English Français

Documentation / Developer's manual

Available modules

Calibration,  DataServer,  Launcher,  MetaModelOptim,  Modeler,  Optimizer,  ReLauncher,  Reliability,  ReOptimizer,  Sampler,  Sensitivity,  UncertModeler,  XmlProblem,   Uranie / XmlProblem: URANIE::XMLProblem::TBaseModel Class Reference
Uranie / XmlProblem v4.9.0
/* @license-end */
URANIE::XMLProblem::TBaseModel Class Reference

Description of the class TBaseModel. More...

#include <TBaseModel.h>

Inheritance diagram for URANIE::XMLProblem::TBaseModel:
Collaboration diagram for URANIE::XMLProblem::TBaseModel:

Public Types

enum  ELanguage {
  kEMPTY , kC , kCXX , kPMML ,
  kPYTHON , kFORTRAN
}
 
enum  ENorm { kNO , kCR , kMinusOneOne , kZeroOne }
 

Public Member Functions

 TBaseModel ()
 
 TBaseModel (TString sinput, TString soutput)
 
 TBaseModel (TString sname, TString sinput, TString shidden, TString soutput)
 
virtual ~TBaseModel ()
 Default destructor.
 
OtherSetting and Getting
void setName (TString str)
 
void setInput (TString str)
 set the \bf "Input" of the model
 
TString getInput ()
 get the \bf "Input" of the model
 
void setHidden (TString str)
 setHidden
 
TString getHidden ()
 getHidden
 
void setOutput (TString str)
 set the \bf "Output" of the model
 
TString getOutput ()
 getOutput
 
void setLanguage (ELanguage val)
 Set the language of the exported code source files.
 
ELanguage getLanguage ()
 get the language of the exported code source files
 
void setNormalization (ENorm n)
 set the normalisation procedure between [kNO | kCR | kMinusOneOne| kZeroOne]. kCR is the default.
 
ENorm getNormalization ()
 Get the normalisation parameter.
 
void setFileNameExport (TString str)
 set the file name of the code source file
 
TString getFileNameExport ()
 get the file name of the code source file
 
void setFunctionNameExport (TString str)
 set the name of the function in the code source file
 
TString getFunctionNameExport ()
 get the function name in the code source file
 
void setNIteration (Int_t n)
 set the number of iteration (split of the TDs in learning and test data base). 1 is default.
 
Int_t getNIteration ()
 get the number of iteration (split of the TDs in learning and test data base)
 
void setNInitialization (Int_t n)
 set the number of initialisation step (weights for Neural Network learning). 1 is default value.
 
Int_t getNInitialization ()
 get the number of initialisation step (weights for Neural Network learning)
 
void setLearn (Double_t dval)
 set the proportion of patterns to split the learning dataset in Learning and test databases. It must be in [0.0, 1.0] and 0.8 is default value.
 
Double_t getLearn ()
 get the proportion of patterns to split the learning dataset in Learning and test databases.
 
void setTolerance (Double_t dval)
 Set the tolerance parameter. It defined the stoppig rule for the optimization algorithm. It must be possitive and 1.e-4 is default value.
 
Double_t getTolerance ()
 Get the tolerance parameter.
 
void setSeed (Int_t n)
 set the Seed parameter. It must be positive and 0 is default value.
 
Int_t getSeed ()
 
Init the exported files
void initExport ()
 
The Log
void printLog (Option_t *option="")
 

Private Attributes

TString _sinput
 
TString _shidden
 
TString _soutput
 
ELanguage _nlanguage
 
ENorm _nNormType
 
TString _sfileNameExport
 ! The normalized for input and output
 
TString _sfunctionNameExport
 
Int_t _niteration
 
Int_t _ninitialization
 
Double_t _dlearn
 
Double_t _dtolerance
 
Int_t _nseed
 

Detailed Description

Description of the class TBaseModel.

To be written by the developper.

Member Enumeration Documentation

◆ ELanguage

Enumerator
kEMPTY 
kC 
kCXX 
kPMML 
kPYTHON 
kFORTRAN 

◆ ENorm

Enumerator
kNO 
kCR 
kMinusOneOne 
kZeroOne 

Constructor & Destructor Documentation

◆ TBaseModel() [1/3]

URANIE::XMLProblem::TBaseModel::TBaseModel ( )

Referenced by ClassImp().

