English Français

Documentation / Manuel utilisateur en C++ : PDF version

XIV.2. Macros DataServer

XIV.2. Macros DataServer

In a first step, to get accustomed with TDataServer , we propose different macros related to this subject. Since it constitutes the preliminary and almost mandatory step of a proper use of Uranie, these macros are only for educational purposes.

XIV.2.1. Macro "dataserverAttributes.C"

XIV.2.1.1. Objective

The goal of this macro is only to master the objects TAttribute and TDataServer of Uranie. Three attributes will be created and linked to a TDataServer object, then the log of this object will be printed to check internal data of this TDataServer.

XIV.2.1.2. Macro Uranie

{
       
  // Define the attribute "x"
  TAttribute *px = new TAttribute("x", -2.0, 4.0);
  px->setTitle("#Delta P^{#sigma}");
  px->setUnity("#frac{mm^{2}}{s}");
    
  // Define the attribute "y"
  TAttribute *py = new TAttribute("y", 0.0, 1.0);
    
  // Define the DataServer of the study
  TDataServer *tds = new TDataServer("tds", "my first TDS");
  // Add the attributes in the TDataServer
  tds->addAttribute(px);
  tds->addAttribute(py);
   
  tds->addAttribute(new TAttribute("z", 0.25, 0.50));
    
  tds->printLog();
    
}

The first attribute "x" is defined on [-2.0, 4.0]; its title is and unity

TAttribute *px = new TAttribute("x", -2.0, 4.0);
px->setTitle("#Delta P^{#sigma}");
px->setUnity("#frac{mm^{2}}{s}");

The second attribute "y" is defined on [0.0,1.0]; it will be set with its name as title but without unity.

TAttribute *py = new TAttribute("y", 0.0, 1.0);

Secondly, a TDataServer object is created and the two attributes x and y created before are linked to this one.

TDataServer *tds = new TDataServer("tds", "my first TDS");
tds->addAttribute(px);
tds->addAttribute(py);

Finally, the last attribute z (defined on [0.25,0.50]) is directly added to the TDataServer (its title will be its name and it will be set without unity) by creating it. An attribute could, indeed, be added to a TDataServer meanwhile creating it, but then no other information than those available in the constructor would be set.

tds->addAttribute(new TAttribute("z", 0.25, 0.50));

Then, the log of the TDataServer object is printed.

tds->printLog();

Generally speaking, all Uranie objects have the printLog method which allows to print internal data of the object.

XIV.2.1.3. Console

Processing dataserverAttributes.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
                      Copyright (C) 2013-2024 CEA/DES 
                      Contact: support-uranie@cea.fr 
                      Date: Tue Jan 09, 2024

TDataServer::printLog[]
Name[tds] Title[my first TDS]
Origin[Unknown]
 _sdatafile[] 
 _sarchivefile[_dataserver_.root]
*******************************
** TDataSpecification::printLog  ******
**   Name[uheader__tds] Title[Header of my first TDS]
**   relationName[Header of my first TDS]
**   attributs[4]
**** With _listOfAttributes 
 Attribute[0/4]
*******************************
** TAttribute::printLog  ******
**    Name[tds__n__iter__]
**   Title[tds__n__iter__]
**   unity[]
**    type[0]
**   share[1]
**   Origin[kIterator]
**   Attribute[kInput]
**   _snote[]
--------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------
** - min[] max[]
** - mean[] std[]
**   lowerBound[-1.42387e+64] upperBound[1.42387e+64]
** NOT _defaultValue[]
** NOT _stepValue[]
 ** No Attribute to substitute level[0]
*******************************
 Attribute[1/4]
*******************************
** TAttribute::printLog  ******
**    Name[x]
**   Title[#Delta P^{#sigma}]
**   unity[#frac{mm^{2}}{s}]
**    type[0]
**   share[2]
**   Origin[kAttribute]
**   Attribute[kInput]
**   _snote[]
--------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------
** - min[] max[]
** - mean[] std[]
**   lowerBound[-2] upperBound[4]
** NOT _defaultValue[]
** NOT _stepValue[]
 ** No Attribute to substitute level[0]
*******************************
 Attribute[2/4]
*******************************
** TAttribute::printLog  ******
**    Name[y]
**   Title[y]
**   unity[]
**    type[0]
**   share[2]
**   Origin[kAttribute]
**   Attribute[kInput]
**   _snote[]
--------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------
** - min[] max[]
** - mean[] std[]
**   lowerBound[0] upperBound[1]
** NOT _defaultValue[]
** NOT _stepValue[]
 ** No Attribute to substitute level[0]
*******************************
 Attribute[3/4]
*******************************
** TAttribute::printLog  ******
**    Name[z]
**   Title[z]
**   unity[]
**    type[0]
**   share[2]
**   Origin[kAttribute]
**   Attribute[kInput]
**   _snote[]
--------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------
** - min[] max[]
** - mean[] std[]
**   lowerBound[0.25] upperBound[0.5]
** NOT _defaultValue[]
** NOT _stepValue[]
 ** No Attribute to substitute level[0]
*******************************
** TDataSpecification::fin de printLog *******************************
fin de TDataServer::printLog[]

XIV.2.2. Macro "dataserverMerge.C"

XIV.2.2.1. Objective

The objective of this macro is to merge data contained in a TDataServer with data contained in another TDataServer. Both TDataServer have to contain the same number of patterns. We choose here to merge two TDataServer, loaded from two ASCII files, each of which contains 9 patterns.

The first ASCII file "tds1.dat" defines the four variables x, dy, z, theta:

#COLUMN_NAMES: x| dy| z| theta
#COLUMN_TITLES: x_{n}| "#delta y"| ""| #theta
#COLUMN_UNITS: N| Sec| KM/Sec| M^{2}

1 1 11 11
1 2 12 21
1 3 13 31
2 1 21 12
2 2 22 22
2 3 23 32
3 1 31 13
3 2 32 23
3 3 33 33

and the second ASCII file "tds2.dat" defines the four other variables x2, y, u, ua:

#COLUMN_NAMES: x2| y| u| ua

1 1 102 11
1 2 104 12
1 3 106 13
2 1 202 21
2 2 204 22
2 3 206 23
3 1 302 31
3 2 304 32
3 3 306 33

The merging operation will be executed in the first TDataServer tds1; so it will contain all the attributes at the end.

