Documentation / Developer's manual
Available modules
Calibration,  DataServer,  Launcher,  MetaModelOptim,  Modeler,  Optimizer,  ReLauncher,  Reliability,  ReOptimizer,  Sampler,  Sensitivity,  UncertModeler,  XmlProblem,  
Uranie / Sensitivity v4.9.0
|
Description of the class TFiniteDifferences. More...
#include <TFiniteDifferences.h>
Public Member Functions | |
Constructor and Destructor | |
TFiniteDifferences () | |
Default constructor. | |
TFiniteDifferences (TDataServer *tdsNominal, void(*fcn)(Double_t *, Double_t *), TString sensitiveAtt, TString outputAtt, TString samplingOption="steps=1%") | |
Constructor with the TDataServer and function. | |
TFiniteDifferences (TDataServer *tdsNominal, const char *fcn, TString sensitiveAtt, TString outputAtt, TString samplingOption) | |
Constructor with the TDataServer and function name. | |
TFiniteDifferences (TDataServer *tdsNominal, URANIE::Launcher::TCode *fcode, TString sensitiveAtt="", TString samplingOption="steps=1%") | |
Constructor with the TDataServer and code. | |
TFiniteDifferences (TDataServer *tdsNominal, URANIE::Relauncher::TRun *run, TString sensitiveAtt="", TString samplingOption="steps=1%") | |
Constructor with the TDataServer and TRun. | |
TFiniteDifferences (TDataServer *tdsNominal, TString inputAtt, TString outputAtt, TString sensitiveAtt=TString("")) | |
Constructor with a loaded data server. | |
virtual | ~TFiniteDifferences () |
Default destructor. | |
TFiniteDifferences () | |
Default constructor. | |
TFiniteDifferences (TDataServer *tdsNominal, void *fcn, TString sensitiveAtt, TString ranges, TString inputAtt, TString outputAtt) | |
Constructor with the TDataServer and function. | |
TFiniteDifferences (TDataServer *tdsNominal, URANIE::Launcher::TCode *fcode, TString sensitiveAtt, TString ranges) | |
Constructor with the TDataServer and code. | |
TFiniteDifferences (TDataServer *tdsNominal, TString sensitiveAtt, TString inputAtt, TString outputAtt) | |
Constructor with a loaded data server. | |
virtual | ~TFiniteDifferences () |
Default destructor. | |
Setting and Getting attributs | |
TMatrixD | getSensitivityMatrix () |
Returns the sensitivity matrix. | |
TDataServer * | getDataServer () |
Returns a pointer to the internal data server. | |
TMatrixD | getSensitivityMatrix () |
Returns the sensitivity matrix. | |
TDataServer * | getOATDataServer () |
Returns a pointer to the internal data server. | |
Generation of the sample | |
virtual void | generateSample (Option_t *option="") |
Generates the OAT sampling. | |
virtual void | generateSample (Option_t *option="") |
Generates the OAT sampling. | |
Compute the indexes | |
void | evaluateIndexes (Option_t *option="") |
Compute the sensitivity matrix. | |
void | preTreatment () |
Resize the matrix results at the very beginning of the algo to the number of output/input. | |
void | computeIndexes (Option_t *option="") |
Compute the sensitivity matrix. | |
Printing Log | |
virtual void | printLog () |
virtual void | printLog () |
Public Member Functions inherited from URANIE::Sensitivity::TSensitivity | |
TSensitivity () | |
Default constructor. | |
TSensitivity (URANIE::DataServer::TDataServer *tds, const char *fcn, Int_t ns, const char *varexpinput="", const char *varexpoutput="", Option_t *option="") | |
Default constructor with the name of a function. | |
TSensitivity (URANIE::DataServer::TDataServer *tds, void(*fcn)(Double_t *, Double_t *), const char *varexpinput, const char *varexpoutput, Int_t ns, Option_t *option="") | |
TSensitivity (URANIE::DataServer::TDataServer *tds, const char *varexpinput, const char *varexpoutput, Option_t *option="") | |
Default constructor. | |
TSensitivity (URANIE::DataServer::TDataServer *tds, URANIE::Launcher::TCode *code, Int_t ns, Option_t *option="") | |
Default constructor with TCode arg. | |