◆ TBaseModel() [2/3]

URANIE::XMLProblem::TBaseModel::TBaseModel ( TString  sinput,
TString  soutput 
)

◆ TBaseModel() [3/3]

URANIE::XMLProblem::TBaseModel::TBaseModel ( TString  sname,
TString  sinput,
TString  shidden,
TString  soutput 
)

◆ ~TBaseModel()

virtual URANIE::XMLProblem::TBaseModel::~TBaseModel ( )
virtual

Default destructor.

Referenced by ClassImp().

Member Function Documentation

◆ getFileNameExport()

TString URANIE::XMLProblem::TBaseModel::getFileNameExport ( )
inline

get the file name of the code source file

Returns
the file name of the code source file

References _sfileNameExport.

◆ getFunctionNameExport()

TString URANIE::XMLProblem::TBaseModel::getFunctionNameExport ( )
inline

get the function name in the code source file

Returns
the function name saved in the code source file

References _sfunctionNameExport.

◆ getHidden()

TString URANIE::XMLProblem::TBaseModel::getHidden ( )
inline

getHidden

Returns
the \bf "Hidden" of the model

References _shidden.

◆ getInput()

TString URANIE::XMLProblem::TBaseModel::getInput ( )
inline

get the \bf "Input" of the model

Returns
the \bf "Input" of the model (attributes names separated by chararcter ":")

References _sinput.

◆ getLanguage()

ELanguage URANIE::XMLProblem::TBaseModel::getLanguage ( )
inline

get the language of the exported code source files

Returns
The language of the exported code source files [kCXX | kPMML | kPYTHON | kFORTRAN]

References _nlanguage.

◆ getLearn()

Double_t URANIE::XMLProblem::TBaseModel::getLearn ( )
inline

get the proportion of patterns to split the learning dataset in Learning and test databases.

Returns
the proportion of patterns

References _dlearn.

◆ getNInitialization()

Int_t URANIE::XMLProblem::TBaseModel::getNInitialization ( )
inline

get the number of initialisation step (weights for Neural Network learning)

Returns
the number of initialisation step (weights for Neural Network learning)

References _ninitialization.

◆ getNIteration()

Int_t URANIE::XMLProblem::TBaseModel::getNIteration ( )
inline

get the number of iteration (split of the TDs in learning and test data base)

Returns
the number of iteration (split of the TDs in learning and test data base)

References _niteration.

◆ getNormalization()

ENorm URANIE::XMLProblem::TBaseModel::getNormalization ( )
inline

Get the normalisation parameter.

get the normalisation

Returns
(ENorm) the normalisation [kCR | kMinusOneOne| kZeroOne].

References _nNormType.

◆ getOutput()

TString URANIE::XMLProblem::TBaseModel::getOutput ( )
inline

getOutput

Returns
the \bf "Output" of the model (attributes names separated by chararcter ":")

References _soutput.

◆ getSeed()

Int_t URANIE::XMLProblem::TBaseModel::getSeed ( )
inline

References _nseed.

◆ getTolerance()

Double_t URANIE::XMLProblem::TBaseModel::getTolerance ( )
inline

Get the tolerance parameter.

Returns

References _dtolerance.

◆ initExport()

void URANIE::XMLProblem::TBaseModel::initExport ( )

Referenced by ClassImp().

◆ printLog()

void URANIE::XMLProblem::TBaseModel::printLog ( Option_t *  option = "")

Referenced by ClassImp().

◆ setFileNameExport()

void URANIE::XMLProblem::TBaseModel::setFileNameExport ( TString  str)
inline

set the file name of the code source file

Parameters
str(TString) the file name of the code source file

References _sfileNameExport.

◆ setFunctionNameExport()

void URANIE::XMLProblem::TBaseModel::setFunctionNameExport ( TString  str)
inline

set the name of the function in the code source file

Parameters
str(TString)the name of the function saved in the code source file

References _sfunctionNameExport.

◆ setHidden()

void URANIE::XMLProblem::TBaseModel::setHidden ( TString  str)
inline

setHidden

Parameters
str(TString) the "hidden" of the model (attributes names separated by chararcter ":")

References _shidden.