XIV.2.2.2. Macro Uranie

{
         
  TDataServer * tds1 = new TDataServer();
  TDataServer * tds2 = new TDataServer();
  tds1->fileDataRead("tds1.dat");
  cout<<"Dumping tds1"<<endl;
  tds1->Scan("*");
    
  tds2->fileDataRead("tds2.dat");
  cout<<"Dumping tds2"<<endl;
  tds2->Scan("*");
  
  tds1->merge(tds2);
  cout<<"Dumping merged tds1 and tds2"<<endl;
  tds1->Scan("*","","colsize=3 col=9::::::::");
    
}

Both TDataServers are filled with ASCII data files with the method filedataRead().

tds1->fileDataRead("tds1.dat");
tds2->fileDataRead("tds2.dat");

Data of the second dataserver tds2 are then merged into the first one.

tds1->merge(tds2);

Data are then dumped in the terminal:

tds1->Scan("*");

XIV.2.2.3. Console

Processing dataserverMerge.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
                      Copyright (C) 2013-2024 CEA/DES 
                      Contact: support-uranie@cea.fr 
                      Date: Tue Jan 09, 2024

Dumping tds1
************************************************************************
*    Row   * tds1__n__ *       x.x *     dy.dy *       z.z * theta.the *
************************************************************************
*        0 *         1 *         1 *         1 *        11 *        11 *
*        1 *         2 *         1 *         2 *        12 *        21 *
*        2 *         3 *         1 *         3 *        13 *        31 *
*        3 *         4 *         2 *         1 *        21 *        12 *
*        4 *         5 *         2 *         2 *        22 *        22 *
*        5 *         6 *         2 *         3 *        23 *        32 *
*        6 *         7 *         3 *         1 *        31 *        13 *
*        7 *         8 *         3 *         2 *        32 *        23 *
*        8 *         9 *         3 *         3 *        33 *        33 *
************************************************************************
Dumping tds2
************************************************************************
*    Row   * tds2__n__ *     x2.x2 *       y.y *       u.u *     ua.ua *
************************************************************************
*        0 *         1 *         1 *         1 *       102 *        11 *
*        1 *         2 *         1 *         2 *       104 *        12 *
*        2 *         3 *         1 *         3 *       106 *        13 *
*        3 *         4 *         2 *         1 *       202 *        21 *
*        4 *         5 *         2 *         2 *       204 *        22 *
*        5 *         6 *         2 *         3 *       206 *        23 *
*        6 *         7 *         3 *         1 *       302 *        31 *
*        7 *         8 *         3 *         2 *       304 *        32 *
*        8 *         9 *         3 *         3 *       306 *        33 *
************************************************************************
Dumping merged tds1 and tds2
************************************************************************
*    Row   * tds1__n__ * x.x * dy. * z.z * the * x2. * y.y * u.u * ua. *
************************************************************************
*        0 *         1 *   1 *   1 *  11 *  11 *   1 *   1 * 102 *  11 *
*        1 *         2 *   1 *   2 *  12 *  21 *   1 *   2 * 104 *  12 *
*        2 *         3 *   1 *   3 *  13 *  31 *   1 *   3 * 106 *  13 *
*        3 *         4 *   2 *   1 *  21 *  12 *   2 *   1 * 202 *  21 *
*        4 *         5 *   2 *   2 *  22 *  22 *   2 *   2 * 204 *  22 *
*        5 *         6 *   2 *   3 *  23 *  32 *   2 *   3 * 206 *  23 *
*        6 *         7 *   3 *   1 *  31 *  13 *   3 *   1 * 302 *  31 *
*        7 *         8 *   3 *   2 *  32 *  23 *   3 *   2 * 304 *  32 *
*        8 *         9 *   3 *   3 *  33 *  33 *   3 *   3 * 306 *  33 *
************************************************************************

XIV.2.3. Macro "dataserverLoadASCIIFilePasture.C"

XIV.2.3.1. Objective

The objective of this macro is to load two TDataServer objects using two different ways: either with an ASCII file "pasture.dat" or with a design-of-experiments. Then, we evaluate the analytic function ModelPasture on this two TDataServer. The data file "pasture.dat" is written in the "Salome-table" format of Uranie:

#COLUMN_NAMES: time| yield

9 8.93
14 10.8
21 18.59
28 22.33
42 39.35
57 56.11
63 61.73
70 64.62
79 67.08

XIV.2.3.2. Macro Uranie

#include "TMath.h"

void ModelPasture(Double_t *x, Double_t *y)
{
  Double_t theta1=69.95, theta2=61.68, theta3=-9.209, theta4=2.378;
  
  y[0] = theta1;
  y[0] -= theta2* TMath::Exp( -1.0 * TMath::Exp( theta3 + theta4 * TMath::Log(x[0])));
}

void dataserverLoadASCIIFilePasture()
{
      
  TCanvas *C = new TCanvas("mycanvas","mycanvas",1);

  TDataServer* tds = new TDataServer();
  tds->fileDataRead("pasture.dat");
    
  tds->getTuple()->SetMarkerStyle(8);
  tds->getTuple()->SetMarkerSize(1.5);
  tds->draw("yield:time");
  
  TLauncherFunction *tlf = new TLauncherFunction(tds, ModelPasture,"time","yhat");
  tlf->run();
    
  tds->getTuple()->SetMarkerColor(kBlue);
  tds->getTuple()->SetLineColor(kBlue);
  
  tds->draw("yhat:time","","lpsame");

  TDataServer *tds2 = new TDataServer();
  tds2->addAttribute( new TUniformDistribution("time2",9, 80));
    
  TSampling *tsamp = new TSampling(tds2, "lhs", 1000);
  tsamp->generateSample();
      
  tds2->getTuple()->SetMarkerColor(kGreen);
  tds2->getTuple()->SetLineColor(kGreen);
  tlf = new TLauncherFunction(tds2, ModelPasture,"","yhat2");
  tlf->run();
    

  tds2->draw("yhat2:time2","","psame");
  tds->draw("yhat:time","","lpsame");

  gPad->SaveAs("pasture.png");
    
}

The design ModelPasture is defined in a function

void ModelPasture(Double_t *x, Double_t *y)
{
  Double_t theta1=69.95, theta2=61.68, theta3=-9.209, theta4=2.378;

  y[0] = theta1;
  y[0] -= theta2* TMath::Exp( -1.0 * TMath::Exp( theta3 + theta4 * TMath::Log(x[0])));
}

The first TDataServer is filled with the ASCII file "pasture.dat" through the fileDataRead method

tds->fileDataRead("pasture.dat");

The design is evaluated with the function ModelPasture applied on the input attribute time, leading to the output attribute named yhat.

