Documentation / Manuel développeur
Modules disponibles
Calibration,  DataServer,  Launcher,  MetaModelOptim,  Modeler,  Optimizer,  ReLauncher,  Reliability,  ReOptimizer,  Sampler,  Sensitivity,  UncertModeler,  XmlProblem,  
Uranie / Sampler v4.9.0
|
#include <TNormale.h>
Public Member Functions | |
TNormale () | |
TNormale (TVectorD M, TMatrixD A) | |
Constructor of the class. M is the mean vector we want to attribute to our gaussian vector and to its matrix of "standard deviation/correlation". | |
~TNormale () | |
Destructor. | |
Double_t | eval (TVectorD x) |
Returns the value of the density along x of a multidimensional normal law. | |
Double_t | eval (Double_t x) |
Returns the value of the density along x of a real normal law. | |
void | acceptationRejet () |
Method for accepting-refusing to simulate a gaussian with a Cauchy law as instrumental distribution. | |
Double_t | getObs () |
void | simulationPolaire () |
method of simulation of a centered reduced real normal law by the algorithme of Box-Muller | |
TVectorD | vectCentreReduit () |
Simulates a centered reduced gaussian vector. | |
TVectorD | getObsMultiDim () |
Simulates a given gaussian vector from the decomposition of Choleski | |
void | simVectGaussien () |
ClassDef (TNormale, ID_SAMPLER) | |
Public Member Functions inherited from TDistribution | |
TDistribution () | |
TDistribution (TVectorD M, TMatrixD A) | |
void | initialisation (TVectorD M, TMatrixD A) |
~TDistribution () | |
TNtupleD * | getTuple () |
void | setTaille (Int_t n) |
TRandom3 * | getRandom () |
Int_t | getTaille () |
Int_t | getDim () |
TVectorD | getMean () |
TVectorD | getSigma () |
TMatrixD | getMatEcartTypeCorrelation () |
TMatrixD | getMatCorrelation () |
TMatrixD | getMatCovariance () |
void | setMean (TVectorD M) |
void | setMatEcartTypeCorrelation (TMatrixD A) |
void | setProb (Double_t proba) |
Double_t | getProb () |
void | simulation () |
void | verification () |
ClassDef (TDistribution, ID_SAMPLER) | |
Additional Inherited Members | |
Protected Attributes inherited from TDistribution | |
TRandom3 * | _rdm |
Generator of random number. | |
Double_t | _dprob |
Weight of the distribution. | |
Int_t | _taille |
Sample size. | |
TNtupleD * | _vect |
Tuple where simulated samples are stored. | |
Int_t | _dim |
Dimension of the distribution. | |
TVectorD | _vectMean |
Mean value of the distribution. | |
TMatrixD | _matEcartTypeCorr |
"_matEcartTypeCorr" represents the along the diagonal and elsewhere. Be careful the matrix must be symmetric | |
Constructor & Destructor Documentation
◆ TNormale() [1/2]
TNormale::TNormale | ( | ) |
◆ TNormale() [2/2]
TNormale::TNormale | ( | TVectorD | M, |
TMatrixD | A | ||
) |
Constructor of the class. M is the mean vector we want to attribute to our gaussian vector and to its matrix of "standard deviation/correlation".
References TDistribution::_dim, TDistribution::_vect, and TDistribution::initialisation().
◆ ~TNormale()
TNormale::~TNormale | ( | ) |
Destructor.
Member Function Documentation
◆ acceptationRejet()
void TNormale::acceptationRejet | ( | ) |
Method for accepting-refusing to simulate a gaussian with a Cauchy law as instrumental distribution.
References TDistribution::_matEcartTypeCorr, TDistribution::_rdm, TDistribution::_taille, TDistribution::_vect, TDistribution::_vectMean, and TDistribution::getDim().
Referenced by TMelange::simulationMelange().
◆ ClassDef()
TNormale::ClassDef | ( | TNormale | , |
ID_SAMPLER | |||
) |
◆ eval() [1/2]
Double_t TNormale::eval | ( | Double_t | x | ) |
Returns the value of the density along x of a real normal law.
References TDistribution::_dim, TDistribution::_matEcartTypeCorr, and TDistribution::_vectMean.
◆ eval() [2/2]
Double_t TNormale::eval | ( | TVectorD | x | ) |
Returns the value of the density along x of a multidimensional normal law.
References TDistribution::_dim, eval(), TDistribution::getMatCovariance(), TDistribution::getMean(), and m.
Referenced by TMelange::discrimination(), TMelange::eval(), TMelange::eval(), eval(), TMelange::LoiDeZ(), TMCMC::NKCSampling2(), TMCMC::randomWalkMetropolisSampling(), TMCMC::varTimeMetropolisSampling(), and TMCMC::varTimeMetropolisSampling().
◆ getObs()
Double_t TNormale::getObs | ( | ) |
References TDistribution::_matEcartTypeCorr, TDistribution::_rdm, TDistribution::_vectMean, and TDistribution::getDim().
Referenced by TMelange::getObs(), TMCMC::getObs(), TMCMC::gibbsSampling(), TMCMC::gibbsSampling(), TMCMC::varTimeMetropolisSampling(), TMCMC::varTimeMetropolisSampling(), and vectCentreReduit().
◆ getObsMultiDim()
TVectorD TNormale::getObsMultiDim | ( | ) |
Simulates a given gaussian vector from the decomposition of Choleski
References TDistribution::_dim, TDistribution::getMatCovariance(), TDistribution::getMean(), m, and vectCentreReduit().
Referenced by TMCMC::gibbsSampling(), TMCMC::NKCSampling(), TMCMC::NKCSampling2(), TMCMC::randomWalkMetropolisSampling(), TMCMC::randomWalkMetropolisSampling(), and simVectGaussien().
◆ simulationPolaire()
void TNormale::simulationPolaire | ( | ) |
method of simulation of a centered reduced real normal law by the algorithme of Box-Muller
References TDistribution::_matEcartTypeCorr, TDistribution::_rdm, TDistribution::_taille, TDistribution::_vect, TDistribution::_vectMean, and TDistribution::getDim().
◆ simVectGaussien()
void TNormale::simVectGaussien | ( | ) |
References TDistribution::_dim, TDistribution::_taille, TDistribution::_vect, and getObsMultiDim().
◆ vectCentreReduit()
TVectorD TNormale::vectCentreReduit | ( | ) |
Simulates a centered reduced gaussian vector.
References TDistribution::_dim, TDistribution::getMatEcartTypeCorrelation(), TDistribution::getMean(), getObs(), m, TDistribution::setMatEcartTypeCorrelation(), and TDistribution::setMean().
Referenced by getObsMultiDim().