Documentation / Developer's manual
Available modules
Calibration,  DataServer,  Launcher,  MetaModelOptim,  Modeler,  Optimizer,  ReLauncher,  Reliability,  ReOptimizer,  Sampler,  Sensitivity,  UncertModeler,  XmlProblem,  
Uranie / Sampler v4.9.0
|
#include <TMelange.h>
Public Member Functions | |
TMelange (Int_t n) | |
Generator of random number. | |
~TMelange () | |
void | _printlog () |
void | setTaille (Int_t n) |
Int_t | getTaille () |
Int_t | getTailleMelange () |
Double_t | eval (TVectorD X) |
Double_t | eval (Double_t x) |
Int_t | getDimMelange () |
TNtupleD * | getTuple () |
TVectorD | getSeuil () |
Double_t | getProb (Int_t i) |
TVectorD | getMean (Int_t i) |
TVectorD | getMean () |
TVectorD | getVariance () |
TVectorD | getSigma () |
TMatrixD | getMatEcartTypeCorrelation (Int_t i) |
TMatrixD | getMatEcartTypeCorrelation () |
TVectorD | getSigma (Int_t i) |
TMatrixD | getMatCorrelation (Int_t i) |
TMatrixD | getMatCovariance (Int_t i) |
TMatrixD | getMatCovariance () |
TMatrixD | getMatCorrelation () |
Double_t | getObs () |
void | simulationMelange () |
Classic simulation of a mixing. | |
void | addLoi (TVectorD moy, TMatrixD ecartTypeCorr, Double_t proba) |
void | removeLoi (Int_t i) |
void | addTuple (TNtupleD *t) |
TVectorD | LoiDeZ (TVectorD X) |
Computes the conditional repartition function for X belonging to a mode. | |
TVectorD | discrimination (TVectorD X) |
Computes for each mode, the 'a posteriori' probability that X belongs to the mode. Enables to undertake a discriminant analysis. | |
void | reset () |
void | remplacer (Int_t i, TVectorD M, TMatrixD A) |
Replaces the component i by a component N(M,A) | |
void | afficher () |
Prints the characteristics of mixing modes. | |
Private Attributes | |
TNormale * | f |
TList * | lLoi |
Normal law used for intermediary calculations. | |
Int_t | _tailleMelange |
Chained list used to go through the mixing. | |
Int_t | _taille |
Int_t | _dimMelange |
Sample size to be simulated. | |
TNtupleD * | _nt |
TRandom * | _rand |
Tuple in which the sample is stocked. | |
Constructor & Destructor Documentation
◆ TMelange()
TMelange::TMelange | ( | Int_t | n | ) |
Generator of random number.
References _dimMelange, _nt, _rand, _taille, _tailleMelange, f, and lLoi.
◆ ~TMelange()
TMelange::~TMelange | ( | ) |
References lLoi.
Member Function Documentation
◆ _printlog()
void TMelange::_printlog | ( | ) |
References _taille, and _tailleMelange.
◆ addLoi()
void TMelange::addLoi | ( | TVectorD | moy, |
TMatrixD | ecartTypeCorr, | ||
Double_t | proba | ||
) |
References _dimMelange, _tailleMelange, TDistribution::getDim(), lLoi, and TDistribution::setProb().
Referenced by TMCMC::NKCSampling().
◆ addTuple()
void TMelange::addTuple | ( | TNtupleD * | t | ) |
References _nt.
Referenced by simulationMelange().
◆ afficher()
void TMelange::afficher | ( | ) |
Prints the characteristics of mixing modes.
References getMatEcartTypeCorrelation(), getMean(), and getTailleMelange().
◆ discrimination()
TVectorD TMelange::discrimination | ( | TVectorD | X | ) |
Computes for each mode, the 'a posteriori' probability that X belongs to the mode. Enables to undertake a discriminant analysis.
References _tailleMelange, eval(), TNormale::eval(), f, getMatEcartTypeCorrelation(), getMean(), getProb(), TDistribution::setMatEcartTypeCorrelation(), and TDistribution::setMean().