TLauncherFunction *tlf = new TLauncherFunction(tds, ModelPasture,"time","yhat");
tlf->run();

A TAttribute, obeying an uniform law on [9;80] is added to the second TDataServer which is filled with a design-of-experiments of 1000 patterns, using the LHS method.

tds2->addAttribute( new TUniformDistribution("time2",9, 80));
TSampling *tsamp = new TSampling(tds2, "lhs", 1000);
tsamp->generateSample();

The design is now evaluated with this TDataServer on the attribute time2

tlf = new TLauncherFunction(tds2, ModelPasture,"","yhat2");
tlf->run();

XIV.2.3.3. Graph

Figure XIV.1. Graph of the macro "dataserverLoadASCIIFilePasture.C"

Graph of the macro "dataserverLoadASCIIFilePasture.C"

XIV.2.3.4. Console

Processing loadASCIIFilePasture.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
                      Copyright (C) 2013-2024 CEA/DES 
                      Contact: support-uranie@cea.fr 
                      Date: Tue Jan 09, 2024

Info in <TCanvas::Print>: png file pasture.png has been created

XIV.2.4. Macro "dataserverLoadASCIIFile.C"

XIV.2.4.1. Objective

Loading data in a TDataServer, using the "Salome-table" format of Uranie and applying basic visualisation methods on attributes.

The data file is named "flowrateUniformDesign.dat" and data correspond to an Uniform design-of-experiments of 32 patterns for a "code" with 8 inputs (, , , , , , , ) along with a response ("yhat"). The data file "flowrateUniformDesign.dat" is in the "Salome-table" format of Uranie.

#NAME: flowrateborehole
#TITLE: Uniform design of flow rate borehole problem proposed by Ho and Xu(2000)
#COLUMN_NAMES: rw| r| tu| tl| hu| hl| l| kw | ystar
#COLUMN_TITLES: r_{#omega}| r | T_{u} | T_{l} | H_{u} | H_{l} | L | K_{#omega} | y^{*}
#COLUMN_UNITS: m | m | m^{2}/yr | m^{2}/yr | m | m | m | m/yr | m^{3}/yr

0.0500 33366.67  63070.0 116.00 1110.00 768.57 1200.0 11732.14  26.18
0.0500   100.00  80580.0  80.73 1092.86 802.86 1600.0 10167.86  14.46
0.0567   100.00  98090.0  80.73 1058.57 717.14 1680.0 11106.43  22.75
0.0567 33366.67  98090.0  98.37 1110.00 734.29 1280.0 10480.71  30.98
0.0633   100.00 115600.0  80.73 1075.71 751.43 1600.0 11106.43  28.33
0.0633 16733.33  80580.0  80.73 1058.57 785.71 1680.0 12045.00  24.60
0.0700 33366.67  63070.0  98.37 1092.86 768.57 1200.0 11732.14  48.65
0.0700 16733.33 115600.0 116.00  990.00 700.00 1360.0 10793.57  35.36
0.0767   100.0  115600.0  80.73 1075.71 751.43 1520.0 10793.57  42.44
0.0767 16733.33  80580.0  80.73 1075.71 802.86 1120.0  9855.00  44.16
0.0833 50000.00  98090.0  63.10 1041.43 717.14 1600.0 10793.57  47.49
0.0833 50000.00 115600.0  63.10 1007.14 768.57 1440.0 11419.29  41.04
0.0900 16733.33  63070.0 116.00 1075.71 751.43 1120.0 11419.29  83.77
0.0900 33366.67 115600.0 116.00 1007.14 717.14 1360.0 11106.43  60.05
0.0967 50000.00  80580.0  63.10 1024.29 820.00 1360.0  9855.00  43.15
0.0967 16733.33  80580.0  98.37 1058.57 700.00 1120.0 10480.71  97.98
0.1033 50000.00  80580.0  63.10 1024.29 700.00 1520.0 10480.71  74.44
0.1033 16733.33  80580.0  98.37 1058.57 820.00 1120.0 10167.86  72.23
0.1100 50000.00  98090.0  63.10 1024.29 717.14 1520.0 10793.57  82.18
0.1100   100.00  63070.0  98.37 1041.43 802.86 1600.0 12045.00  68.06
0.1167 33366.67  63070.0 116.00  990.00 785.71 1280.0 12045.00  81.63
0.1167   100.00  98090.0  98.37 1092.86 802.86 1680.0  9855.00  72.5
0.1233 16733.33 115600.0  80.73 1092.86 734.29 1200.0 11419.29 161.35
0.1233 16733.33  63070.0  63.10 1041.43 785.71 1680.0 12045.00  86.73
0.1300 33366.67  80580.0 116.00 1110.00 768.57 1280.0 11732.14 164.78
0.1300   100.00  98090.0  98.37 1110.00 820.00 1280.0 10167.86 121.76
0.1367 50000.00  98090.0  63.10 1007.14 820.00 1440.0 10167.86  76.51
0.1367 33366.67  98090.0 116.00 1024.29 700.00 1200.0 10480.71 164.75
0.1433 50000.00  63070.0 116.00  990.00 785.71 1440.0  9855.00  89.54
0.1433 50000.00 115600.0  63.10 1007.14 734.29 1440.0 11732.14 141.09
0.1500 33366.67  63070.0  98.37  990.00 751.43 1360.0 11419.29 139.94 
0.1500   100.00 115600.0  80.73 1041.43 734.29 1520.0 11106.43 157.59

XIV.2.4.2. Macro Uranie

{
  // Create a TDataServer
  TDataServer * tds = new TDataServer();
  // Load the data base in the DataServer
  tds->fileDataRead("flowrateUniformDesign.dat");
  
  // Graph
  TCanvas  *Canvas = new TCanvas("c1", "Graph for the Macro loadASCIIFile",5,64,1270,667);
  TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();
  pad->Divide(2,2);

  pad->cd(1); tds->draw("ystar");
  pad->cd(2); tds->draw("ystar:rw");
  pad->cd(3); tds->drawTufte("ystar:rw");
  pad->cd(4); tds->drawProfile("ystar:rw");

  tds->startViewer();
          
}

XIV.2.4.3. Graph

Figure XIV.2. Graph of the macro "dataserverLoadASCIIFile.C"

Graph of the macro "dataserverLoadASCIIFile.C"

XIV.2.5. Macro "dataserverLoadASCIIFileYoungsModulus.C"

XIV.2.5.1. Objective

The objective of this macro is to load the ASCII data file "youngsmodulus.dat" and to apply visualisations on the attribute E with different options. The data file "youngsmodulus.dat" is in the "Salome-table" format of Uranie.

