English Français

Documentation / Developer's manual

Available modules

Calibration,  DataServer,  Launcher,  MetaModelOptim,  Modeler,  Optimizer,  ReLauncher,  Reliability,  ReOptimizer,  Sampler,  Sensitivity,  UncertModeler,  XmlProblem,   Uranie / Sampler: TMelange Class Reference
Uranie / Sampler v4.9.0
/* @license-end */
TMelange Class Reference

#include <TMelange.h>

Collaboration diagram for TMelange:

Public Member Functions

 TMelange (Int_t n)
 Generator of random number.
 
 ~TMelange ()
 
void _printlog ()
 
void setTaille (Int_t n)
 
Int_t getTaille ()
 
Int_t getTailleMelange ()
 
Double_t eval (TVectorD X)
 
Double_t eval (Double_t x)
 
Int_t getDimMelange ()
 
TNtupleD * getTuple ()
 
TVectorD getSeuil ()
 
Double_t getProb (Int_t i)
 
TVectorD getMean (Int_t i)
 
TVectorD getMean ()
 
TVectorD getVariance ()
 
TVectorD getSigma ()
 
TMatrixD getMatEcartTypeCorrelation (Int_t i)
 
TMatrixD getMatEcartTypeCorrelation ()
 
TVectorD getSigma (Int_t i)
 
TMatrixD getMatCorrelation (Int_t i)
 
TMatrixD getMatCovariance (Int_t i)
 
TMatrixD getMatCovariance ()
 
TMatrixD getMatCorrelation ()
 
Double_t getObs ()
 
void simulationMelange ()
 Classic simulation of a mixing.
 
void addLoi (TVectorD moy, TMatrixD ecartTypeCorr, Double_t proba)
 
void removeLoi (Int_t i)
 
void addTuple (TNtupleD *t)
 
TVectorD LoiDeZ (TVectorD X)
 Computes the conditional repartition function for X belonging to a mode.
 
TVectorD discrimination (TVectorD X)
 Computes for each mode, the 'a posteriori' probability that X belongs to the mode. Enables to undertake a discriminant analysis.
 
void reset ()
 
void remplacer (Int_t i, TVectorD M, TMatrixD A)
 Replaces the component i by a component N(M,A)
 
void afficher ()
 Prints the characteristics of mixing modes.
 

Private Attributes

TNormalef
 
TList * lLoi
 Normal law used for intermediary calculations.
 
Int_t _tailleMelange
 Chained list used to go through the mixing.
 
Int_t _taille
 
Int_t _dimMelange
 Sample size to be simulated.
 
TNtupleD * _nt
 
TRandom * _rand
 Tuple in which the sample is stocked.
 

Constructor & Destructor Documentation

◆ TMelange()

TMelange::TMelange ( Int_t  n)

Generator of random number.

References _dimMelange, _nt, _rand, _taille, _tailleMelange, f, and lLoi.

◆ ~TMelange()

TMelange::~TMelange ( )

References lLoi.

Member Function Documentation

◆ _printlog()

void TMelange::_printlog ( )

References _taille, and _tailleMelange.

◆ addLoi()

void TMelange::addLoi ( TVectorD  moy,
TMatrixD  ecartTypeCorr,
Double_t  proba 
)

◆ addTuple()

void TMelange::addTuple ( TNtupleD *  t)

References _nt.

Referenced by simulationMelange().

◆ afficher()

void TMelange::afficher ( )

Prints the characteristics of mixing modes.

References getMatEcartTypeCorrelation(), getMean(), and getTailleMelange().

◆ discrimination()

TVectorD TMelange::discrimination ( TVectorD  X)

Computes for each mode, the 'a posteriori' probability that X belongs to the mode. Enables to undertake a discriminant analysis.

References _tailleMelange, eval(), TNormale::eval(), f, getMatEcartTypeCorrelation(), getMean(), getProb(), TDistribution::setMatEcartTypeCorrelation(), and TDistribution::setMean().

