English Français

Documentation / Manuel développeur

Modules disponibles

Calibration,  DataServer,  Launcher,  MetaModelOptim,  Modeler,  Optimizer,  ReLauncher,  Reliability,  ReOptimizer,  Sampler,  Sensitivity,  UncertModeler,  XmlProblem,   Uranie / Sensitivity: TJohnsonRW.h Source File
Uranie / Sensitivity  v4.10.0
/* @license-end */
TJohnsonRW.h
Go to the documentation of this file.
1 // Copyright (C) 2013-2024 CEA/DES
3 //
4 // This program is free software: you can redistribute it and/or modify
5 // it under the terms of the GNU Lesser General Public License as published
6 // by the Free Software Foundation, either version 3 of the License, or any
7 // later version.
8 //
9 // This program is distributed in the hope that it will be useful,
10 // but WITHOUT ANY WARRANTY; without even the implied warranty of
11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 // GNU Lesser General Public License for more details.
13 //
14 // You should have received a copy of the GNU Lesser General Public License
15 // along with this program. If not, see <http://www.gnu.org/licenses/>.
18 // $Id$
19 // $Author$
20 // $Date$
21 // $Revision$
22 // $State$
24 
42 #ifndef TJOHNSONRW_H
43 #define TJOHNSONRW_H
44 #include "TSensitivity.h"
45 
46 namespace URANIE
47 {
48 namespace Sensitivity
49 {
50 class TJohnsonRW: public TSensitivity
51 {
52 
53 
54 private:
55 
56  Double_t _dr2;
57  Double_t _dr2A;
58  bool _busingCorr;
59  bool _bmatCorrSet;
61  TString _sSampMethod;
62 
63  TMatrixD _mmatCorr;
64  TMatrixD _mRxxInv;
65 
66  TMatrixD _mLambda;
67  TMatrixD _mBetanoY;
68 
70 
71  // Operations
72 
73 public:
74 
75  //---------------------------------------------
79 
81  TJohnsonRW();
82 
84  /*
85  \param tds (URANIE::DataServer::TDataServer *) the dataserver
86  \param varexpinput(const char*)[""] The list of input attributes to pass to the function separated by the caracter ":"
87  \param varexpoutput (const char *)[""] The list of output attributes separated by the caracter ":"
88  \param
89  */
90 
91  TJohnsonRW(URANIE::DataServer::TDataServer *tds, const char *varexpinput,
92  const char *varexpoutput, Option_t * option = "");
93 
94 
96  TJohnsonRW(URANIE::DataServer::TDataServer *tds, const char *fcn, Int_t ns,
97  const char *varexpinput = "", const char *varexpoutput = "",
98  Option_t * option = "");
99 
101  TJohnsonRW(URANIE::DataServer::TDataServer *tds,
102  void (*fcn)(Double_t*,Double_t*),
103  const char *varexpinput, const char *varexpoutput,
104  Int_t ns, Option_t * option = "");
105 
107 
109  TJohnsonRW(URANIE::DataServer::TDataServer *tds,
110  URANIE::Launcher::TCode *code, Int_t ns, Option_t * option = "");
112 
115  TJohnsonRW(URANIE::DataServer::TDataServer *tds,
116  URANIE::Relauncher::TRun *run, Int_t ns, Option_t * option = "");
118  virtual ~TJohnsonRW();
120 
121 
122  //---------------------------------------------
126 
131  void parseOption(Option_t *option = "");
133 
134  //---------------------------------------------
139  void generateSample(Option_t * option = "");
141 
142  //---------------------------------------------
146  void evaluateIndexes(Option_t * option = "");
148 
151  void preTreatment();
153 
154  //---------------------------------------------
158  Double_t getR2(){
160  cout << endl << " TJohnsonRW::getR2() :: this method returns the latest R2 computed, disregarding the algorithm used and if a vector has been analysed." << endl;
161  cout << " ==> The proper results are now stored in the result tuple with flag __R2__ and __R2A__ " << endl << endl;
162  return _dr2;
163  }
165  Double_t getR2A(){
166  cout << endl << " TJohnsonRW::getR2A() :: this method returns the latest R2A computed, disregarding the algorithm used and if a vector has been analysed." << endl;
167  cout << " ==> The proper results are now stored in the result tuple with flag __R2__ and __R2A__ " << endl << endl;
168  return _dr2A;
169  }
171  void setCorrelationMatrix(TMatrixD corrMat);
173 
174  //---------------------------------------------
178  virtual void printLog(Option_t *option = "");
180 
181  ClassDef(URANIE::Sensitivity::TJohnsonRW, ID_SENSITIVITY)
182  //Classe de
183 };
184 
185 } // Fin du namespace Sensitivity
186 } // Fin du namespace URANIE
187 #endif
ROOT.
Definition: TCMN.h:45
TString _sSampMethod
The sampling method.
Definition: TJohnsonRW.h:61
TMatrixD _mBetanoY
Beta matrix from Johnson method up to final output multiplication.
Definition: TJohnsonRW.h:67
bool _busingCorr
compute the weight from the correlation matrix.
Definition: TJohnsonRW.h:58
Double_t getR2A()
get the adjuested coefficient of determination R2A
Definition: TJohnsonRW.h:165
void parseOption(Option_t *option="")
Read option specific to TJohnsonRW.
void setCorrelationMatrix(TMatrixD corrMat)
Set the correlation matrix by hand.
void preTreatment()
PreTreatment for every output.
bool _busingSample
Using a sample provided by fileDataRead.
Definition: TJohnsonRW.h:60
void evaluateIndexes(Option_t *option="")
Evaluates the index from a Specific TDataServer.
void generateSample(Option_t *option="")
Description of the class TSensitivity.
Definition: TSensitivity.h:111
Description of the class TJohnsonRW.
Definition: TJohnsonRW.h:50
TMatrixD _mRxxInv
Inverse input correlation matrix from SVD.
Definition: TJohnsonRW.h:64
Double_t _dr2A
The R2A define by the formula.
Definition: TJohnsonRW.h:57
TMatrixD _mmatCorr
Matrix of correlation to be used for coefficient calculation.
Definition: TJohnsonRW.h:63
virtual void printLog(Option_t *option="")
bool _bmatCorrSet
Set the correlation matrix by hand, not using empirical one;.
Definition: TJohnsonRW.h:59
TJohnsonRW()
Default constructor.
virtual ~TJohnsonRW()
Default destructor.
TMatrixD _mLambda
Lambda matrix from Johnson method.
Definition: TJohnsonRW.h:66
int _localYCounter
Local counter to know how many outputs there are.
Definition: TJohnsonRW.h:69
Double_t _dr2
The R2 define by the formula.
Definition: TJohnsonRW.h:56
Interface of class URANIE::Sensitivity::TSensitivity.
Double_t getR2()
get the coefficient of determination R2
Definition: TJohnsonRW.h:159