#NAME: youngsmodulus
#TITLE: Young's Modulus E for the Golden Gate Bridge
#COLUMN_NAMES: E
#COLUMN_TITLES: Young's Modulues
#COLUMN_UNITS: ksi

28900
29200
27400
28700
28400
29900
30200
29500
29600
28400
28300
29300
29300
28100
30200
30200
30300
31200
28800
27600
29600
25900
32000
33400
30600
32700
31300
30500
31300
29000
29400
28300
30500
31100
29300
27400
29300
29300
31300
27500
29400

Data are then exported in header file "youngsmodulus.h" which can be imported in some C file:

// File "youngsmodulus.h" generated by ROOT v5.34/32
// DateTime Tue Nov  3 10:40:13 2015
// DataServer : Name="youngsmodulus" Title="Young's Modulus E for the Golden Gate Bridge" Global Select=""

#define youngsmodulus_nPattern 41

//  Attribute Name="E"
Double_t E[youngsmodulus_nPattern] = {
 2.890000000e+04,
 2.920000000e+04,
 2.740000000e+04,
 2.870000000e+04,
 2.840000000e+04,
 2.990000000e+04,
 3.020000000e+04,
 2.950000000e+04,
 2.960000000e+04,
 2.840000000e+04,
 2.830000000e+04,
 2.930000000e+04,
 2.930000000e+04,
 2.810000000e+04,
 3.020000000e+04,
 3.020000000e+04,
 3.030000000e+04,
 3.120000000e+04,
 2.880000000e+04,
 2.760000000e+04,
 2.960000000e+04,
 2.590000000e+04,
 3.200000000e+04,
 3.340000000e+04,
 3.060000000e+04,
 3.270000000e+04,
 3.130000000e+04,
 3.050000000e+04,
 3.130000000e+04,
 2.900000000e+04,
 2.940000000e+04,
 2.830000000e+04,
 3.050000000e+04,
 3.110000000e+04,
 2.930000000e+04,
 2.740000000e+04,
 2.930000000e+04,
 2.930000000e+04,
 3.130000000e+04,
 2.750000000e+04,
 2.940000000e+04,
};
// End of attribute E

// End of File youngsmodulus.h

XIV.2.5.2. Macro Uranie

{
     
  TDataServer * tds = new TDataServer();
  tds->fileDataRead("youngsmodulus.dat");
  //  gEnv->SetValue("Hist.Binning.1D.x", 10);
  //   tds->getTuple()->Draw("E>>Attribute E(6, 25000, 34000)","","text");
  //   tds->getTuple()->Draw("E>>Attribute E(16, 25000, 34000)");
    
  tds->computeStatistic("E");
  tds->getAttribute("E")->printLog();
    
  tds->exportDataHeader("youngsmodulus.h");
    
  TCanvas  *Canvas = new TCanvas("c1", "Graph for the Macro loadASCIIFile",5,64,1270,667);
  TPad *pad = new TPad("pad","pad",0, 0.03, 1, 1); pad->Draw();
  pad->Divide(2,2);

  pad->cd(1); tds->draw("E");
  pad->cd(2); tds->draw("E" ,"", "nclass=sturges");
  pad->cd(3); tds->draw("E" ,"", "nclass=scott");
  pad->cd(4); tds->draw("E" ,"", "nclass=fd");
  
}

The TDataServer is filled with the ASCII data file "youngsmodulus.dat" with the method fileDataRead:

tds->fileDataRead("youngsmodulus.dat");

Variable E is then visualised with different options:

tds->draw("E" ,"", "nclass=sturges");
tds->draw("E" ,"", "nclass=scott");
tds->draw("E" ,"", "nclass=fd");

Characteristic values are computed (maximum, minimum, mean and standard deviation) with:

tds->computeStatistic("E");

Data are exported in a header file with

tds->exportDataHeader("youngsmodulus.h");

XIV.2.5.3. Graph

Figure XIV.3. Graph of the macro "dataserverLoadASCIIFileYoungsModulus.C"

Graph of the macro "dataserverLoadASCIIFileYoungsModulus.C"

XIV.2.5.4. Console

Processing loadASCIIFileYoungsModulus.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
                      Copyright (C) 2013-2024 CEA/DES 
                      Contact: support-uranie@cea.fr 
                      Date: Tue Jan 09, 2024

*******************************
** TAttribute::printLog  ******
**    Name[E]
**   Title[ Young's Modulues]
**   unity[ksi]
**    type[0]
**   share[1]
**   Origin[kAttribute]
**   Attribute[kInput]
**   _snote[]
--------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------
** - min[25900] max[33400]
** - mean[29575.6] std[1506.95]
**   lowerBound[-1.42387e+64] upperBound[1.42387e+64]
** NOT _defaultValue[]
** NOT _stepValue[]
 ** No Attribute to substitute level[0]
*******************************

XIV.2.6. Macro "dataserverLoadASCIIFileIonosphere.C"

XIV.2.6.1. Objective

The objective of this macro is to load the ASCII data file ionosphere.dat which defines 34 input variables and one output variable y and applies visualisation on one of these variables. The data file ionosphere.dat is in the "Salome-table" format of Uranie but is not shown for convenience.

XIV.2.6.2. Macro Uranie

{
  TDataServer * tds = new TDataServer();
  tds->fileDataRead("ionosphere.dat");
    
  tds->getAttribute("x28")->SetTitle("#Delta P_{e}^{F_{iso}}");
    
  // Graph
  TCanvas  *Canvas = new TCanvas("c1", "Graph for the Macro loadASCIIFileIonosphere",5,64,1270,667);
  tds->draw("x28");
    
}

The TDataServer is filled with ionosphere.dat with the fileDataRead method

tds->fileDataRead("ionosphere.dat");

A new title is set for the variable x28

tds->getAttribute("x28")->SetTitle("#Delta P_{e}^{F_{iso}}");

This variable is then drawn with its new title

tds->draw("x28");

XIV.2.6.3. Graph

Figure XIV.4. Graph of the macro "dataserverLoadASCIIFileIonosphere.C"

Graph of the macro "dataserverLoadASCIIFileIonosphere.C"

XIV.2.7. Macro "dataserverLoadASCIIFileCornell.C"

XIV.2.7.1. Objective

The objective of this macro is to load the ASCII data file cornell.dat which defines seven input variables and one output variable y on twelve patterns. The input file cornell.dat is in the "Salome-table" format of Uranie

#NAME: cornell
#TITLE: Dataset Cornell 1990
#COLUMN_NAMES: x1 | x2 | x3 | x4 | x5 | x6 | x7 | y
#COLUMN_TITLES: x_{1} | x_{2} | x_{3} | x_{4} | x_{5} | x_{6} | x_{7} | y