Referenced by TMCMC::gibbsSampling(), TMCMC::randomWalkMetropolisSampling(), and TMCMC::varTimeMetropolisSampling().

◆ eval() [1/2]

◆ eval() [2/2]

◆ getDimMelange()

◆ getMatCorrelation() [1/2]

TMatrixD TMelange::getMatCorrelation ( )

◆ getMatCorrelation() [2/2]

TMatrixD TMelange::getMatCorrelation ( Int_t  i)

◆ getMatCovariance() [1/2]

TMatrixD TMelange::getMatCovariance ( )

◆ getMatCovariance() [2/2]

TMatrixD TMelange::getMatCovariance ( Int_t  i)

◆ getMatEcartTypeCorrelation() [1/2]

TMatrixD TMelange::getMatEcartTypeCorrelation ( )

◆ getMatEcartTypeCorrelation() [2/2]

◆ getMean() [1/2]

TVectorD TMelange::getMean ( )

◆ getMean() [2/2]

TVectorD TMelange::getMean ( Int_t  i)

◆ getObs()

Double_t TMelange::getObs ( )

◆ getProb()

Double_t TMelange::getProb ( Int_t  i)

◆ getSeuil()

TVectorD TMelange::getSeuil ( )

◆ getSigma() [1/2]

◆ getSigma() [2/2]

TVectorD TMelange::getSigma ( Int_t  i)

◆ getTaille()

Int_t TMelange::getTaille ( )
inline

References _taille.

◆ getTailleMelange()

◆ getTuple()

◆ getVariance()

TVectorD TMelange::getVariance ( )

References getMatCovariance().

Referenced by getSigma().

◆ LoiDeZ()

TVectorD TMelange::LoiDeZ ( TVectorD  X)

Computes the conditional repartition function for X belonging to a mode.

References _tailleMelange, eval(), TNormale::eval(), f, getMatEcartTypeCorrelation(), getMean(), getProb(), TDistribution::setMatEcartTypeCorrelation(), and TDistribution::setMean().

Referenced by TMCMC::gibbsSampling().

◆ removeLoi()

void TMelange::removeLoi ( Int_t  i)

References _tailleMelange, and lLoi.

◆ remplacer()

void TMelange::remplacer ( Int_t  i,
TVectorD  M,
TMatrixD  A 
)

Replaces the component i by a component N(M,A)

References _dimMelange, getProb(), lLoi, and TDistribution::setProb().

◆ reset()

void TMelange::reset ( )

References _tailleMelange, and lLoi.

Referenced by TMCMC::NKCSampling().

◆ setTaille()

void TMelange::setTaille ( Int_t  n)
inline

References _taille.

◆ simulationMelange()

void TMelange::simulationMelange ( )

Classic simulation of a mixing.

In a firt step, the classic simulation consists in selecting ramdomly an integer, then choosing a sample corresponding to the law which contains the index. The law is recovered from thresholds $ 0 < s_{1} < \cdots < s_{N} = 1.0$. For each law, we count the number of times $ l$ that an integer $ U \in [0, 1]$ is located betweeen $ s_{l} < u < s_{l+1}$. Finally, for each law $ l$, a $ n_{l}$ sample is chosen, with the constraint that the sum $ \sum_{l}{n_{l}}$ is equal to the desired size.

References _rand, _taille, _tailleMelange, TNormale::acceptationRejet(), addTuple(), getSeuil(), TDistribution::getTuple(), lLoi, and TDistribution::setTaille().

Member Data Documentation

◆ _dimMelange

Int_t TMelange::_dimMelange
private

◆ _nt

TNtupleD* TMelange::_nt
private

Referenced by addTuple(), getTuple(), and TMelange().

◆ _rand

TRandom* TMelange::_rand
private

Tuple in which the sample is stocked.

Referenced by getObs(), simulationMelange(), and TMelange().

◆ _taille

Int_t TMelange::_taille
private

◆ _tailleMelange

◆ f

TNormale* TMelange::f
private

◆ lLoi

TList* TMelange::lLoi
private