Referenced by TMCMC::gibbsSampling(), TMCMC::randomWalkMetropolisSampling(), and TMCMC::varTimeMetropolisSampling().
◆ eval() [1/2]
Double_t TMelange::eval | ( | Double_t | x | ) |
◆ eval() [2/2]
Double_t TMelange::eval | ( | TVectorD | X | ) |
References _tailleMelange, TNormale::eval(), f, getMatEcartTypeCorrelation(), getMean(), getProb(), TDistribution::setMatEcartTypeCorrelation(), and TDistribution::setMean().
Referenced by discrimination(), LoiDeZ(), TMCMC::NKCSampling(), TMCMC::randomWalkMetropolisSampling(), and TMCMC::varTimeMetropolisSampling().
◆ getDimMelange()
|
inline |
References _dimMelange.
Referenced by TMCMC::Draw(), TMCMC::gibbsSampling(), TMCMC::NKCSampling(), TMCMC::NKCSampling2(), TMCMC::randomWalkMetropolisSampling(), and TMCMC::varTimeMetropolisSampling().
◆ getMatCorrelation() [1/2]
TMatrixD TMelange::getMatCorrelation | ( | ) |
References _dimMelange, getMatCovariance(), and getSigma().
Referenced by getMatEcartTypeCorrelation().
◆ getMatCorrelation() [2/2]
TMatrixD TMelange::getMatCorrelation | ( | Int_t | i | ) |
References _tailleMelange, TDistribution::getMatCorrelation(), and lLoi.
◆ getMatCovariance() [1/2]
TMatrixD TMelange::getMatCovariance | ( | ) |
References _dimMelange, _tailleMelange, getMatCovariance(), and getProb().
Referenced by getMatCorrelation(), getMatCovariance(), and getVariance().
◆ getMatCovariance() [2/2]
TMatrixD TMelange::getMatCovariance | ( | Int_t | i | ) |
References _tailleMelange, TDistribution::getMatCovariance(), and lLoi.
◆ getMatEcartTypeCorrelation() [1/2]
TMatrixD TMelange::getMatEcartTypeCorrelation | ( | ) |
References _dimMelange, getMatCorrelation(), and getSigma().
Referenced by afficher(), discrimination(), eval(), eval(), and LoiDeZ().
◆ getMatEcartTypeCorrelation() [2/2]
TMatrixD TMelange::getMatEcartTypeCorrelation | ( | Int_t | i | ) |
References _tailleMelange, TDistribution::getMatEcartTypeCorrelation(), and lLoi.
Referenced by TMCMC::Draw(), TMCMC::gibbsSampling(), TMCMC::NKCSampling(), TMCMC::NKCSampling2(), and TMCMC::randomWalkMetropolisSampling().
◆ getMean() [1/2]
TVectorD TMelange::getMean | ( | ) |
References _dimMelange, _tailleMelange, getMean(), and getProb().
Referenced by afficher(), discrimination(), eval(), eval(), getMean(), and LoiDeZ().
◆ getMean() [2/2]
TVectorD TMelange::getMean | ( | Int_t | i | ) |
References _tailleMelange, TDistribution::getMean(), and lLoi.
Referenced by TMCMC::Draw(), TMCMC::gibbsSampling(), and TMCMC::NKCSampling2().
◆ getObs()
Double_t TMelange::getObs | ( | ) |
References _rand, TNormale::getObs(), getSeuil(), and lLoi.
◆ getProb()
Double_t TMelange::getProb | ( | Int_t | i | ) |
References _tailleMelange, TDistribution::getProb(), and lLoi.
Referenced by discrimination(), eval(), eval(), getMatCovariance(), getMean(), LoiDeZ(), TMCMC::NKCSampling2(), and remplacer().
◆ getSeuil()
TVectorD TMelange::getSeuil | ( | ) |
References _tailleMelange, TDistribution::getProb(), and lLoi.
Referenced by getObs(), and simulationMelange().
◆ getSigma() [1/2]
TVectorD TMelange::getSigma | ( | ) |
References _dimMelange, and getVariance().
Referenced by TMCMC::Draw(), getMatCorrelation(), getMatEcartTypeCorrelation(), and TMCMC::varTimeMetropolisSampling().