0.00 0.23 0.00 0.00 0.00 0.74 0.03 98.7
0.00 0.10 0.00 0.00 0.12 0.74 0.04 97.8
0.00 0.00 0.00 0.10 0.12 0.74 0.04 96.6
0.00 0.49 0.00 0.00 0.12 0.37 0.02 92.0
0.00 0.00 0.00 0.62 0.12 0.18 0.08 86.6
0.00 0.62 0.00 0.00 0.00 0.37 0.01 91.2
0.17 0.27 0.10 0.38 0.00 0.00 0.08 81.9
0.17 0.19 0.10 0.38 0.02 0.06 0.08 83.1
0.17 0.21 0.10 0.38 0.00 0.06 0.08 82.4
0.17 0.15 0.10 0.38 0.02 0.10 0.08 83.2
0.21 0.36 0.12 0.25 0.00 0.00 0.06 81.4
0.00 0.00 0.00 0.55 0.00 0.37 0.08 88.1

XIV.2.7.2. Macro Uranie

{
         
  TDataServer * tds = new TDataServer();
  tds->fileDataRead("cornell.dat");
    
  TMatrix matCorr = tds->computeCorrelationMatrix("");
  matCorr.Print();
    
}

The TDataServer is filled with cornell.dat with the fileDataRead method:

tds->fileDataRead("cornell.dat");

Then the correlation matrix is computed on all attributes:

TMatrix matCorr = tds->computeCorrelationMatrix("");

XIV.2.7.3. Console

Processing loadASCIIFileCornell.C...

--- Uranie v0.0/0 --- Developed with ROOT (6.32.02)
                      Copyright (C) 2013-2024 CEA/DES 
                      Contact: support-uranie@cea.fr 
                      Date: Tue Jan 09, 2024


8x8 matrix is as follows

     |      0    |      1    |      2    |      3    |      4    |
----------------------------------------------------------------------
   0 |          1      0.1042      0.9999      0.3707      -0.548 
   1 |     0.1042           1      0.1008     -0.5369     -0.2926 
   2 |     0.9999      0.1008           1       0.374     -0.5482 
   3 |     0.3707     -0.5369       0.374           1     -0.2113 
   4 |     -0.548     -0.2926     -0.5482     -0.2113           1 
   5 |    -0.8046     -0.1912     -0.8052     -0.6457      0.4629 
   6 |     0.6026       -0.59      0.6071      0.9159     -0.2744 
   7 |    -0.8373    -0.07082      -0.838     -0.7067      0.4938 


     |      5    |      6    |      7    |
----------------------------------------------------------------------
   0 |    -0.8046      0.6026     -0.8373 
   1 |    -0.1912       -0.59    -0.07082 
   2 |    -0.8052      0.6071      -0.838 
   3 |    -0.6457      0.9159     -0.7067 
   4 |     0.4629     -0.2744      0.4938 
   5 |          1     -0.6564      0.9851 
   6 |    -0.6564           1     -0.7411 
   7 |     0.9851     -0.7411           1 

XIV.2.8. Macro "dataserverComputeQuantile.C"

XIV.2.8.1. Objective

The objective of this macro is to test the classical quantile estimation and compare it to the Wilks estimation for a dummy gaussian distribution. Four different estimations of the 95% quantile value are done (along with one estimation of th 99% quantile) for illustration purposes:

  • using the usual method with a 200-points sample.
  • using the usual method with a 400-points sample.
  • using the Wilks method with a 95% confidence level (with 59-points sample).
  • using the Wilks method with a 95% confidence level (with 400-points sample).
  • using the Wilks method with a 99% confidence level (with 90-points sample).

XIV.2.8.2. Macro

{

 //Create a DataServer
 TDataServer *tds = new TDataServer("foo","pouet");
 tds->addAttribute("x"); //With one attribute

 //Create Histogram to store the quantile values
 TH1F *Q200 = new TH1F("quantile200","",60,1,4); Q200->SetLineColor(1); Q200->SetLineWidth(2);
 TH1F *Q400 = new TH1F("quantile400","",60,1,4); Q400->SetLineColor(4); Q400->SetLineWidth(2);
 TH1F *QW95 = new TH1F("quantileWilks95","",60,1,4); QW95->SetLineColor(2); QW95->SetLineWidth(2);
 TH1F *QW95400 = new TH1F("quantileWilks95400","",60,1,4); QW95400->SetLineColor(8); QW95400->SetLineWidth(2);
 TH1F *QW99 = new TH1F("quantileWilks99","",60,1,4); QW99->SetLineColor(6); QW99->SetLineWidth(2);

 //Defining the sample size
 int nb[4] = {200,400,59,90};
 double quant=0.95; //Quantile value
 double CL[2] = {0.95, 0.99};//Confidence level value for the two Wilks computation
 //Loop over the number of estimation (2 usual with different number of sample and 1 with Wilks estimation)
 for(unsigned int iq=0; iq<4; iq++)
 {
     //Produce 10000 drawing to get smooth distributio,
     for(unsigned int itest=0; itest < 10000; itest++)
     {
         tds->createTuple(); // Create the tuple to store value

	 // Fill it with random drawing of centered gaussian
	 for(unsigned int ival=0; ival < nb[iq]; ival++)
	     tds->getTuple()->Fill(ival+1, gRandom->Gaus(0,1) );

	 // Estimate the quantile...
	 double value;
	 if (iq<2)
	 {
	     // ... with usual methods...
	     tds->computeQuantile("x",quant, value);
	     if(iq==0) Q200->Fill(value); // ... on a 200-points sample
	     else
	     {
	         Q400->Fill(value); // ... on a 400-points sample
		 tds->estimateQuantile("x", quant, value, CL[iq-1]);
		 QW95400->Fill(value); // compute the quantile at 95% CL
	     }
	 }
	 else
	 {
	     // ... with the wilks optimised sample
	     tds->estimateQuantile("x", quant, value, CL[iq-2]);
	     if(iq==2) QW95->Fill(value); // compute the quantile at 95% CL
	     else QW99->Fill(value); // compute the quantile at 99% CL
	 }

	 // Delete the tuple
	 tds->deleteTuple();
      }
  }

  //Produce the plot with requested style
  gStyle->SetOptStat(0);
  TCanvas *can = new TCanvas("Can","Can",10,10,1000,1000);
  Q400->GetXaxis()->SetTitle("Quant_{95%}(Gaus_{(0,1)})");
  Q400->GetXaxis()->SetTitleOffset(1.2);
  Q400->Draw();
  Q200->Draw("same");
  QW95->Draw("same");
  QW95400->Draw("same");
  QW99->Draw("same");

  //Add the theoretical estimation
  TLine *lin = new TLine(); lin->SetLineStyle(3);
  lin->DrawLine(1.645,0,1.645, Q400->GetMaximum());

