Documentation / Developer's manual
Available modules
Calibration,  DataServer,  Launcher,  MetaModelOptim,  Modeler,  Optimizer,  ReLauncher,  Reliability,  ReOptimizer,  Sampler,  Sensitivity,  UncertModeler,  XmlProblem,  
Uranie / Sampler v4.9.0
|
TVQ.h
Go to the documentation of this file.
Creation of the abstract class TSamplerStochastic.
Definition TSamplerStochastic.h:44
Bool_t _bdrawProgressBar
Boolean to know if the progress bar has to be drawn.
Definition TVQ.h:66
virtual void terminate()
The post-processing step.
Definition TVQ.cxx:163
TVector _vecindexorg
The vector of index of the database.
Definition TVQ.h:68
Bool_t _bsaveall
The boolean to save all the data in the learning (default = kFALSE)
Definition TVQ.h:71
URANIE::DataServer::TDataServer * _subtds
The subsampler returened by the getSubSample method.
Definition TVQ.h:69
URANIE::DataServer::TDataServer * getSubSample(Option_t *option="")
Generate the Sample and return the TDataServer.
Definition TVQ.cxx:205
void createListOfAttributes()
Creates the list of attributes to select patterns.
Definition TVQ.cxx:70
void shuffle()
shuffle the learning database (original TDataServer)
Definition TVQ.cxx:174
virtual void printLog(Option_t *option="")
Prints the log.
Definition TVQ.cxx:214
void setDrawProgressBar(Bool_t bbool=kTRUE)
Set the "draw progress bar" flag.
Definition TVQ.h:113
Bool_t getDrawProgressBar()
Get the clean flag.
Definition TVQ.h:122
Definition TAMHCopula.h:60