataServer* URANIE::Optimizer::TBestEstimate::getOATSamplingData |
( |
| ) |
|
|
inline |
◆ getParameterCovMatrix()
| TMatrixD URANIE::Optimizer::TBestEstimate::getParameterCovMatrix |
( |
| ) |
|
|
inline |
◆ getParameterData()
| TDataServer* URANIE::Optimizer::TBestEstimate::getParameterData |
( |
| ) |
|
|
inline |
◆ getParameterMatrix()
| TMatrixD URANIE::Optimizer::TBestEstimate::getParameterMatrix |
( |
| ) |
|
|
inline |
◆ getParameterResponseCovMatrix()
| TMatrixD URANIE::Optimizer::TBestEstimate::getParameterResponseCovMatrix |
( |
| ) |
|
|
inline |
◆ getResponseData()
| TDataServer* URANIE::Optimizer::TBestEstimate::getResponseData |
( |
| ) |
|
|
inline |
◆ getResponseMatrix()
| TMatrixD URANIE::Optimizer::TBestEstimate::getResponseMatrix |
( |
| ) |
|
|
inline |
◆ getResponsesCovMatrix()
| TMatrixD URANIE::Optimizer::TBestEstimate::getResponsesCovMatrix |
( |
| ) |
|
|
inline |
◆ getSensitivityMatrix()
| TMatrixD URANIE::Optimizer::TBestEstimate::getSensitivityMatrix |
( |
| ) |
|
|
inline |
◆ printLog()
| virtual void URANIE::Optimizer::TBestEstimate::printLog |
( |
Option_t * |
option = "" | ) |
|
|
virtual |
◆ runBestEstimate()
| void URANIE::Optimizer::TBestEstimate::runBestEstimate |
( |
| ) |
|
◆ setLog()
| void URANIE::Optimizer::TBestEstimate::setLog |
( |
| ) |
|
|
inline |
Print the state of the algorithm of optimization.
◆ setMeasureData()
| void URANIE::Optimizer::TBestEstimate::setMeasureData |
( |
TDataServer * |
tds | ) |
|
◆ setOATSamplingData()
| void URANIE::Optimizer::TBestEstimate::setOATSamplingData |
( |
TDataServer * |
tds | ) |
|
◆ setParameterData()
| void URANIE::Optimizer::TBestEstimate::setParameterData |
( |
TDataServer * |
tds | ) |
|
◆ setParameterResponseCovMatrix()
| void URANIE::Optimizer::TBestEstimate::setParameterResponseCovMatrix |
( |
TMatrixD |
matrix | ) |
|
◆ setResponseData()
| void URANIE::Optimizer::TBestEstimate::setResponseData |
( |
TDataServer * |
tds | ) |
|
◆ setSensitivityMatrix()
| void URANIE::Optimizer::TBestEstimate::setSensitivityMatrix |
( |
TMatrixD |
matrix | ) |
|
◆ unsetLog()
| void URANIE::Optimizer::TBestEstimate::unsetLog |
( |
| ) |
|
|
inline |
◆ _a
| TMatrixD URANIE::Optimizer::TBestEstimate::_a |
|
private |
◆ _aBE
| TMatrixD URANIE::Optimizer::TBestEstimate::_aBE |
|
private |
◆ _blog
| Bool_t URANIE::Optimizer::TBestEstimate::_blog |
|
private |
◆ _ca
| TMatrixD URANIE::Optimizer::TBestEstimate::_ca |
|
private |
◆ _caBE
| TMatrixD URANIE::Optimizer::TBestEstimate::_caBE |
|
private |
◆ _car
| TMatrixD URANIE::Optimizer::TBestEstimate::_car |
|
private |
◆ _carBE
| TMatrixD URANIE::Optimizer::TBestEstimate::_carBE |
|
private |
◆ _cd
| TMatrixD URANIE::Optimizer::TBestEstimate::_cd |
|
private |
◆ _chi2
| Double_t URANIE::Optimizer::TBestEstimate::_chi2 |
|
private |
◆ _cm
| TMatrixD URANIE::Optimizer::TBestEstimate::_cm |
|
private |
◆ _cr
| TMatrixD URANIE::Optimizer::TBestEstimate::_cr |
|
private |
◆ _crBE
| TMatrixD URANIE::Optimizer::TBestEstimate::_crBE |
|
private |
◆ _d
| TMatrixD URANIE::Optimizer::TBestEstimate::_d |
|
private |
◆ _m
| TMatrixD URANIE::Optimizer::TBestEstimate::_m |
|
private |
◆ _nParam
| Int_t URANIE::Optimizer::TBestEstimate::_nParam |
|
private |
◆ _nParamTimeSteps
| Int_t URANIE::Optimizer::TBestEstimate::_nParamTimeSteps |
|
private |
◆ _nResp
| Int_t URANIE::Optimizer::TBestEstimate::_nResp |
|
private |
◆ _nRespTimeSteps
| Int_t URANIE::Optimizer::TBestEstimate::_nRespTimeSteps |
|
private |
◆ _r
| TMatrixD URANIE::Optimizer::TBestEstimate::_r |
|
private |
◆ _rBE
| TMatrixD URANIE::Optimizer::TBestEstimate::_rBE |
|
private |
◆ _s
| TMatrixD URANIE::Optimizer::TBestEstimate::_s |
|
private |
◆ _tdsMeas
| TDataServer* URANIE::Optimizer::TBestEstimate::_tdsMeas |
|
private |
◆ _tdsOAT
| TDataServer* URANIE::Optimizer::TBestEstimate::_tdsOAT |
|
private |
◆ _tdsParam
| TDataServer* URANIE::Optimizer::TBestEstimate::_tdsParam |
|
private |
◆ _tdsResp
| TDataServer* URANIE::Optimizer::TBestEstimate::_tdsResp |
|
private |