English Français

Documentation / Developer's manual

Available modules

Calibration,  DataServer,  Launcher,  MetaModelOptim,  Modeler,  Optimizer,  ReLauncher,  Reliability,  ReOptimizer,  Sampler,  Sensitivity,  UncertModeler,  XmlProblem,   Uranie / Sensitivity: TJohnsonRW.h Source File
Uranie / Sensitivity v4.9.0
/* @license-end */
TJohnsonRW.h
Go to the documentation of this file.
1
2// Copyright (C) 2013-2024 CEA/DES
3//
4// This program is free software: you can redistribute it and/or modify
5// it under the terms of the GNU Lesser General Public License as published
6// by the Free Software Foundation, either version 3 of the License, or any
7// later version.
8//
9// This program is distributed in the hope that it will be useful,
10// but WITHOUT ANY WARRANTY; without even the implied warranty of
11// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12// GNU Lesser General Public License for more details.
13//
14// You should have received a copy of the GNU Lesser General Public License
15// along with this program. If not, see <http://www.gnu.org/licenses/>.
18// $Id$
19// $Author$
20// $Date$
21// $Revision$
22// $State$
24
42#ifndef TJOHNSONRW_H
43#define TJOHNSONRW_H
44#include "TSensitivity.h"
45
46namespace URANIE
47{
48namespace Sensitivity
49{
51{
52
53
54private:
55
56 Double_t _dr2;
57 Double_t _dr2A;
61 TString _sSampMethod;
62
63 TMatrixD _mmatCorr;
64 TMatrixD _mRxxInv;
65
66 TMatrixD _mLambda;
67 TMatrixD _mBetanoY;
68
70
71 // Operations
72
73public:
74
75 //---------------------------------------------
79
82
84 /*
85 \param tds (URANIE::DataServer::TDataServer *) the dataserver
86 \param varexpinput(const char*)[""] The list of input attributes to pass to the function separated by the caracter ":"
87 \param varexpoutput (const char *)[""] The list of output attributes separated by the caracter ":"
88 \param
89 */
90
91 TJohnsonRW(URANIE::DataServer::TDataServer *tds, const char *varexpinput,
92 const char *varexpoutput, Option_t * option = "");
93
94
96 TJohnsonRW(URANIE::DataServer::TDataServer *tds, const char *fcn, Int_t ns,
97 const char *varexpinput = "", const char *varexpoutput = "",
98 Option_t * option = "");
99
101 TJohnsonRW(URANIE::DataServer::TDataServer *tds,
102 void (*fcn)(Double_t*,Double_t*),
103 const char *varexpinput, const char *varexpoutput,
104 Int_t ns, Option_t * option = "");
105
107
109 TJohnsonRW(URANIE::DataServer::TDataServer *tds,
110 URANIE::Launcher::TCode *code, Int_t ns, Option_t * option = "");
112
115 TJohnsonRW(URANIE::DataServer::TDataServer *tds,
116 URANIE::Relauncher::TRun *run, Int_t ns, Option_t * option = "");
118 virtual ~TJohnsonRW();
120
121
122 //---------------------------------------------
126
131 void parseOption(Option_t *option = "");
133
134 //---------------------------------------------
139 void generateSample(Option_t * option = "");
141
142 //---------------------------------------------
146 void evaluateIndexes(Option_t * option = "");
148
153
154 //---------------------------------------------
158
159 Double_t getR2(){
160 cout << endl << " TJohnsonRW::getR2() :: this method returns the latest R2 computed, disregarding the algorithm used and if a vector has been analysed." << endl;
161 cout << " ==> The proper results are now stored in the result tuple with flag __R2__ and __R2A__ " << endl << endl;
162 return _dr2;
163 }
165 Double_t getR2A(){
166 cout << endl << " TJohnsonRW::getR2A() :: this method returns the latest R2A computed, disregarding the algorithm used and if a vector has been analysed." << endl;
167 cout << " ==> The proper results are now stored in the result tuple with flag __R2__ and __R2A__ " << endl << endl;
168 return _dr2A;
169 }
171 void setCorrelationMatrix(TMatrixD corrMat);
173
174 //---------------------------------------------
178 virtual void printLog(Option_t *option = "");
180
181 ClassDef(URANIE::Sensitivity::TJohnsonRW, ID_SENSITIVITY)
182 //Classe de
183};
184
185} // Fin du namespace Sensitivity
186} // Fin du namespace URANIE
187#endif
Interface of class URANIE::Sensitivity::TSensitivity.
Description of the class TJohnsonRW.
Definition TJohnsonRW.h:51
bool _busingCorr
compute the weight from the correlation matrix.
Definition TJohnsonRW.h:58
TJohnsonRW(URANIE::DataServer::TDataServer *tds, void(*fcn)(Double_t *, Double_t *), const char *varexpinput, const char *varexpoutput, Int_t ns, Option_t *option="")
Default constructor with a pointer to a function.
void setCorrelationMatrix(TMatrixD corrMat)
Set the correlation matrix by hand.
virtual ~TJohnsonRW()
Default destructor.
TJohnsonRW(URANIE::DataServer::TDataServer *tds, const char *varexpinput, const char *varexpoutput, Option_t *option="")
Default constructor with the TDataServer.
Double_t _dr2
The R2 define by the formula.
Definition TJohnsonRW.h:56
bool _bmatCorrSet
Set the correlation matrix by hand, not using empirical one;.
Definition TJohnsonRW.h:59
TMatrixD _mRxxInv
Inverse input correlation matrix from SVD.
Definition TJohnsonRW.h:64
void generateSample(Option_t *option="")
TMatrixD _mLambda
Lambda matrix from Johnson method.
Definition TJohnsonRW.h:66
TJohnsonRW()
Default constructor.
void parseOption(Option_t *option="")
Read option specific to TJohnsonRW.
TJohnsonRW(URANIE::DataServer::TDataServer *tds, URANIE::Launcher::TCode *code, Int_t ns, Option_t *option="")
Default constructor with TCode arg.
TMatrixD _mBetanoY
Beta matrix from Johnson method up to final output multiplication.
Definition TJohnsonRW.h:67
TJohnsonRW(URANIE::DataServer::TDataServer *tds, URANIE::Relauncher::TRun *run, Int_t ns, Option_t *option="")
Default constructor with TRun arg.
TMatrixD _mmatCorr
Matrix of correlation to be used for coefficient calculation.
Definition TJohnsonRW.h:63
TJohnsonRW(URANIE::DataServer::TDataServer *tds, const char *fcn, Int_t ns, const char *varexpinput="", const char *varexpoutput="", Option_t *option="")
Default constructor with the name of a function.
void evaluateIndexes(Option_t *option="")
Evaluates the index from a Specific TDataServer.
bool _busingSample
Using a sample provided by fileDataRead.
Definition TJohnsonRW.h:60
int _localYCounter
Local counter to know how many outputs there are.
Definition TJohnsonRW.h:69
void preTreatment()
PreTreatment for every output.
virtual void printLog(Option_t *option="")
TString _sSampMethod
The sampling method.
Definition TJohnsonRW.h:61
Double_t getR2A()
get the adjuested coefficient of determination R2A
Definition TJohnsonRW.h:165
Double_t _dr2A
The R2A define by the formula.
Definition TJohnsonRW.h:57
Double_t getR2()
get the coefficient of determination R2
Definition TJohnsonRW.h:159
Description of the class TSensitivity.
Definition TSensitivity.h:112
ROOT.
Definition TCMN.h:45