TSensitivity (URANIE::DataServer::TDataServer *tds, URANIE::Relauncher::TRun *run, Int_t ns, Option_t *option="") | |
Default constructor with TRun arg. | |
virtual | ~TSensitivity () |
Default destructor. | |
Int_t | getID () |
virtual TTree * | getResultTuple (bool commonresulttuple=true) |
Get the result ntuple (default parameter unused but for Morris method) | |
double | getValue (const char *sorder="", const char *sinputname="", const char *sselect="") |
vector< int > * | getAttributeElements (string str) |
void | setFunction (void(*fct)(Double_t *, Double_t *), Int_t nx=-1, Int_t ny=1) |
TString | getFunctionName () |
void | setSeed (UInt_t nval) |
UInt_t | getSeed () |
virtual void | setMethodName (const char *str) |
Set the Method name. | |
const char * | getMethodName () |
Get the method name. | |
Bool_t | getNoIntermediateSaved () |
Get the noIntermediateSaved flag. | |
const char * | getIteratorName () |
Get the name of the iterator attribut of the method. | |
void | setSensitivityIteratorName (const char *str) |
Set the iterator name devoted to compute sensitivity indexes. | |
void | setTimeName (TString sname) |
Set the name of the time attribute (only one) | |
TString | getTimeName () |
Get the name of the time attribute. | |
virtual void | setDrawProgressBar (Bool_t bbool=kTRUE) |
Set the "draw progress bar" flag. | |
void | setUsingErrors (bool thebool) |
Set the "using error results anyway" option. | |
Bool_t | getDrawProgressBar () |
Get the clean flag. | |
Bool_t | isInputCorrelated () |
TMatrixD | getMatrixInputCorrelation () |
Int_t | getNInput () |
Get the number of input attributes. | |
Int_t | getNOutput () |
Get the number of output attributes. | |
void | setInputCorrelationMatrix (TMatrixD Corr) |
virtual void | parseOption (Option_t *option="") |
Read the possible options. | |
void | checkOutputRequested (string attlist, bool fromoption=false) |
Check the output list requested by the user. | |
void | computeIndexes (Option_t *option="") |
Compute the Sensitivity Indexes. | |
void | fillIndex (const char *sinputname, const char *sorder, Double_t dval, const char *algo="", Double_t dvalCILower=-1.0, Double_t dvalCIUpper=-1.0) |
Method to fill in the tree the value of Sensitivity indexes for an input attribute. | |
virtual void | createTuple (Option_t *option="") |
virtual void | drawIndexes (TString sTitre, const char *select="", Option_t *option="") |
Draws the indexes. | |
virtual void | setLog () |
void | unsetLog () |
void | changeLog () |
Bool_t | getLog () |
virtual void | printLog (Option_t *option="") |
void | setNLauncher (ELauncher codeLauncher) |
Protected Attributes | |
TMatrixD | _sMatrix |
The sensitivity matrix. | |
TString | _sSensitiveAtt |
The list of sensitive attributes. | |
TString | _sSamplingOption |
the options for the OAT sampling | |
Int_t | _nbIn |
the number of sensitive inputs | |
Int_t | _nbAux |
the number of non sensitive inputs | |
Protected Attributes inherited from URANIE::Sensitivity::TSensitivity | |
Char_t | _sOutputAttribute [MAXLENGTHSTRING] |
The name of the output attribute. | |
Char_t | _sInputAttribute [MAXLENGTHSTRING] |
The name of the input attribute. | |
Char_t | _sOrder [MAXLENGTHSTRING] |
The order of sensitivity indexes. | |
Char_t | _sMethod [MAXLENGTHSTRING] |
The name of the method. | |
Char_t | _sAlgorithm [MAXLENGTHSTRING] |
The name of the algorithm to compute the index. | |
Double_t | _valSobolCrt |
The value of sensitivity indexes. | |
Double_t | _valSobolCILower |
The value of lower Condidence Interval (95) | |
Double_t | _valSobolCIUpper |
The value of upper Condidence Interval (95) | |
TMatrixD | _minputCorr |
Input correlation matrix if sample needs to be correlated. | |
Bool_t | _bisInputCorrelated |
State whether the input correlation matrix is set. | |
