Documentation / Developer's manual
Available modules
Calibration,  DataServer,  Launcher,  MetaModelOptim,  Modeler,  Optimizer,  ReLauncher,  Reliability,  ReOptimizer,  Sampler,  Sensitivity,  UncertModeler,  XmlProblem,  
Uranie / XmlProblem v4.9.0
|
Description of the class TBaseModel. More...
#include <TBaseModel.h>
Public Types | |
enum | ELanguage { kEMPTY , kC , kCXX , kPMML , kPYTHON , kFORTRAN } |
enum | ENorm { kNO , kCR , kMinusOneOne , kZeroOne } |
Public Member Functions | |
TBaseModel () | |
TBaseModel (TString sinput, TString soutput) | |
TBaseModel (TString sname, TString sinput, TString shidden, TString soutput) | |
virtual | ~TBaseModel () |
Default destructor. | |
OtherSetting and Getting | |
void | setName (TString str) |
void | setInput (TString str) |
set the \bf "Input" of the model | |
TString | getInput () |
get the \bf "Input" of the model | |
void | setHidden (TString str) |
setHidden | |
TString | getHidden () |
getHidden | |
void | setOutput (TString str) |
set the \bf "Output" of the model | |
TString | getOutput () |
getOutput | |
void | setLanguage (ELanguage val) |
Set the language of the exported code source files. | |
ELanguage | getLanguage () |
get the language of the exported code source files | |
void | setNormalization (ENorm n) |
set the normalisation procedure between [kNO | kCR | kMinusOneOne| kZeroOne]. kCR is the default. | |
ENorm | getNormalization () |
Get the normalisation parameter. | |
void | setFileNameExport (TString str) |
set the file name of the code source file | |
TString | getFileNameExport () |
get the file name of the code source file | |
void | setFunctionNameExport (TString str) |
set the name of the function in the code source file | |
TString | getFunctionNameExport () |
get the function name in the code source file | |
void | setNIteration (Int_t n) |
set the number of iteration (split of the TDs in learning and test data base). 1 is default. | |
Int_t | getNIteration () |
get the number of iteration (split of the TDs in learning and test data base) | |
void | setNInitialization (Int_t n) |
set the number of initialisation step (weights for Neural Network learning). 1 is default value. | |
Int_t | getNInitialization () |
get the number of initialisation step (weights for Neural Network learning) | |
void | setLearn (Double_t dval) |
set the proportion of patterns to split the learning dataset in Learning and test databases. It must be in [0.0, 1.0] and 0.8 is default value. | |
Double_t | getLearn () |
get the proportion of patterns to split the learning dataset in Learning and test databases. | |
void | setTolerance (Double_t dval) |
Set the tolerance parameter. It defined the stoppig rule for the optimization algorithm. It must be possitive and 1.e-4 is default value. | |
Double_t | getTolerance () |
Get the tolerance parameter. | |
void | setSeed (Int_t n) |
set the Seed parameter. It must be positive and 0 is default value. | |
Int_t | getSeed () |
Init the exported files | |
void | initExport () |
The Log | |
void | printLog (Option_t *option="") |
Private Attributes | |
TString | _sinput |
TString | _shidden |
TString | _soutput |
ELanguage | _nlanguage |
ENorm | _nNormType |
TString | _sfileNameExport |
! The normalized for input and output | |
TString | _sfunctionNameExport |
Int_t | _niteration |
Int_t | _ninitialization |
Double_t | _dlearn |
Double_t | _dtolerance |
Int_t | _nseed |
Detailed Description
Description of the class TBaseModel.
To be written by the developper.
Member Enumeration Documentation
◆ ELanguage
◆ ENorm
Constructor & Destructor Documentation
◆ TBaseModel() [1/3]
URANIE::XMLProblem::TBaseModel::TBaseModel | ( | ) |
Referenced by ClassImp().
◆ TBaseModel() [2/3]
URANIE::XMLProblem::TBaseModel::TBaseModel | ( | TString | sinput, |
TString | soutput | ||
) |
◆ TBaseModel() [3/3]
URANIE::XMLProblem::TBaseModel::TBaseModel | ( | TString | sname, |
TString | sinput, | ||
TString | shidden, | ||
TString | soutput | ||
) |
◆ ~TBaseModel()
|
virtual |
Default destructor.
Referenced by ClassImp().
Member Function Documentation
◆ getFileNameExport()
|
inline |
get the file name of the code source file
- Returns
- the file name of the code source file
References _sfileNameExport.
◆ getFunctionNameExport()
|
inline |
get the function name in the code source file
- Returns
- the function name saved in the code source file
References _sfunctionNameExport.
◆ getHidden()
|
inline |
◆ getInput()
|
inline |
get the \bf "Input" of the model
- Returns
- the \bf "Input" of the model (attributes names separated by chararcter ":")
References _sinput.
◆ getLanguage()
|
inline |
get the language of the exported code source files
- Returns
- The language of the exported code source files [kCXX | kPMML | kPYTHON | kFORTRAN]
References _nlanguage.
