English Français

Documentation / Developer's manual

Available modules

Calibration,  DataServer,  Launcher,  MetaModelOptim,  Modeler,  Optimizer,  ReLauncher,  Reliability,  ReOptimizer,  Sampler,  Sensitivity,  UncertModeler,  XmlProblem,   Uranie / Sensitivity: TRegression.h Source File
Uranie / Sensitivity v4.9.0
/* @license-end */
TRegression.h
Go to the documentation of this file.
1
2// Copyright (C) 2013-2024 CEA/DES
3//
4// This program is free software: you can redistribute it and/or modify
5// it under the terms of the GNU Lesser General Public License as published
6// by the Free Software Foundation, either version 3 of the License, or any
7// later version.
8//
9// This program is distributed in the hope that it will be useful,
10// but WITHOUT ANY WARRANTY; without even the implied warranty of
11// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12// GNU Lesser General Public License for more details.
13//
14// You should have received a copy of the GNU Lesser General Public License
15// along with this program. If not, see <http://www.gnu.org/licenses/>.
18// $Id$
19// $Author$
20// $Date$
21// $Revision$
22// $State$
24
41#ifndef TREGRESSION_H
42#define TREGRESSION_H
43#include "TSensitivity.h"
44
45namespace URANIE
46{
47namespace Sensitivity
48{
50{
51
52 // Attributes
53public:
58private:
60
61 Double_t _dr2;
62 Double_t _dr2A;
64
65 TMatrixD _mmatCorr;
66 TMatrixD _mmatCorrRank;
67 URANIE::DataServer::UMessageLogger *_fLogger;
69 URANIE::DataServer::TDataServer *_fake;
70 // Operations
71public:
72 //---------------------------------------------
76
79 /*
80 \param tds (URANIE::DataServer::TDataServer *) the dataserver
81 \param varexpinput(const char*)[""] The list of input attributes to pass to the function separated by the caracter ":"
82 \param varexpoutput (const char *)[""] The list of output attributes separated by the caracter ":"
83 \param
84 */
85 TRegression(URANIE::DataServer::TDataServer *tds, const char *varexpinput,
86 const char *varexpoutput, Option_t * option = "src");
88 virtual ~TRegression();
90
91 //---------------------------------------------
95
100 void setMethod(EMethod nmethod)
101 {
102 _nMethod |= (0x1 << nmethod);
103 }
106 {
107 _nMethod = 0;
108 }
111 {
112 return _nMethod;
113 }
114
116
117 //---------------------------------------------
122 void generateSample(Option_t * option = "")
123 {
124 TString soption = option;
125 soption.ToLower();
126 }
127 ;
129
130 //---------------------------------------------
134 void evaluateIndexes(Option_t * option = "");
136
141
144 void getUncertaintyFromRhoTransformation(double &rho, double &CImin, double &CImax);
145
147
148 //---------------------------------------------
152
153 Double_t getR2()
154 {
155 (*_fLogger) << Endl << " TRegression::getR2() :: this method returns the latest R2 computed, disregarding the algorithm used and if a vector has been analysed." << Endl;
156 (*_fLogger) << " ==> The proper results are now stored in the result tuple with flag __R2__ and __R2A__ " << Endl << Endl;
157 return _dr2;
158 }
160 Double_t getR2A()
161 {
162 (*_fLogger) << Endl << " TRegression::getR2A() :: this method returns the latest R2A computed, disregarding the algorithm used and if a vector has been analysed." << Endl;
163 (*_fLogger) << " ==> The proper results are now stored in the result tuple with flag __R2__ and __R2A__ " << Endl << Endl;
164 return _dr2A;
165 }
167
174 {
176 }
178
179 //---------------------------------------------
183 virtual void printLog(Option_t *option = "");
185
186 ClassDef(URANIE::Sensitivity::TRegression, ID_SENSITIVITY)
187 //Classe de
188};
189
190} // Fin du namespace Sensitivity
191} // Fin du namespace URANIE
192#endif
Interface of class URANIE::Sensitivity::TSensitivity.
Description of the class TRegression.
Definition TRegression.h:50
TString _sCompleteMethod
Definition TRegression.h:68
URANIE::DataServer::TDataServer * _fake
Definition TRegression.h:69
Double_t _dSumOfSquareIndexes
The sum of square indexes .
Definition TRegression.h:63
TMatrixD _mmatCorrRank
Matrix of rank correlation to be used for coefficient calculation.
Definition TRegression.h:66
Double_t getR2()
get the coefficient of determination R2
Definition TRegression.h:153
int _nMethod
The type of method. Changed to int for convenience (see setMethod)
Definition TRegression.h:59
TRegression()
Default constructor.
void clearMethod()
Clear the method index.
Definition TRegression.h:105
void evaluateIndexes(Option_t *option="")
Evaluates the index from a Specific TDataServer.
virtual void printLog(Option_t *option="")
virtual ~TRegression()
Default destructor.
Double_t getR2A()
get the adjuested coefficient of determination R2A
Definition TRegression.h:160
URANIE::DataServer::UMessageLogger * _fLogger
Message logger.
Definition TRegression.h:67
TMatrixD _mmatCorr
Matrix of correlation to be used for coefficient calculation.
Definition TRegression.h:65
TRegression(URANIE::DataServer::TDataServer *tds, const char *varexpinput, const char *varexpoutput, Option_t *option="src")
Default constructor with the TDataServer.
Double_t _dr2
The R2 define by the formula.
Definition TRegression.h:61
EMethod
Definition TRegression.h:55
@ kSRRC
Definition TRegression.h:56
@ kPRCC
Definition TRegression.h:56
@ kUnknown
Definition TRegression.h:56
@ kPCC
Definition TRegression.h:56
@ kSRC
Definition TRegression.h:56
void generateSample(Option_t *option="")
Definition TRegression.h:122
Double_t getSumOfSquareIndexes()
Get the sum of square indexes.
Definition TRegression.h:173
int getMethod()
Gets the transform function.
Definition TRegression.h:110
void getUncertaintyFromRhoTransformation(double &rho, double &CImin, double &CImax)
Compute the CI from the rho estimation (handmade)
void setMethod(EMethod nmethod)
Sets the method.
Definition TRegression.h:100
Double_t _dr2A
The R2A define by the formula.
Definition TRegression.h:62
void preTreatment()
PreTreatment for every output.
Description of the class TSensitivity.
Definition TSensitivity.h:112
ROOT.
Definition TCMN.h:45