Bool_t | _bgoingThroughError |
State whether the error must not block the computation. | |
Private Attributes | |
URANIE::DataServer::TDataServer * | _tdsOAT |
a pointer to the data server containing the OAT sampling | |
TObjArray * | _lRanges |
the list of ranges of the sensitives attributes | |
TObjArray * | _lSensitiveAtt |
The list of sensitive attributes. | |
TObjArray * | _lInputs |
the full list of input variables | |
TObjArray * | _lOutputs |
the full list of outputs | |
Bool_t | _generateData |
if TRUE, one need to generate the sampling | |
URANIE::Launcher::TLauncher * | _codeLauncher |
a pointer to a code launcher | |
URANIE::Launcher::TLauncherFunction * | _functionLauncher |
a pointer to a function launcher | |
Int_t | _nbOut |
the number of outputs | |
Additional Inherited Members | |
Public Types inherited from URANIE::Sensitivity::TSensitivity | |
enum | ELauncher { kCode , kCodeRemote , kFunction , kRun , kUnknown } |
Public Attributes inherited from URANIE::Sensitivity::TSensitivity | |
URANIE::DataServer::TDataServer * | _tds |
Pointeur vers un TDS. | |
TList * | _listOfInputAttributes |
List of the input branches. | |
TList * | _listOfOutputAttributes |
List of the input branches. | |
TString | _sTimeAttribute |
The name of the Time attribute. | |
Int_t | _nS |
The number of simulation or other information depend on the used method. | |
Int_t | _nX |
Dimension of the input. | |
UInt_t | _nY |
Dimension of the target. | |
UInt_t | _nElY |
Number of element for one selected output. | |
Int_t | _nbOut |
Total number of Output to be considered. | |
Int_t | _iOut |
counter for output | |
unsigned int | _iy |
iterator over number of element | |
unsigned int | _iely |
iterator over number of element | |
ELauncher | _nLauncher |
The type of launcher. | |
TString | _sFunctionName |
The Name of the evaluatuor. | |
URANIE::Launcher::TCode * | _code |
The tcode. | |
URANIE::Relauncher::TRun * | _run |
TObjArray * | _drawingGarbageCollector |
Garbage collector for prints. | |
Int_t | _nSeed |
The seed of the random generator. | |
Bool_t | _bChosenOutputs |
Fact that the input list is provided or not. | |
Bool_t | _blog |
Boolean for edit the log. | |
Bool_t | _bdrawProgressBar |
Boolean to know if the progress bar has to be drawn. | |
Bool_t | _bnoIntermediateSaved |
Boolean to know if the progress bar has to be drawn. | |
TString | _sIteratorName |
The specific iterator attribute for the method. | |
TString | _sMethodName |
The method name. | |
TString | _sSelectedOutput |
The output. | |
TString | _sSelectedInput |
The input. | |
map< string, unsigned int > | _mAttributeSize |
Map of size of element for attribute;. | |
map< string, vector< int > > | _mAttributeElements |
Map of Elements number to run (if vector subselection is requested) | |
vector< string > | _vOutputNames |
Name of the output. | |
TCanvas * | _canvas |
Canvas object to deal with. | |
void(* | _pFunction )(double *, double *) |
TTree * | _ntresult |
The TTree of results. | |
Protected Member Functions inherited from URANIE::Sensitivity::TSensitivity | |
void | checkCanvasCreation (bool newcan) |
Create a canvas if needed. | |
void | drawIndexesHistogram (TString sTitre, const char *select="", Option_t *option="") |
Draws indexes with an histogram. | |
void | drawIndexesPie (TString sTitre, const char *select="", Option_t *option="") |
Draws indexes with an pie chart. | |
virtual void | postTreatment () |
PostTreatment for every output. | |
void | setNoIntermediateSaved (Bool_t bbool=kTRUE) |
Set the "only final file" flag. | |
Detailed Description
Description of the class TFiniteDifferences.
The finite differences method of sensitivity analysis is among the simplest ones. The resulting sensitivity index of an input variable with respect to an output is an estimation of .