  //Add a block of legend
  TLegend *leg = new TLegend(0.4,0.6,0.8,0.85);
  leg->AddEntry(lin,"Theoretical quantile","l");
  leg->AddEntry(Q200, "Usual quantile (200 pts)","l");
  leg->AddEntry(Q400, "Usual quantile (400 pts)","l");
  leg->AddEntry(QW95, "Wilks quantile CL=95% (59 pts)","l");
  leg->AddEntry(QW95400, "Wilks quantile CL=95% (400 pts)","l");
  leg->AddEntry(QW99, "Wilks quantile CL=99% (90 pts)","l");
  leg->SetBorderSize(0);
  leg->Draw();
    
   
}

In this macro, a dummy dataserver is created with a single attribute named "x". Four histograms are prepared to store the resulting value. Then the same loop will be used to computed 10000 values of every quantile with different switchs to use one method instead of the other, or to change the number of points in the sample and/or the confidence level. All this is defined in the small part before the loop:

//Defining the sample size
int nb[4] = {200,400,59,90};
double quant=0.95; //Quantile value
double CL[2] = {0.95, 0.99};//Confidence level value for the two Wilks computation

Then the computation is performed, first for the usual method (first two iterations of iq), then for the Wilks estimation (last two iterations of iq). Every computational result is stored in the corresponding histogram which is finally displayed and shown in the following subsection.

XIV.2.8.3. Graph

Figure XIV.5. Graph of the macro "dataserverComputeQuantile.C"

Graph of the macro "dataserverComputeQuantile.C"

XIV.2.9. Macro "dataserverGeyserStat.C"

XIV.2.9.1. Objective

This part shows the complete code used to produce the console display in Section II.4.3.

XIV.2.9.2. Macro Uranie

{
  TDataServer *tdsGeyser =new TDataServer("geyser","poet");
  tdsGeyser->fileDataRead("geyser.dat");
  tdsGeyser->computeStatistic("x1");

  cout<<"min(x1)= "<<tdsGeyser->getAttribute("x1")->getMinimum()<<";  max(x1)= "<<tdsGeyser->getAttribute("x1")->getMaximum()
      <<";  mean(x1)= "<<tdsGeyser->getAttribute("x1")->getMean()<<";  std(x1)= "<<tdsGeyser->getAttribute("x1")->getStd()<<endl;
  }

XIV.2.9.3. Console

This macro should result in this output in console:

min(x1)= 1.6;  max(x1)= 5.1;  mean(x1)= 3.48778;  std(x1)= 1.14137

XIV.2.10. Macro "dataserverGeyserRank.C"

XIV.2.10.1. Objective

This part shows the complete code used to produce the console display in Section II.4.2.

XIV.2.10.2. Macro Uranie

{
  TDataServer *tdsGeyser =new TDataServer("geyser","poet");
  tdsGeyser->fileDataRead("geyser.dat");
  tdsGeyser->computeRank("x1");
  tdsGeyser->computeStatistic("Rk_x1");

  cout<<"NPatterns="<<tdsGeyser->getNPatterns()<<";  min(Rk_x1)= "<<tdsGeyser->getAttribute("Rk_x1")->getMinimum()
      <<";  max(Rk_x1)= "<<tdsGeyser->getAttribute("Rk_x1")->getMaximum()<<endl;    

  }

XIV.2.10.3. Console

This macro should result in this output in console:

NPatterns=272;  min(Rk_x1)= 1;  max(Rk_x1)= 272

XIV.2.11. Macro "dataserverNormaliseVector.C"

XIV.2.11.1. Objective

This part shows the complete code used to produce the console display in Section II.4.1.

XIV.2.11.2. Macro Uranie

{
  TDataServer *tdsop =new TDataServer("foo","pouet");
  tdsop->fileDataRead("tdstest.dat");

  //Compute a global normalisation of v, CenterReduced
  tdsop->normalize("v","GCR",TDataServer::kCR,true);
  //Compute a normalisation of v, CenterReduced (not global but entry by entry)
  tdsop->normalize("v","CR",TDataServer::kCR,false);
  
  //Compute a global normalisation of v, Centered
  tdsop->normalize("v","GCent",TDataServer::kCentered);
  //Compute a normalisation of v, Centered  (not global but entry by entry)
  tdsop->normalize("v","Cent",TDataServer::kCentered,false);
 
  //Compute a global normalisation of v, ZeroOne
  tdsop->normalize("v","GZO",TDataServer::kZeroOne);
  //Compute a normalisation of v, ZeroOne (not global but entry by entry)
  tdsop->normalize("v","ZO",TDataServer::kZeroOne,false);

  //Compute a global normalisation of v, MinusOneOne
  tdsop->normalize("v","GMOO",TDataServer::kMinusOneOne,true);
  //Compute a normalisation of v, MinusOneOne (not global but entry by entry)
  tdsop->normalize("v","MOO",TDataServer::kMinusOneOne,false);

  tdsop->scan("v:vGCR:vCR:vGCent:vCent:vGZO:vZO:vGMOO:vMOO","","colsize=4 col=2:5::::::::");
  }

XIV.2.11.3. Console

This macro should result in this output in console:

*************************************************************************************
*    Row   * Instance *  v *  vGCR *  vCR * vGCe * vCen * vGZO *  vZO * vGMO * vMOO *
*************************************************************************************
*        0 *        0 *  1 * -1.46 *   -1 *   -4 *   -3 *    0 *    0 *   -1 *   -1 *
*        0 *        1 *  2 * -1.09 *   -1 *   -3 *   -3 * 0.12 *    0 * -0.7 *   -1 *
*        0 *        2 *  3 * -0.73 *   -1 *   -2 *   -3 * 0.25 *    0 * -0.5 *   -1 *
*        1 *        0 *  4 * -0.36 *    0 *   -1 *    0 * 0.37 *  0.5 * -0.2 *    0 *
*        1 *        1 *  5 *     0 *    0 *    0 *    0 *  0.5 *  0.5 *    0 *    0 *
*        1 *        2 *  6 * 0.365 *    0 *    1 *    0 * 0.62 *  0.5 * 0.25 *    0 *
*        2 *        0 *  7 * 0.730 *    1 *    2 *    3 * 0.75 *    1 *  0.5 *    1 *
*        2 *        1 *  8 * 1.095 *    1 *    3 *    3 * 0.87 *    1 * 0.75 *    1 *
*        2 *        2 *  9 * 1.460 *    1 *    4 *    3 *    1 *    1 *    1 *    1 *
*************************************************************************************

XIV.2.12. Macro "dataserverComputeStatVector.C"

XIV.2.12.1. Objective

This part shows the complete code used to produce the console display in Section II.4.3.1.