◆ getLearn()
|
inline |
get the proportion of patterns to split the learning dataset in Learning and test databases.
- Returns
- the proportion of patterns
References _dlearn.
◆ getNInitialization()
|
inline |
get the number of initialisation step (weights for Neural Network learning)
- Returns
- the number of initialisation step (weights for Neural Network learning)
References _ninitialization.
◆ getNIteration()
|
inline |
get the number of iteration (split of the TDs in learning and test data base)
- Returns
- the number of iteration (split of the TDs in learning and test data base)
References _niteration.
◆ getNormalization()
|
inline |
Get the normalisation parameter.
get the normalisation
- Returns
- (ENorm) the normalisation [kCR | kMinusOneOne| kZeroOne].
References _nNormType.
◆ getOutput()
|
inline |
getOutput
- Returns
- the \bf "Output" of the model (attributes names separated by chararcter ":")
References _soutput.
◆ getSeed()
|
inline |
References _nseed.
◆ getTolerance()
|
inline |
◆ initExport()
void URANIE::XMLProblem::TBaseModel::initExport | ( | ) |
Referenced by ClassImp().
◆ printLog()
void URANIE::XMLProblem::TBaseModel::printLog | ( | Option_t * | option = "" | ) |
Referenced by ClassImp().
◆ setFileNameExport()
|
inline |
set the file name of the code source file
- Parameters
-
str (TString) the file name of the code source file
References _sfileNameExport.
◆ setFunctionNameExport()
|
inline |
set the name of the function in the code source file
- Parameters
-
str(TString) the name of the function saved in the code source file
References _sfunctionNameExport.
◆ setHidden()
|
inline |
setHidden
- Parameters
-
str (TString) the "hidden" of the model (attributes names separated by chararcter ":")
References _shidden.
◆ setInput()
|
inline |
set the \bf "Input" of the model
- Parameters
-
str (TString) the inputs of the model (attributes names separated by chararcter ":")
References _sinput.
◆ setLanguage()
|
inline |
Set the language of the exported code source files.
- Parameters
-
val (ELanguage) The language of the exported code source files [kCXX | kPMML | kPYTHON | kFORTRAN]
References _nlanguage.
◆ setLearn()
|
inline |
set the proportion of patterns to split the learning dataset in Learning and test databases. It must be in [0.0, 1.0] and 0.8 is default value.
- Parameters
-
dval (Double_t) : the proportion of patterns
References _dlearn.
◆ setName()
|
inline |
◆ setNInitialization()
|
inline |
set the number of initialisation step (weights for Neural Network learning). 1 is default value.
- Parameters
-
n
References _ninitialization.
◆ setNIteration()
|
inline |
set the number of iteration (split of the TDs in learning and test data base). 1 is default.
- Parameters
-
n (Int_t) : the number of iteration (split of the TDs in learning and test data base).
References _niteration.
◆ setNormalization()
|
inline |
set the normalisation procedure between [kNO | kCR | kMinusOneOne| kZeroOne]. kCR is the default.
- Parameters
-
n (ENorm) the normalisation [kNO | kCR | kMinusOneOne| kZeroOne].
References _nNormType.
◆ setOutput()
|
inline |
set the \bf "Output" of the model
- Parameters
-
str (TString) the "outputs" of the model (attributes names separated by chararcter ":")
References _soutput.
◆ setSeed()
|
inline |
◆ setTolerance()
|
inline |
Set the tolerance parameter. It defined the stoppig rule for the optimization algorithm. It must be possitive and 1.e-4 is default value.
- Parameters
-
dval
References _dtolerance.
Member Data Documentation
◆ _dlearn
|
private |
Referenced by ClassImp(), getLearn(), and setLearn().
◆ _dtolerance
|
private |
Referenced by ClassImp(), getTolerance(), and setTolerance().
◆ _ninitialization
|
private |
Referenced by ClassImp(), getNInitialization(), and setNInitialization().
◆ _niteration
|
private |
Referenced by ClassImp(), getNIteration(), and setNIteration().
◆ _nlanguage
|
private |
Referenced by ClassImp(), getLanguage(), and setLanguage().
◆ _nNormType
|
private |
Referenced by ClassImp(), getNormalization(), and setNormalization().
◆ _nseed
|
private |
Referenced by ClassImp(), getSeed(), and setSeed().
◆ _sfileNameExport
|
private |
! The normalized for input and output
Referenced by ClassImp(), getFileNameExport(), and setFileNameExport().
◆ _sfunctionNameExport
|
private |
Referenced by ClassImp(), getFunctionNameExport(), and setFunctionNameExport().
◆ _shidden
|
private |
Referenced by ClassImp(), getHidden(), and setHidden().
◆ _sinput
|
private |
Referenced by ClassImp(), getInput(), and setInput().
◆ _soutput
|
private |
Referenced by ClassImp(), getOutput(), and setOutput().