In this implementation of the method, the estimation is obtained by applying an OAT design of experiments (cf. Sampler::TOATSampling) to the studied model. Thus, for each input varying of , one can compute:
To use the class TFiniteDifferences, one needs to give it an empty TDataServer containing a list of input attributes with default values, and a model. The user will then call the computeIndexes() method which will:
- generate the OAT sampling,
- call the model on it,
- compute the sensitivity indexes,
- store them in a sensitivity matrix.
This matrix can be retrieved using the method getSensitivityMatrix() .
(Nicolas Gilardi 2011.06.17)
The finite differences method of sensitivity analysis is among the simplest ones. The resulting sensitivity index of an input variable with respect to an output is an estimation of around a nominal value x_{nom}.
In this implementation of the method, the estimation is obtained by applying an OAT design of experiments (cf. Sampler::TOATSampling2) to the studied model. For each input's nominal value , we define a range and the values:
Then we can compute:
We can then give an estimate of the partial derivative around as:
An indicator of the "linearity" of the function around is given by:
If varies linearly around , it is expected that will be small compared to . However, this indicator only has a meaning if the function f is "smooth" on the interval , and if .
To use the class TFiniteDifferences, one needs to give it a TDataServer containing a list nominal values, and a model to compute the values of the outputs. The user will then call the computeIndexes() method which will:
- generate the OAT sampling,
- call the model on it,
- compute the sensitivity indexes,
- store them in a sensitivity matrix.
This matrix can be retrieved using the method getSensitivityMatrix() .
(Nicolas Gilardi 2012.10.31)
Constructor & Destructor Documentation
◆ TFiniteDifferences() [1/10]
URANIE::Sensitivity::TFiniteDifferences::TFiniteDifferences | ( | ) |
Default constructor.
Referenced by ClassImp().
◆ TFiniteDifferences() [2/10]
URANIE::Sensitivity::TFiniteDifferences::TFiniteDifferences | ( | TDataServer * | tdsNominal, |
void(*)(Double_t *, Double_t *) | fcn, | ||
TString | sensitiveAtt, | ||
TString | outputAtt, | ||
TString | samplingOption = "steps=1%" |
||
) |
Constructor with the TDataServer and function.
This constructor is used when the model is a function.
- Parameters
-
tdsNominal (URANIE::DataServer::TDataServer *) an empty dataserver containing the input variables. Each attribute representing an input variables must have a default value set. It will be used as the nominal value. fcn (void *) The function to analyse outputAtt (TString) this is a list of attribute names separated by colons. They represent all the responses of the problem. They must refer to existing attributes in the "tdsNominal".
sensitiveAtt (TString) A list of attribute names separated by colons. These attributes are the one that will be taken into account for the sensitivity analysis. If the string is equal to "" or "*", all the attributes are taken into account (Default = ""). samplingOption (TString) The options for the OAT sampling (Default = "steps=1%")
◆ TFiniteDifferences() [3/10]
URANIE::Sensitivity::TFiniteDifferences::TFiniteDifferences | ( | TDataServer * | tdsNominal, |
const char * | fcn, | ||
TString | sensitiveAtt, | ||
TString | outputAtt, | ||
TString | samplingOption | ||
) |
Constructor with the TDataServer and function name.
This constructor is used when the model is a function.
- Parameters
-
tdsNominal (URANIE::DataServer::TDataServer *) an empty dataserver containing the input variables. Each attribute representing an input variables must have a default value set. It will be used as the nominal value. const char *fcn The function to analyse outputAtt (TString) this is a list of attribute names separated by colons. They represent all the responses of the problem. They must refer to existing attributes in the "tdsNominal".
sensitiveAtt (TString) A list of attribute names separated by colons. These attributes are the one that will be taken into account for the sensitivity analysis. If the string is equal to "" or "*", all the attributes are taken into account (Default = ""). samplingOption (TString) The options for the OAT sampling (Default = "steps=1%")
◆ TFiniteDifferences() [4/10]
URANIE::Sensitivity::TFiniteDifferences::TFiniteDifferences | ( | TDataServer * | tdsNominal, |
URANIE::Launcher::TCode * | fcode, | ||
TString | sensitiveAtt = "" , |
||
TString | samplingOption = "steps=1%" |
||
) |
Constructor with the TDataServer and code.