XIV.2.12.2. Macro Uranie

{
  TDataServer *tdsop =new TDataServer("foo","poet");
  tdsop->fileDataRead("tdstest.dat");

  //Considering every element of a vector independent from the others
  tdsop->computeStatistic("x");
  TAttribute *px = tdsop->getAttribute("x");

  cout<<"min(x[0])= "<<px->getMinimum(0)<<";  max(x[0])= "<<px->getMaximum(0)
      <<";  mean(x[0])= "<<px->getMean(0)<<";  std(x[0])= "<<px->getStd(0)<<endl;
  cout<<"min(x[1])= "<<px->getMinimum(1)<<";  max(x[1])= "<<px->getMaximum(1)
      <<";  mean(x[1])= "<<px->getMean(1)<<";  std(x[1])= "<<px->getStd(1)<<endl;
  cout<<"min(x[2])= "<<px->getMinimum(2)<<";  max(x[2])= "<<px->getMaximum(2)
      <<";  mean(x[2])= "<<px->getMean(2)<<";  std(x[2])= "<<px->getStd(2)<<endl;
  cout<<"min(xtot)= "<<px->getMinimum(3)<<";  max(xtot)= "<<px->getMaximum(3)
      <<";  mean(xtot)= "<<px->getMean(3)<<";  std(xtot)= "<<px->getStd(3)<<endl;
  
  //Statistic for a single realisation of a vector, not considering other events    
  tdsop->addAttribute("Min_x","Min$(x)");
  tdsop->addAttribute("Max_x","Max$(x)");
  tdsop->addAttribute("Mean_x","Sum$(x)/Length$(x)");

  tdsop->scan("x:Min_x:Max_x:Mean_x","","colsize=5 col=2::::");
  }

XIV.2.12.3. Console

This macro should result in this output in console, split in two parts, the first one being from Uranie's method

min(x[0])= 1;  max(x[0])= 7;  mean(x[0])= 3;  std(x[0])= 3.4641
min(x[1])= 2;  max(x[1])= 8;  mean(x[1])= 4.66667;  std(x[1])= 3.05505
min(x[2])= 3;  max(x[2])= 9;  mean(x[2])= 6.66667;  std(x[2])= 3.21455
min(xtot)= 1;  max(xtot)= 9;  mean(xtot)= 4.77778;  std(xtot)= 3.23179

The second on the other hand results from ROOT's methods (the second part of the code shown above):

*****************************************************
*    Row   * Instance *  x * Min_x * Max_x * Mean_x *
*****************************************************
*        0 *        0 *  1 *     1 *     3 *      2 *
*        0 *        1 *  2 *     1 *     3 *      2 *
*        0 *        2 *  3 *     1 *     3 *      2 *
*        1 *        0 *  7 *     7 *     9 *      8 *
*        1 *        1 *  8 *     7 *     9 *      8 *
*        1 *        2 *  9 *     7 *     9 *      8 *
*        2 *        0 *  1 *     1 *     8 * 4.3333 *
*        2 *        1 *  4 *     1 *     8 * 4.3333 *
*        2 *        2 *  8 *     1 *     8 * 4.3333 *
*****************************************************

XIV.2.13. Macro "dataserverComputeCorrelationMatrixVector.C"

XIV.2.13.1. Objective

This part shows the complete code used to produce the console display in Section II.4.5.1.

XIV.2.13.2. Macro Uranie

{
  TDataServer *tdsop =new TDataServer("foo","poet");
  tdsop->fileDataRead("tdstest.dat");
  
  // Consider a and x attributes (every element of the vector)
  TMatrixD globalOne = tdsop->computeCorrelationMatrix("x:a");
  globalOne.Print();

  // Consider a and x attributes (cherry-picking a single element of the vector)
  TMatrixD focusedOne = tdsop->computeCorrelationMatrix("x[1]:a");
  focusedOne.Print();
}

XIV.2.13.3. Console

This macro should result in this output in console.

4x4 matrix is as follows

     |      0    |      1    |      2    |      3    |
---------------------------------------------------------
   0 |          1      0.9449      0.6286       0.189 
   1 |     0.9449           1      0.8486         0.5 
   2 |     0.6286      0.8486           1      0.8825 
   3 |      0.189         0.5      0.8825           1 


2x2 matrix is as follows

     |      0    |      1    |
-------------------------------
   0 |          1         0.5 
   1 |        0.5           1 

XIV.2.14. Macro "dataserverComputeQuantileVec.C"

XIV.2.14.1. Objective

This part shows the complete code used to produce the console display in Section II.4.4.1.

XIV.2.14.2. Macro Uranie

{
    TDataServer *tdsvec = new TDataServer("foo", "bar");
    tdsvec->fileDataRead("aTDSWithVectors.dat");

    double probas[3]={0.2, 0.6, 0.8}; double quants[3];
    tdsvec->computeQuantile("rank", 3, probas, quants);

    TAttribute *prank = tdsvec->getAttribute("rank");
    int nbquant;
    prank->getQuantilesSize(nbquant); // (1)
    cout << "nbquant = " << nbquant << endl;

    double aproba=0.8; double aquant;
    prank->getQuantile(aproba, aquant); // (2)
    cout << "aproba = " << aproba << ", aquant = " <<
    aquant << endl;

    double theproba[3], thequant[3];
    prank->getQuantiles(theproba, thequant); // (3)
    for(int i_quant=0; i_quant<nbquant; ++i_quant) {
        cout << "(theproba, thequant)[" << i_quant << "] = "
        << "(" << theproba[i_quant] << ", " <<
        thequant[i_quant] << ")" << endl;
    }

    vector<double> allquant;
    prank->getQuantileVector(aproba, allquant); // (4)
    cout << "aproba = " << aproba << ", allquant = ";
    for(double quant_i: allquant)
        cout << quant_i << " ";
    cout << endl;
}

XIV.2.14.3. Console

This macro should result in this output in console:

nbquant = 3
aproba = 0.8, aquant = 6.4
(theproba, thequant)[0] = (0.2, 1.6)
(theproba, thequant)[1] = (0.6, 4.8)
(theproba, thequant)[2] = (0.8, 6.4)
aproba = 0.8, allquant = 6.4 7.4 

XIV.2.15. Macro "dataserverDrawQQPlot.C"

XIV.2.15.1. Objective

This macro is an example of how to produce QQ-plot for a certain number of randomly-drawn samples, providing the correct parameter values along with modified versions to illustrate the impact.