◆ setInput()

void URANIE::XMLProblem::TBaseModel::setInput ( TString  str)
inline

set the \bf "Input" of the model

Parameters
str(TString) the inputs of the model (attributes names separated by chararcter ":")

References _sinput.

◆ setLanguage()

void URANIE::XMLProblem::TBaseModel::setLanguage ( ELanguage  val)
inline

Set the language of the exported code source files.

Parameters
val(ELanguage) The language of the exported code source files [kCXX | kPMML | kPYTHON | kFORTRAN]

References _nlanguage.

◆ setLearn()

void URANIE::XMLProblem::TBaseModel::setLearn ( Double_t  dval)
inline

set the proportion of patterns to split the learning dataset in Learning and test databases. It must be in [0.0, 1.0] and 0.8 is default value.

Parameters
dval(Double_t) : the proportion of patterns

References _dlearn.

◆ setName()

void URANIE::XMLProblem::TBaseModel::setName ( TString  str)
inline

◆ setNInitialization()

void URANIE::XMLProblem::TBaseModel::setNInitialization ( Int_t  n)
inline

set the number of initialisation step (weights for Neural Network learning). 1 is default value.

Parameters
n

References _ninitialization.

◆ setNIteration()

void URANIE::XMLProblem::TBaseModel::setNIteration ( Int_t  n)
inline

set the number of iteration (split of the TDs in learning and test data base). 1 is default.

Parameters
n(Int_t) : the number of iteration (split of the TDs in learning and test data base).

References _niteration.

◆ setNormalization()

void URANIE::XMLProblem::TBaseModel::setNormalization ( ENorm  n)
inline

set the normalisation procedure between [kNO | kCR | kMinusOneOne| kZeroOne]. kCR is the default.

Parameters
n(ENorm) the normalisation [kNO | kCR | kMinusOneOne| kZeroOne].

References _nNormType.

◆ setOutput()

void URANIE::XMLProblem::TBaseModel::setOutput ( TString  str)
inline

set the \bf "Output" of the model

Parameters
str(TString) the "outputs" of the model (attributes names separated by chararcter ":")

References _soutput.

◆ setSeed()

void URANIE::XMLProblem::TBaseModel::setSeed ( Int_t  n)
inline

set the Seed parameter. It must be positive and 0 is default value.

Parameters
n

References _nseed.

◆ setTolerance()

void URANIE::XMLProblem::TBaseModel::setTolerance ( Double_t  dval)
inline

Set the tolerance parameter. It defined the stoppig rule for the optimization algorithm. It must be possitive and 1.e-4 is default value.

Parameters
dval

References _dtolerance.

Member Data Documentation

◆ _dlearn

Double_t URANIE::XMLProblem::TBaseModel::_dlearn
private

Referenced by ClassImp(), getLearn(), and setLearn().

◆ _dtolerance

Double_t URANIE::XMLProblem::TBaseModel::_dtolerance
private

◆ _ninitialization

Int_t URANIE::XMLProblem::TBaseModel::_ninitialization
private

◆ _niteration

Int_t URANIE::XMLProblem::TBaseModel::_niteration
private

◆ _nlanguage

ELanguage URANIE::XMLProblem::TBaseModel::_nlanguage
private

Referenced by ClassImp(), getLanguage(), and setLanguage().

◆ _nNormType

ENorm URANIE::XMLProblem::TBaseModel::_nNormType
private

◆ _nseed

Int_t URANIE::XMLProblem::TBaseModel::_nseed
private

Referenced by ClassImp(), getSeed(), and setSeed().

◆ _sfileNameExport

TString URANIE::XMLProblem::TBaseModel::_sfileNameExport
private

! The normalized for input and output

Referenced by ClassImp(), getFileNameExport(), and setFileNameExport().

◆ _sfunctionNameExport

TString URANIE::XMLProblem::TBaseModel::_sfunctionNameExport
private

◆ _shidden

TString URANIE::XMLProblem::TBaseModel::_shidden
private

Referenced by ClassImp(), getHidden(), and setHidden().

◆ _sinput

TString URANIE::XMLProblem::TBaseModel::_sinput
private

Referenced by ClassImp(), getInput(), and setInput().

◆ _soutput

TString URANIE::XMLProblem::TBaseModel::_soutput
private

Referenced by ClassImp(), getOutput(), and setOutput().