This constructor is used when the model is an external code.
- Parameters
-
tdsNominal (URANIE::DataServer::TDataServer *) an empty dataserver containing the input variables. Each attribute representing an input variables must have a default value set. It will be used as the nominal value. fcode (URANIE::Launcher::TCode *) The code to analyse sensitiveAtt (TString) A list of attribute names separated by colons. These attributes are the one that will be taken into account for the sensitivity analysis. If the string is equal to "" or "*", all the attributes are taken into account (Default = ""). samplingOption (TString) The options for the OAT sampling (Default = "steps=1%")
◆ TFiniteDifferences() [5/10]
URANIE::Sensitivity::TFiniteDifferences::TFiniteDifferences | ( | TDataServer * | tdsNominal, |
URANIE::Relauncher::TRun * | run, | ||
TString | sensitiveAtt = "" , |
||
TString | samplingOption = "steps=1%" |
||
) |
Constructor with the TDataServer and TRun.
This constructor is used when the model is a TRun/TEval model
- Parameters
-
tdsNominal (URANIE::DataServer::TDataServer *) an empty dataserver containing the input variables. Each attribute representing an input variables must have a default value set. It will be used as the nominal value. fcode (URANIE::Relauncher::TRun *) The TRun to use for analyse sensitiveAtt (TString) A list of attribute names separated by colons. These attributes are the one that will be taken into account for the sensitivity analysis. If the string is equal to "" or "*", all the attributes are taken into account (Default = ""). samplingOption (TString) The options for the OAT sampling (Default = "steps=1%")
◆ TFiniteDifferences() [6/10]
URANIE::Sensitivity::TFiniteDifferences::TFiniteDifferences | ( | TDataServer * | tdsNominal, |
TString | inputAtt, | ||
TString | outputAtt, | ||
TString | sensitiveAtt = TString("") |
||
) |
Constructor with a loaded data server.
This constructor is used when the user already have a dataset.
- Parameters
-
tdsNominal (URANIE::DataServer::TDataServer *) this TDS contains the input and output values necessary for the finite differences calculation. It must also contain the attributes "__nominal_set__" and "__modified_att__" which are necessary to know which attribute is modified. inputAtt (TString) this is a list of attribute names separated by colons. They represent all the inputs of the problem. They must refer to existing attributes in the "tdsNominal". outputAtt (TString) this is a list of attribute names separated by colons. They represent all the responses of the problem. They must refer to existing attributes in the "tdsNominal". sensitiveAtt (TString) A list of attribute names separated by colons. These attributes are the one that will be taken into account for the sensitivity analysis. If the string is equal to "" or "*", all the input attributes are taken into account (Default = "").
- Warning
- When using this constructor with CINT, do not forget to EXPLICITELY pass TString objects for "listOfInputs" and "listOfOutputs" parameters. Otherwise, you may end up calling another constructor !
◆ ~TFiniteDifferences() [1/2]
|
virtual |
Default destructor.
Referenced by ClassImp().
◆ TFiniteDifferences() [7/10]
URANIE::Sensitivity::TFiniteDifferences::TFiniteDifferences | ( | ) |
Default constructor.
◆ TFiniteDifferences() [8/10]
URANIE::Sensitivity::TFiniteDifferences::TFiniteDifferences | ( | TDataServer * | tdsNominal, |
void * | fcn, | ||
TString | sensitiveAtt, | ||
TString | ranges, | ||
TString | inputAtt, | ||
TString | outputAtt | ||
) |
Constructor with the TDataServer and function.
This constructor is used when the model is a function.
