Documentation / Manuel développeur
Modules disponibles
Calibration,  DataServer,  Launcher,  MetaModelOptim,  Modeler,  Optimizer,  ReLauncher,  Reliability,  ReOptimizer,  Sampler,  Sensitivity,  UncertModeler,  XmlProblem,  ![]() |
Uranie / Sampler
v4.10.0
|
TMaxiMinLHS.h
Go to the documentation of this file.
120 TMaxiMinLHS(URANIE::DataServer::TDataServer *tds, int sampleSize, double sainitTemp, double saCoeff, int saN, int sainnerN);
Definition: TAMHCopula.h:59
static Double_t getMinDist(const TMatrixD &lhs)
Compute the minimal distance between points.
Definition: TSampling.h:65
Creation of the abstract class TSamplerStochastic.
void createTuple()
Creates the TDSNtupleD of data with only the TStochasticAttributes.
void generateSample(Option_t *option="")
Generates the sample.
Double_t getLPNorm(const TMatrixD &Dist_)
Compute the Lp norm.
unsigned int _nx
Local counter for number of samples and variables.
Definition: TMaxiMinLHS.h:97
TSampling * _sampling
Pointer to a TSampling object if tds is empty;.
Definition: TMaxiMinLHS.h:96
void Permutation(unsigned int &ncolRand, unsigned int &nrowRand1, unsigned int &nrowRand2)
Permute the content of the lhs plan.
unsigned int _SAN
Number of iteration the simulated Annealing algorithm for maximin lhs.
Definition: TMaxiMinLHS.h:88
void transformMatrix(TMatrixD &RefMat, bool toProbaSpace)
transform the sample
void setSAProperties(double &sainitTemp, double &saCoeff, int &saN, int &sainnerN)
Set the Simulated Annealing algorithm properties.
virtual void fillOtherAttributes()
Fills the TAttributeFormula and totally correlated attributes.
Double_t getUpdatedLPNorm(Double_t LP_norm_, unsigned int nrowRand1_, unsigned int nrowRand2_)
update the Lp norm
TMatrixD maximinSA_LHS(const TMatrixD &lhs)
Generate the new LHS.
static void getDistMatrix(TMatrixD &Dist, const TMatrixD &lhs)
Compute the distance matrix.
Definition: TSamplerStochastic.h:43
double _SAinitTemp
Initial temperature of the simulated Annealing algorithm for maximin lhs.
Definition: TMaxiMinLHS.h:86
double _SACoeff
Temperature coefficient of the simulated Annealing algorithm for maximin lhs.
Definition: TMaxiMinLHS.h:87
descritption.
unsigned int _SAinnerN
Inner Number of iteration before changing the temperature of the simulated Annealing algorithm for ma...
Definition: TMaxiMinLHS.h:89
bool _bAlreadyFilled
If the tree is already filled.
Definition: TMaxiMinLHS.h:93
double * _vj
arrays used throughout many calculations
Definition: TMaxiMinLHS.h:98
TMaxiMinLHS(URANIE::DataServer::TDataServer *tds, int sampleSize, double sainitTemp, double saCoeff, int saN, int sainnerN)
Creates a TMaxiMinLHS object from a TDataServer, definig the SA properties.