English Français

Documentation / Developer's manual

Available modules

Calibration,  DataServer,  Launcher,  MetaModelOptim,  Modeler,  Optimizer,  ReLauncher,  Reliability,  ReOptimizer,  Sampler,  Sensitivity,  UncertModeler,  XmlProblem,   Uranie / Sampler: TMaxiMinLHS.h Source File
Uranie / Sampler  v4.10.0
/* @license-end */
TMaxiMinLHS.h
Go to the documentation of this file.
1 // Copyright (C) 2013-2024 CEA/DES
3 //
4 // This program is free software: you can redistribute it and/or modify
5 // it under the terms of the GNU Lesser General Public License as published
6 // by the Free Software Foundation, either version 3 of the License, or any
7 // later version.
8 //
9 // This program is distributed in the hope that it will be useful,
10 // but WITHOUT ANY WARRANTY; without even the implied warranty of
11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 // GNU Lesser General Public License for more details.
13 //
14 // You should have received a copy of the GNU Lesser General Public License
15 // along with this program. If not, see <http://www.gnu.org/licenses/>.
18 // $Id$
19 // $Author$
20 // $Date$
21 // $Revision$
22 // $State$
24 
45 #ifndef TMAXIMINLHS_H
46 #define TMAXIMINLHS_H
47 
48 #ifndef ROOT_TMatrixD
49 #include "TMatrixD.h"
50 #endif
51 #ifndef ROOT_TVectorD
52 #include "TVectorD.h"
53 #endif
54 #ifndef ROOT_TNtuple
55 #include "TNtuple.h"
56 #endif
57 #ifndef ROOT_TString
58 #include "TString.h"
59 #endif
60 #ifndef ROOT_TNtupleD
61 #include "TNtupleD.h"
62 #endif
63 #ifndef ROOT_TNamed
64 #include "TNamed.h"
65 #endif
66 
67 // Uranie
68 #include "TSamplerStochastic.h"
69 #include "TSampling.h"
70 #include "TAttribute.h"
71 #include "TStochAttribut.h"
72 #include "TDataServer.h"
73 
74 namespace URANIE
75 {
76 namespace Sampler
77 {
79 {
80  // Associations
81 
82  // Attributes
83 public:
86  double _SAinitTemp;
87  double _SACoeff;
88  unsigned int _SAN;
89  unsigned int _SAinnerN;
90 
91 
94 
97  unsigned int _ns, _nx;
98  double *_vi, *_vj;
99 
100  // Operations
101 public:
102  //---------------------------------------------
106 
120  TMaxiMinLHS(URANIE::DataServer::TDataServer *tds, int sampleSize, double sainitTemp, double saCoeff, int saN, int sainnerN);
121 
123  virtual ~TMaxiMinLHS();
125 
126  //---------------------------------------------
130 
135  void generateSample(Option_t *option = "");
136 
138  void setSeed(Int_t ind = 0);
139 
141 
146  void transformMatrix(TMatrixD &RefMat, bool toProbaSpace);
147 
149  virtual void fillOtherAttributes();
151 
152 
153  //---------------------------------------------
157 
163  static Double_t getMinDist(const TMatrixD &lhs);
164 
166 
172  static void getDistMatrix(TMatrixD& Dist, const TMatrixD &lhs);
173 
175 
180  Double_t getLPNorm(const TMatrixD &Dist_);
181 
183 
188  Double_t getUpdatedLPNorm(Double_t LP_norm_, unsigned int nrowRand1_, unsigned int nrowRand2_);
189 
191 
197  TMatrixD maximinSA_LHS(const TMatrixD &lhs);
198 
200 
208  void setSAProperties(double &sainitTemp, double &saCoeff, int &saN, int &sainnerN);
209 
211 
217  void Permutation(unsigned int & ncolRand, unsigned int & nrowRand1, unsigned int & nrowRand2);
219 
220  //---------------------------------------------
224 
228  virtual void printLog(Option_t *option = "");
229  void createTuple();
231 
232  ClassDef(URANIE::Sampler::TMaxiMinLHS, ID_SAMPLER)
233  //Definition d'un plan d'exp�rience
234 };
235 
236 } // Fin du namespace Sampler
237 } // Fin du namespace URANIE
238 #endif
239 // fin du fichier $RCSfile$.
Definition: TAMHCopula.h:59
TMatrixD _varyingLHS
Definition: TMaxiMinLHS.h:95
unsigned int _ns
Definition: TMaxiMinLHS.h:97
Description of the class TMaxiMinLHS.
Definition: TMaxiMinLHS.h:78
static Double_t getMinDist(const TMatrixD &lhs)
Compute the minimal distance between points.
Definition: TSampling.h:65
TMatrixD _fp
Definition: TMaxiMinLHS.h:95
Creation of the abstract class TSamplerStochastic.
TMatrixD _varyingDist
Definition: TMaxiMinLHS.h:95
void createTuple()
Creates the TDSNtupleD of data with only the TStochasticAttributes.
double * _vi
Definition: TMaxiMinLHS.h:98
void generateSample(Option_t *option="")
Generates the sample.
Double_t getLPNorm(const TMatrixD &Dist_)
Compute the Lp norm.
unsigned int _nx
Local counter for number of samples and variables.
Definition: TMaxiMinLHS.h:97
TSampling * _sampling
Pointer to a TSampling object if tds is empty;.
Definition: TMaxiMinLHS.h:96
TMatrixD _currentLHS
Definition: TMaxiMinLHS.h:95
void Permutation(unsigned int &ncolRand, unsigned int &nrowRand1, unsigned int &nrowRand2)
Permute the content of the lhs plan.
virtual ~TMaxiMinLHS()
Default destructor.
unsigned int _SAN
Number of iteration the simulated Annealing algorithm for maximin lhs.
Definition: TMaxiMinLHS.h:88
void transformMatrix(TMatrixD &RefMat, bool toProbaSpace)
transform the sample
TMatrixD _currentDist
Definition: TMaxiMinLHS.h:95
void setSAProperties(double &sainitTemp, double &saCoeff, int &saN, int &sainnerN)
Set the Simulated Annealing algorithm properties.
virtual void fillOtherAttributes()
Fills the TAttributeFormula and totally correlated attributes.
Double_t getUpdatedLPNorm(Double_t LP_norm_, unsigned int nrowRand1_, unsigned int nrowRand2_)
update the Lp norm
TMatrixD maximinSA_LHS(const TMatrixD &lhs)
Generate the new LHS.
static void getDistMatrix(TMatrixD &Dist, const TMatrixD &lhs)
Compute the distance matrix.
Definition: TSamplerStochastic.h:43
double _SAinitTemp
Initial temperature of the simulated Annealing algorithm for maximin lhs.
Definition: TMaxiMinLHS.h:86
virtual void printLog(Option_t *option="")
Prints the log.
double _SACoeff
Temperature coefficient of the simulated Annealing algorithm for maximin lhs.
Definition: TMaxiMinLHS.h:87
descritption.
unsigned int _SAinnerN
Inner Number of iteration before changing the temperature of the simulated Annealing algorithm for ma...
Definition: TMaxiMinLHS.h:89
bool _bAlreadyFilled
If the tree is already filled.
Definition: TMaxiMinLHS.h:93
double * _vj
arrays used throughout many calculations
Definition: TMaxiMinLHS.h:98
void setSeed(Int_t ind=0)
Set the random generator seed.
TMaxiMinLHS(URANIE::DataServer::TDataServer *tds, int sampleSize, double sainitTemp, double saCoeff, int saN, int sainnerN)
Creates a TMaxiMinLHS object from a TDataServer, definig the SA properties.