- Parameters
-
tdsNominal (URANIE::DataServer::TDataServer *): the dataserver containing the nominal values of the input variables. fcn (void *): the function to analyse. sensitiveAtt (TString): a list of attribute names separated by colons. These attributes are the one that will be taken into account for the sensitivity analysis. If the string is equal to "" or "*", all the attributes are taken into account. ranges (TString): a list of range values or range attribute names. It must have either one or as many element as sensitiveAtt. Each numerical value of the list is interpreted as the range of the OAT sampling. Each name is interpreted as the one of the attribute refering to this range in the data server. If a "%" character follows the value or name, the range will be a percentage of the nominal value. If only one value (or attribute name) is given, the corresponding range will be applied to all sensitive attributes. Example: sensitiveAtt = "x1:x2:x3:x4", ranges = "0.33:5%:rx3:rx4%": - range for variable x1 is 0.33,
- range for variable x2 is 5% of the nominal value of x2,
- range for variable x3 is the nominal value of attribute rx3,
- range for variable x4 is the nominal value of attribute rx4 interpeted as a percentage of the nominal value of x4, i.e. if rx4 = 0.1, range for x4 is 0.1% of x4.
inputAtt (TString): a list of attribute names separated by colons. They represent all the inputs of the problem. They must refer to existing attributes in the "tdsNominal". If the string is equal to "" or "*", all the attributes are taken into account. outputAtt (TString): a list of names separated by colons. They represent all the responses of the problem. Attributes with these names will be added to the data server.
◆ TFiniteDifferences() [9/10]
URANIE::Sensitivity::TFiniteDifferences::TFiniteDifferences | ( | TDataServer * | tdsNominal, |
URANIE::Launcher::TCode * | fcode, | ||
TString | sensitiveAtt, | ||
TString | ranges | ||
) |
Constructor with the TDataServer and code.
This constructor is used when the model is an external code.
- Parameters
-
tdsNominal (URANIE::DataServer::TDataServer *):the dataserver containing the nominal values of the input variables. fcode (URANIE::Launcher::TCode *): the code to analyse. sensitiveAtt (TString): a list of attribute names separated by colons. These attributes are the one that will be taken into account for the sensitivity analysis. If the string is equal to "" or "*", all the attributes are taken into account. ranges (TString): a list of range values or range attribute names. It must have either one or as many element as sensitiveAtt. Each numerical value of the list is interpreted as the range of the OAT sampling. Each name is interpreted as the one of the attribute refering to this range in the data server. If a "%" character follows the value or name, the range will be a percentage of the nominal value. If only one value (or attribute name) is given, the corresponding range will be applied to all sensitive attributes. Example: sensitiveAtt = "x1:x2:x3:x4", ranges = "0.33:5%:rx3:rx4%": - range for variable x1 is 0.33,
- range for variable x2 is 5% of the nominal value of x2,
- range for variable x3 is the nominal value of attribute rx3,
- range for variable x4 is the nominal value of attribute rx4 interpeted as a percentage of the nominal value of x4, i.e. if rx4 = 0.1, range for x4 is 0.1% of x4.
◆ TFiniteDifferences() [10/10]
URANIE::Sensitivity::TFiniteDifferences::TFiniteDifferences | ( | TDataServer * | tdsNominal, |
TString | sensitiveAtt, | ||
TString | inputAtt, | ||
TString | outputAtt | ||
) |
Constructor with a loaded data server.
This constructor is used when the user already have a dataset.
- Parameters
-
tdsNominal (URANIE::DataServer::TDataServer *): this TDS contains the input and output values necessary for the finite differences calculation. It must also contain the attributes "__nominal_set__" and "__modified_att__" which are necessary to know which attribute is modified. sensitiveAtt (TString): a list of attribute names separated by colons. These attributes are the one that will be taken into account for the sensitivity analysis. If the string is equal to "" or "*", all the input attributes are taken into account. inputAtt (TString): a list of attribute names separated by colons. They represent all the inputs of the problem. They must refer to existing attributes in the "tdsNominal". outputAtt (TString): a list of attribute names separated by colons. They represent all the responses of the problem. They must refer to existing attributes in the "tdsNominal".
- Warning
- When using this constructor with CINT, do not forget to EXPLICITELY pass TString objects for "inputAtt" and "outputAtt" parameters. Otherwise, you may end up calling another constructor !
◆ ~TFiniteDifferences() [2/2]
|
virtual |
Default destructor.
Member Function Documentation
◆ computeIndexes()
void URANIE::Sensitivity::TFiniteDifferences::computeIndexes | ( | Option_t * | option = "" | ) |
Compute the sensitivity matrix.
