English Français

Documentation / Manuel développeur

Modules disponibles

Calibration,  DataServer,  Launcher,  MetaModelOptim,  Modeler,  Optimizer,  ReLauncher,  Reliability,  ReOptimizer,  Sampler,  Sensitivity,  UncertModeler,  XmlProblem,   Uranie / Sampler: TGaussianSampling.h Source File
Uranie / Sampler  v4.10.0
/* @license-end */
TGaussianSampling.h
Go to the documentation of this file.
1 // Copyright (C) 2013-2024 CEA/DES
3 //
4 // This program is free software: you can redistribute it and/or modify
5 // it under the terms of the GNU Lesser General Public License as published
6 // by the Free Software Foundation, either version 3 of the License, or any
7 // later version.
8 //
9 // This program is distributed in the hope that it will be useful,
10 // but WITHOUT ANY WARRANTY; without even the implied warranty of
11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 // GNU Lesser General Public License for more details.
13 //
14 // You should have received a copy of the GNU Lesser General Public License
15 // along with this program. If not, see <http://www.gnu.org/licenses/>.
18 // $Id$
19 // $Author$
20 // $Date$
21 // $Revision$
22 // $State$
24 
52 #ifndef TGAUSSIANSAMPLING_H
53 #define TGAUSSIANSAMPLING_H
54 
55 #ifndef ROOT_TMatrixD
56 #include "TMatrixD.h"
57 #endif
58 #ifndef ROOT_TVectorD
59 #include "TVectorD.h"
60 #endif
61 #ifndef ROOT_TNtuple
62 #include "TNtuple.h"
63 #endif
64 #ifndef ROOT_TString
65 #include "TString.h"
66 #endif
67 #ifndef ROOT_TNtupleD
68 #include "TNtupleD.h"
69 #endif
70 #ifndef ROOT_TNamed
71 #include "TNamed.h"
72 #endif
73 
74 // Uranie
75 #include "TSamplerStochastic.h"
76 #include "TAttribute.h"
77 #include "TStochAttribut.h"
78 #include "TDataServer.h"
79 
80 namespace URANIE
81 {
82 namespace Sampler
83 {
85 {
86  // Associations
87 
88  // Attributes
89 public:
90  enum EType
91  {
93  };
94  TMatrixD _corrmatrix;
95  TMatrixD _covmatrix;
97 
98  // Operations
99 private:
100  void splitMatrixVarCoVar(TMatrixD matVarCovar, TVectorD vecOfUnit,
101  TMatrixD &matVarCovar0, TMatrixD &matVarCovar1, TMatrixD &matVarCovar01);
102 
103  void generatenStandardPoints(TMatrixD &matPoints);
106 
107 public:
108  //---------------------------------------------
112 
118  TGaussianSampling(URANIE::DataServer::TDataServer *tds, Option_t *option =
119  "lhs", Int_t nCalcul = 100);
120 
122  virtual ~TGaussianSampling();
124 
125  //---------------------------------------------
131  virtual void init();
134  virtual void terminate();
136 
137  //---------------------------------------------
139  void generateSample(Option_t *option = "");
141 
142  void generateConditionalSample(TVectorD vecOf01, Int_t no, Int_t ni);
143 
144  void setIteratorNameNo(TString sNameNo) {
145  _sIteratorNameNo = sNameNo.Data();
146  }
147 
148  void setIteratorNameNi(TString sNameNi) {
149  _sIteratorNameNi = sNameNi.Data();
150  }
151 
152  const char * getIteratorNameNo() {
153  return _sIteratorNameNo.Data();
154  }
155  const char * getIteratorNameNi() {
156  return _sIteratorNameNi.Data();
157  }
159 
160  //---------------------------------------------
165 
173  void setUserCorrelation(Int_t indx, Int_t indy, double value);
174  void setUserVarianceCovarianceMatrix(Int_t indx, Int_t indy, double value);
175 
177 
182  void setUserCorrelation(TString xname, TString yname, double value);
183 
185 
190  void setUserCorrelation(URANIE::DataServer::TAttribute *x,
191  URANIE::DataServer::TAttribute *y, Double_t value);
192 
194 
210  void setFixedSumCovariance(TString method = "simple");
211 
214  {
215  return _corrmatrix;
216  }
217 
220  {
221  return _covmatrix;
222  }
224 
225  //---------------------------------------------
229  virtual void printLog(Option_t *option = "");
232 
233  ClassDef(URANIE::Sampler::TGaussianSampling, ID_SAMPLER)
234  //Definition d'un plan d'experience
235 };
236 
237 } // Fin du namespace Sampler
238 } // Fin du namespace URANIE
239 #endif
240 // fin du fichier $RCSfile$.
Definition: TAMHCopula.h:59
EType
Definition: TGaussianSampling.h:90
TString _sIteratorNameNi
The specific iterator attribute for NI integer.
Definition: TGaussianSampling.h:105
TMatrixD getCorrelationMatrix()
Retrieve the correlation matrix.
Definition: TGaussianSampling.h:213
virtual void terminate()
The post-processing step.
Definition: TGaussianSampling.h:92
EType _ntype
The covariance matrix.
Definition: TGaussianSampling.h:96
void generateConditionalSample(TVectorD vecOf01, Int_t no, Int_t ni)
Description of the class TGaussianSampling.
Definition: TGaussianSampling.h:84
void setFixedSumCovariance(TString method="simple")
Defines a special covariance matrix.
Creation of the abstract class TSamplerStochastic.
TString _sIteratorNameNo
The specific iterator attribute for NO integer.
Definition: TGaussianSampling.h:104
TMatrixD _covmatrix
The correlation matrix.
Definition: TGaussianSampling.h:95
void generateSample(Option_t *option="")
Generates the sample.
virtual void printLog(Option_t *option="")
Prints the log.
Definition: TGaussianSampling.h:92
void setUserVarianceCovarianceMatrix(Int_t indx, Int_t indy, double value)
TGaussianSampling(URANIE::DataServer::TDataServer *tds, Option_t *option="lhs", Int_t nCalcul=100)
Constructor from a TDataServer, the name of the method and the size of the sample.
const char * getIteratorNameNo()
Definition: TGaussianSampling.h:152
void splitMatrixVarCoVar(TMatrixD matVarCovar, TVectorD vecOfUnit, TMatrixD &matVarCovar0, TMatrixD &matVarCovar1, TMatrixD &matVarCovar01)
The type of sampling (SRS, LHS)
void setIteratorNameNo(TString sNameNo)
Definition: TGaussianSampling.h:144
virtual void init()
The preprocessing step.
virtual ~TGaussianSampling()
Default destructor.
Definition: TSamplerStochastic.h:43
TMatrixD _corrmatrix
Definition: TGaussianSampling.h:94
const char * getIteratorNameNi()
Definition: TGaussianSampling.h:155
void generatenStandardPoints(TMatrixD &matPoints)
void setIteratorNameNi(TString sNameNi)
Definition: TGaussianSampling.h:148
TMatrixD getCovarianceMatrix()
Retrieve the covariance matrix.
Definition: TGaussianSampling.h:219
Definition: TGaussianSampling.h:92
void setUserCorrelation(Int_t indx, Int_t indy, double value)
Defines a correlation between two attributes given by their indexes.