English Français

Documentation / Manuel développeur

Modules disponibles

Calibration,  DataServer,  Launcher,  MetaModelOptim,  Modeler,  Optimizer,  ReLauncher,  Reliability,  ReOptimizer,  Sampler,  Sensitivity,  UncertModeler,  XmlProblem,   Uranie / Sensitivity: TRegression.h Source File
Uranie / Sensitivity  v4.10.0
/* @license-end */
TRegression.h
Go to the documentation of this file.
1 // Copyright (C) 2013-2024 CEA/DES
3 //
4 // This program is free software: you can redistribute it and/or modify
5 // it under the terms of the GNU Lesser General Public License as published
6 // by the Free Software Foundation, either version 3 of the License, or any
7 // later version.
8 //
9 // This program is distributed in the hope that it will be useful,
10 // but WITHOUT ANY WARRANTY; without even the implied warranty of
11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 // GNU Lesser General Public License for more details.
13 //
14 // You should have received a copy of the GNU Lesser General Public License
15 // along with this program. If not, see <http://www.gnu.org/licenses/>.
18 // $Id$
19 // $Author$
20 // $Date$
21 // $Revision$
22 // $State$
24 
41 #ifndef TREGRESSION_H
42 #define TREGRESSION_H
43 #include "TSensitivity.h"
44 
45 namespace URANIE
46 {
47 namespace Sensitivity
48 {
50 {
51 
52  // Attributes
53 public:
54  enum EMethod
55  {
57  };
58 private:
59  int _nMethod;
60 
61  Double_t _dr2;
62  Double_t _dr2A;
64 
65  TMatrixD _mmatCorr;
66  TMatrixD _mmatCorrRank;
67  URANIE::DataServer::UMessageLogger *_fLogger;
69  URANIE::DataServer::TDataServer *_fake;
70  // Operations
71 public:
72  //---------------------------------------------
76  TRegression();
79  /*
80  \param tds (URANIE::DataServer::TDataServer *) the dataserver
81  \param varexpinput(const char*)[""] The list of input attributes to pass to the function separated by the caracter ":"
82  \param varexpoutput (const char *)[""] The list of output attributes separated by the caracter ":"
83  \param
84  */
85  TRegression(URANIE::DataServer::TDataServer *tds, const char *varexpinput,
86  const char *varexpoutput, Option_t * option = "src");
88  virtual ~TRegression();
90 
91  //---------------------------------------------
95 
100  void setMethod(EMethod nmethod)
101  {
102  _nMethod |= (0x1 << nmethod);
103  }
105  void clearMethod()
106  {
107  _nMethod = 0;
108  }
110  int getMethod()
111  {
112  return _nMethod;
113  }
114 
116 
117  //---------------------------------------------
122  void generateSample(Option_t * option = "")
123  {
124  TString soption = option;
125  soption.ToLower();
126  }
127  ;
129 
130  //---------------------------------------------
134  void evaluateIndexes(Option_t * option = "");
136 
139  void preTreatment();
141 
144  void getUncertaintyFromRhoTransformation(double &rho, double &CImin, double &CImax);
145 
147 
148  //---------------------------------------------
152  Double_t getR2()
154  {
155  (*_fLogger) << Endl << " TRegression::getR2() :: this method returns the latest R2 computed, disregarding the algorithm used and if a vector has been analysed." << Endl;
156  (*_fLogger) << " ==> The proper results are now stored in the result tuple with flag __R2__ and __R2A__ " << Endl << Endl;
157  return _dr2;
158  }
160  Double_t getR2A()
161  {
162  (*_fLogger) << Endl << " TRegression::getR2A() :: this method returns the latest R2A computed, disregarding the algorithm used and if a vector has been analysed." << Endl;
163  (*_fLogger) << " ==> The proper results are now stored in the result tuple with flag __R2__ and __R2A__ " << Endl << Endl;
164  return _dr2A;
165  }
167 
174  {
175  return _dSumOfSquareIndexes;
176  }
178 
179  //---------------------------------------------
183  virtual void printLog(Option_t *option = "");
185 
186  ClassDef(URANIE::Sensitivity::TRegression, ID_SENSITIVITY)
187  //Classe de
188 };
189 
190 } // Fin du namespace Sensitivity
191 } // Fin du namespace URANIE
192 #endif
ROOT.
Definition: TCMN.h:45
Definition: TRegression.h:56
Double_t getR2()
get the coefficient of determination R2
Definition: TRegression.h:153
TMatrixD _mmatCorrRank
Matrix of rank correlation to be used for coefficient calculation.
Definition: TRegression.h:66
URANIE::DataServer::TDataServer * _fake
Definition: TRegression.h:69
Definition: TRegression.h:56
Definition: TRegression.h:56
void preTreatment()
PreTreatment for every output.
TRegression()
Default constructor.
void evaluateIndexes(Option_t *option="")
Evaluates the index from a Specific TDataServer.
Double_t getR2A()
get the adjuested coefficient of determination R2A
Definition: TRegression.h:160
Definition: TRegression.h:56
void clearMethod()
Clear the method index.
Definition: TRegression.h:105
Description of the class TRegression.
Definition: TRegression.h:49
void getUncertaintyFromRhoTransformation(double &rho, double &CImin, double &CImax)
Compute the CI from the rho estimation (handmade)
void generateSample(Option_t *option="")
Definition: TRegression.h:122
Description of the class TSensitivity.
Definition: TSensitivity.h:111
URANIE::DataServer::UMessageLogger * _fLogger
Message logger.
Definition: TRegression.h:67
Double_t getSumOfSquareIndexes()
Get the sum of square indexes.
Definition: TRegression.h:173
Double_t _dSumOfSquareIndexes
The sum of square indexes .
Definition: TRegression.h:63
virtual void printLog(Option_t *option="")
Double_t _dr2A
The R2A define by the formula.
Definition: TRegression.h:62
TString _sCompleteMethod
Definition: TRegression.h:68
Double_t _dr2
The R2 define by the formula.
Definition: TRegression.h:61
virtual ~TRegression()
Default destructor.
void setMethod(EMethod nmethod)
Sets the method.
Definition: TRegression.h:100
TMatrixD _mmatCorr
Matrix of correlation to be used for coefficient calculation.
Definition: TRegression.h:65
int _nMethod
The type of method. Changed to int for convenience (see setMethod)
Definition: TRegression.h:59
int getMethod()
Gets the transform function.
Definition: TRegression.h:110
EMethod
Definition: TRegression.h:54
Definition: TRegression.h:56
Interface of class URANIE::Sensitivity::TSensitivity.