This function construct the sensitivity matrix from the OAT design of experiment. The resulting matrix can be retrieved using the getSensitivityMatrix() function.
- Parameters
-
option (Option_t *) just in case we need option in the future... (Default = "").
Referenced by ClassImp().
◆ evaluateIndexes()
|
virtual |
Compute the sensitivity matrix.
This function construct the sensitivity matrix from the OAT design of experiment. The resulting matrix can be retrieved using the getSensitivityMatrix() function.
- Parameters
-
option (Option_t *) just in case we need option in the future... (Default = "").
Implements URANIE::Sensitivity::TSensitivity.
Referenced by ClassImp().
◆ generateSample() [1/2]
|
virtual |
Generates the OAT sampling.
This function fills a TDS with appropriate variables, creates and uses a TOATSampling to generate the design of experiment.
- Parameters
-
option (Option_t *) just in case we need option in the future... (Default = "").
Implements URANIE::Sensitivity::TSensitivity.
Reimplemented in URANIE::Sensitivity::TDGSM.
Referenced by ClassImp().
◆ generateSample() [2/2]
|
virtual |
Generates the OAT sampling.
This function fills a TDS with appropriate variables, creates and uses a TOATSampling to generate the design of experiment.
- Parameters
-
option (Option_t *) just in case we need option in the future... (Default = "").
Implements URANIE::Sensitivity::TSensitivity.
Reimplemented in URANIE::Sensitivity::TDGSM.
◆ getDataServer()
|
inline |
Returns a pointer to the internal data server.
References URANIE::Sensitivity::TSensitivity::_tds.
◆ getOATDataServer()
|
inline |
Returns a pointer to the internal data server.
References _tdsOAT.
◆ getSensitivityMatrix() [1/2]
|
inline |
Returns the sensitivity matrix.
References _sMatrix.
◆ getSensitivityMatrix() [2/2]
|
inline |
Returns the sensitivity matrix.
References _sMatrix.
◆ preTreatment()
|
virtual |
Resize the matrix results at the very beginning of the algo to the number of output/input.
One should wait this moment to know the number of output as it depends on the presence of vectors as well as the newoption "output=" implemented in TSensitivity::computeIndexes()
Reimplemented from URANIE::Sensitivity::TSensitivity.
Referenced by ClassImp().
◆ printLog() [1/2]
|
virtual |
Reimplemented in URANIE::Sensitivity::TDGSM.
Referenced by ClassImp().
◆ printLog() [2/2]
|
virtual |
Reimplemented in URANIE::Sensitivity::TDGSM.
Member Data Documentation
◆ _codeLauncher
|
private |
a pointer to a code launcher
Referenced by ClassImp().
◆ _functionLauncher
|
private |
a pointer to a function launcher
Referenced by ClassImp().
◆ _generateData
|
private |
if TRUE, one need to generate the sampling
Referenced by ClassImp().
◆ _lInputs
|
private |
the full list of input variables
◆ _lOutputs
|
private |
the full list of outputs
◆ _lRanges
|
private |
the list of ranges of the sensitives attributes
Referenced by ClassImp().
◆ _lSensitiveAtt
|
private |
The list of sensitive attributes.
Referenced by ClassImp().
◆ _nbAux
|
protected |
the number of non sensitive inputs
Referenced by ClassImp(), and ClassImp().
◆ _nbIn
|
protected |
the number of sensitive inputs
Referenced by ClassImp(), and ClassImp().
◆ _nbOut
|
private |
the number of outputs
Referenced by ClassImp(), and ClassImp().
◆ _sMatrix
|
protected |
The sensitivity matrix.
Referenced by ClassImp(), ClassImp(), and getSensitivityMatrix().
◆ _sSamplingOption
|
protected |
the options for the OAT sampling
Referenced by ClassImp(), and ClassImp().
◆ _sSensitiveAtt
|
protected |
The list of sensitive attributes.
Referenced by ClassImp().
◆ _tdsOAT
|
private |
a pointer to the data server containing the OAT sampling
Referenced by ClassImp(), and getOATDataServer().