English Français

Documentation / Developer's manual

Available modules

Calibration,  DataServer,  Launcher,  MetaModelOptim,  Modeler,  Optimizer,  ReLauncher,  Reliability,  ReOptimizer,  Sampler,  Sensitivity,  UncertModeler,  XmlProblem,   Uranie / Sampler: TImportanceSampling.h Source File
Uranie / Sampler  v4.10.0
/* @license-end */
TImportanceSampling.h
Go to the documentation of this file.
1 // Copyright (C) 2013-2024 CEA/DES
3 //
4 // This program is free software: you can redistribute it and/or modify
5 // it under the terms of the GNU Lesser General Public License as published
6 // by the Free Software Foundation, either version 3 of the License, or any
7 // later version.
8 //
9 // This program is distributed in the hope that it will be useful,
10 // but WITHOUT ANY WARRANTY; without even the implied warranty of
11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 // GNU Lesser General Public License for more details.
13 //
14 // You should have received a copy of the GNU Lesser General Public License
15 // along with this program. If not, see <http://www.gnu.org/licenses/>.
17 
29 #ifndef TImportanceSampling_H
30 #define TImportanceSampling_H
31 
32 //ROOT
33 #include "Rtypes.h"
34 #include "TLeaf.h"
35 #include "TMath.h"
36 
37 // uranie
38 #include "TDataServer.h"
39 #include "UExceptions.h"
40 #include "TStochAttribut.h"
41 #include "TSamplerStochastic.h"
42 #include "TSampling.h"
43 
44 namespace URANIE
45 {
46 namespace Sampler
47 {
49 {
50 
51 public:
53  {
55  };
57  URANIE::DataServer::TDataServer * _tds_IS;
59  URANIE::DataServer::TStochasticAttribute * _x;
61  URANIE::DataServer::TStochasticAttribute * _is_x;
63  Double_t _mean;
65  Double_t _std;
67  Double_t _proba;
68 
69 protected:
71  Bool_t _blog;
74 
76 public:
80  TImportanceSampling(URANIE::DataServer::TDataServer *tds, TString xname,
82  URANIE::DataServer::TStochasticAttribute *att, Int_t ns);
84  virtual ~TImportanceSampling();
86 
87  //---------------------------------------------
97  URANIE::DataServer::TDataServer *getTDS()
98  {
99  return _tds_IS;
100  }
102 
103  //---------------------------------------------
111  Double_t computeMean(TString u);
116  Double_t computeStd(TString u);
122  Double_t computeThreshold(TString u, Double_t dThreshold);
128  Double_t computeQuantile(TString sVar, Double_t dAlpha,
129  EQuantileMethod nMethod = kQuantile2);
130 
132 
133  //---------------------------------------------
137  void generateSample(Option_t *option = "");
140 
141  //---------------------------------------------
145  void createListOfAttributes();
148 
149  //---------------------------------------------
153  void setLog()
154  {
155  _blog = kTRUE;
156  }
157  void unsetLog()
158  {
159  _blog = kFALSE;
160  }
161  void changeLog()
162  {
163  _blog = _blog ? kFALSE : kTRUE;
164  }
165  Bool_t getLog()
166  {
167  return _blog;
168  }
169  virtual void printLog(Option_t *option = "");
171 
172  ClassDef(URANIE::Sampler::TImportanceSampling, ID_DATASERVER)
173  //Definition of an variable
174 
175 };
176 
177 } // Fin du namespace DataServer
178 } // Fin du names
179 
180 #endif
Definition: TAMHCopula.h:59
Definition: TImportanceSampling.h:54
TSampling * _sampling
THe TSampling object.
Definition: TImportanceSampling.h:73
Definition: TImportanceSampling.h:48
URANIE::DataServer::TStochasticAttribute * _is_x
New law/attribut.
Definition: TImportanceSampling.h:61
Double_t computeMean(TString u)
This method computes the mean of the ouput attribut given in parameter.
Definition: TImportanceSampling.h:54
Definition: TSampling.h:65
Creation of the abstract class TSamplerStochastic.
Definition: TImportanceSampling.h:54
Double_t computeStd(TString u)
This method computes and returns the stantard deviation of the ouput attribut given in parameter...
URANIE::DataServer::TDataServer * getTDS()
This method returns the new tds build by the contructor of the object TIportanceSampling.
Definition: TImportanceSampling.h:97
void generateSample(Option_t *option="")
Generates the Sample.
URANIE::DataServer::TDataServer * _tds_IS
new tds build by the constructor
Definition: TImportanceSampling.h:57
virtual void printLog(Option_t *option="")
Prints the log.
void createListOfAttributes()
Creates the List of attributes to simulate.
Double_t computeThreshold(TString u, Double_t dThreshold)
This method computes and returns the probability of threshold crossing of the ouput attribut given in...
void changeLog()
Definition: TImportanceSampling.h:161
Double_t computeQuantile(TString sVar, Double_t dAlpha, EQuantileMethod nMethod=kQuantile2)
virtual ~TImportanceSampling()
Destructor.
void setLog()
Definition: TImportanceSampling.h:153
void unsetLog()
Definition: TImportanceSampling.h:157
Double_t _proba
probability of threshold crossing
Definition: TImportanceSampling.h:67
Definition: TSamplerStochastic.h:43
TImportanceSampling(URANIE::DataServer::TDataServer *tds, TString xname, URANIE::DataServer::TStochasticAttribute *att, Int_t ns)
Constructor.
Definition: TImportanceSampling.h:54
Double_t _std
standart deviation
Definition: TImportanceSampling.h:65
Bool_t _blog
Boolean for edit the log.
Definition: TImportanceSampling.h:71
Bool_t getLog()
Definition: TImportanceSampling.h:165
URANIE::DataServer::TStochasticAttribute * _x
attribut which be subsitute
Definition: TImportanceSampling.h:59
descritption.
Definition: TImportanceSampling.h:54
Double_t _mean
mean
Definition: TImportanceSampling.h:63
EQuantileMethod
Definition: TImportanceSampling.h:52