◆ getSigma() [2/2]
TVectorD TMelange::getSigma | ( | Int_t | i | ) |
References _tailleMelange, TDistribution::getSigma(), and lLoi.
◆ getTaille()
|
inline |
References _taille.
◆ getTailleMelange()
|
inline |
References _tailleMelange.
Referenced by afficher(), TMCMC::Draw(), TMCMC::gibbsSampling(), TMCMC::NKCSampling2(), TMCMC::randomWalkMetropolisSampling(), and TMCMC::varTimeMetropolisSampling().
◆ getTuple()
|
inline |
References _nt.
Referenced by TMCMC::gibbsSampling(), TMCMC::NKCSampling(), TMCMC::NKCSampling2(), TMCMC::randomWalkMetropolisSampling(), and TMCMC::varTimeMetropolisSampling().
◆ getVariance()
TVectorD TMelange::getVariance | ( | ) |
References getMatCovariance().
Referenced by getSigma().
◆ LoiDeZ()
TVectorD TMelange::LoiDeZ | ( | TVectorD | X | ) |
Computes the conditional repartition function for X belonging to a mode.
References _tailleMelange, eval(), TNormale::eval(), f, getMatEcartTypeCorrelation(), getMean(), getProb(), TDistribution::setMatEcartTypeCorrelation(), and TDistribution::setMean().
Referenced by TMCMC::gibbsSampling().
◆ removeLoi()
void TMelange::removeLoi | ( | Int_t | i | ) |
References _tailleMelange, and lLoi.
◆ remplacer()
void TMelange::remplacer | ( | Int_t | i, |
TVectorD | M, | ||
TMatrixD | A | ||
) |
Replaces the component i by a component N(M,A)
References _dimMelange, getProb(), lLoi, and TDistribution::setProb().
◆ reset()
void TMelange::reset | ( | ) |
References _tailleMelange, and lLoi.
Referenced by TMCMC::NKCSampling().
◆ setTaille()
|
inline |
References _taille.
◆ simulationMelange()
void TMelange::simulationMelange | ( | ) |
Classic simulation of a mixing.
In a firt step, the classic simulation consists in selecting ramdomly an integer, then choosing a sample corresponding to the law which contains the index. The law is recovered from thresholds . For each law, we count the number of times that an integer is located betweeen . Finally, for each law , a sample is chosen, with the constraint that the sum is equal to the desired size.
References _rand, _taille, _tailleMelange, TNormale::acceptationRejet(), addTuple(), getSeuil(), TDistribution::getTuple(), lLoi, and TDistribution::setTaille().
Member Data Documentation
◆ _dimMelange
|
private |
Sample size to be simulated.
Referenced by addLoi(), getDimMelange(), getMatCorrelation(), getMatCovariance(), getMatEcartTypeCorrelation(), getMean(), getSigma(), remplacer(), and TMelange().
◆ _nt
|
private |
Referenced by addTuple(), getTuple(), and TMelange().
◆ _rand
|
private |
Tuple in which the sample is stocked.
Referenced by getObs(), simulationMelange(), and TMelange().
◆ _taille
|
private |
Referenced by _printlog(), getTaille(), setTaille(), simulationMelange(), and TMelange().
◆ _tailleMelange
|
private |
Chained list used to go through the mixing.
Referenced by _printlog(), addLoi(), discrimination(), eval(), eval(), getMatCorrelation(), getMatCovariance(), getMatCovariance(), getMatEcartTypeCorrelation(), getMean(), getMean(), getProb(), getSeuil(), getSigma(), getTailleMelange(), LoiDeZ(), removeLoi(), reset(), simulationMelange(), and TMelange().
◆ f
|
private |
Referenced by discrimination(), eval(), eval(), LoiDeZ(), and TMelange().
◆ lLoi
|
private |
Normal law used for intermediary calculations.
Referenced by addLoi(), getMatCorrelation(), getMatCovariance(), getMatEcartTypeCorrelation(), getMean(), getObs(), getProb(), getSeuil(), getSigma(), removeLoi(), remplacer(), reset(), simulationMelange(), TMelange(), and ~TMelange().