XIV.2.15.2. Macro Uranie

{
    // Create a TDS with 8 kind of distributions
    double p1=1.3, p2=4.5, p3=0.9, p4=4.4; // Fixed values for parameters
    
    TDataServer *tds0 = new TDataServer();
    tds0->addAttribute(new TNormalDistribution("norm", p1, p2));
    tds0->addAttribute(new TLogNormalDistribution("logn", p1, p2));
    tds0->addAttribute(new TUniformDistribution("unif", p1, p2));
    tds0->addAttribute(new TExponentialDistribution("expo", p1, p2));
    tds0->addAttribute(new TGammaDistribution("gamm", p1, p2, p3));
    tds0->addAttribute(new TBetaDistribution("beta", p1, p2, p3, p4));
    tds0->addAttribute(new TWeibullDistribution("weib", p1, p2, p3));
    tds0->addAttribute(new TGumbelMaxDistribution("gumb", p1, p2));
     
    // Create the sample
    TBasicSampling *fsamp = new TBasicSampling(tds0, "lhs", 200);
    fsamp->generateSample();

    // Define number of laws, their name and numbers of parameters
    unsigned int nLaws=8;
    string laws[8]={"normal", "lognormal", "uniform", "gamma", "weibull", "beta", "exponential", "gumbelmax"}; // number of parameters to put in () for the corresponding law
    int npar[8]={2, 2, 2, 3, 3, 4, 2, 2};
    
    //Create the canvas
    TCanvas *c = new TCanvas("c1","",800,1000);
    //Create the 8 pads
    TPad *apad = new TPad("apad","apad",0, 0.03, 1, 1); apad->Draw(); apad->cd();
    apad->Divide(2,4);

    // Number of points to compare theoretical and empirical values
    int nS=1000;
    double mod=0.8; // Factor used to artificially change the parameter values
    
    TString opt=""; //option of the drawQQPlot method
    stringstream sstr;
    for(unsigned int ilaw=0; ilaw<nLaws; ilaw++)
    {
        // Clean sstr
        sstr.str("");
        // Add nominal configuration
        sstr << laws[ilaw] << "("<<p1<<","<<p2<<((npar[ilaw]>=3)?Form(",%g",p3):"")<<((npar[ilaw]>=4)?Form(",%g",p4):"")<<")";
        // Changing par1
        sstr << ":" << laws[ilaw] << "("<<p1*mod<<","<<p2<<((npar[ilaw]>=3)?Form(",%g",p3):"")<<((npar[ilaw]>=4)?Form(",%g",p4):"")<<")";
        // Changing par2
        sstr << ":" << laws[ilaw] << "("<<p1<<","<<p2*mod<<((npar[ilaw]>=3)?Form(",%g",p3):"")<<((npar[ilaw]>=4)?Form(",%g",p4):"")<<")";
        // Changing par3
        if(npar[ilaw] >=3 )
            sstr << ":" << laws[ilaw] << "("<<p1<<","<<p2<<((npar[ilaw]>=3)?Form(",%g",p3*mod):"")<<((npar[ilaw]>=4)?Form(",%g",p4):"")<<")";
        // Changing par4
        if(npar[ilaw] >=4 )
            sstr << ":" << laws[ilaw] << "("<<p1<<","<<p2<<((npar[ilaw]>=3)?Form(",%g",p3):"")<<((npar[ilaw]>=4)?Form(",%g",p4*mod):"")<<")";
        //cout<<sstr.str()<<endl;

        apad->cd(ilaw+1);
        // Produce the plot
        tds0->drawQQPlot( laws[ilaw].substr(0,4).c_str(), sstr.str().c_str(), nS, opt);
    }
          
}

The very first step of this macro is to create a sample that will contain a design-of-experiments filled with 200 locations, using various statistical laws. All the tested laws, are those available in the drawQQPlot method and they might depend on 2 to 4 parameters, defined a but randomly at the beginning of this piece of code.

// Create a TDS with 8 kind of distributions
double p1=1.3, p2=4.5, p3=0.9, p4=4.4; // Fixed values for parameters
    
TDataServer *tds0 = new TDataServer();
tds0->addAttribute(new TNormalDistribution("norm", p1, p2));
tds0->addAttribute(new TLogNormalDistribution("logn", p1, p2));
tds0->addAttribute(new TUniformDistribution("unif", p1, p2));
tds0->addAttribute(new TExponentialDistribution("expo", p1, p2));
tds0->addAttribute(new TGammaDistribution("gamm", p1, p2, p3));
tds0->addAttribute(new TBetaDistribution("beta", p1, p2, p3, p4));
tds0->addAttribute(new TWeibullDistribution("weib", p1, p2, p3));
tds0->addAttribute(new TGumbelMaxDistribution("gumb", p1, p2));

Once done, the sample is generated using TBasicSampling object with an LHS algorithm. On top of this, despite the plot preparation with canvas and pad generation, several variables are set to prepare the tests, as shown below

// Define number of laws, their name and numbers of parameters
unsigned int nLaws=8; 
string laws[8]={"normal", "lognormal", "uniform", "gamma", "weibull", "beta", "exponential", "gumbelmax"};
int npar[8]={2, 2, 2, 3, 3, 4, 2, 2}; // number of parameters to put in () for the corresponding law

// Number of points to compare theoretical and empirical values
int nS=1000;
double mod=0.8; // Factor used to artificially change the parameter values

Finally, after the line of hypothesis to be tested is constructed (the first paragraph in the for loop) the drawQQPlot method is called for every empirical law in the following line.

 tds0->drawQQPlot( laws[ilaw].substr(0,4).c_str(), sstr.str().c_str(), nS, opt); 

For the first case, when one wants to test the TNormalDistribution "norm" with the known parameters and a variation of each, it resumes as if this line was run:

tds0->drawQQPlot( "norm", "normal(1.3,4.5):normal(1.04,4.5):normal(1.3,3.6)", nS);

The first field is the attribute to be tested, while the second one provides the three hypothesis with which our attribute under investigation will be compared. The third argument is the number of steps to be computed for quantiles. The result of this macro is shown below.

XIV.2.15.3. Graph

Figure XIV.6. Graph of the macro "dataserverDrawQQPlot.C"

Graph of the macro "dataserverDrawQQPlot.C"

XIV.2.16. Macro "dataserverDrawPPPlot.C"

XIV.2.16.1. Objective

This macro is an example of how to produce PP-plot for a certain number of randomly-drawn samples, providing the correct parameter values along with modified versions to illustrate the impact.

XIV.2.16.2. Macro Uranie

{
    // Create a TDS with 8 kind of distributions
    double p1=1.3, p2=4.5, p3=0.9, p4=4.4; // Fixed values for parameters
    
    TDataServer *tds0 = new TDataServer();
    tds0->addAttribute(new TNormalDistribution("norm", p1, p2));
    tds0->addAttribute(new TLogNormalDistribution("logn", p1, p2));
    tds0->addAttribute(new TUniformDistribution("unif", p1, p2));
    tds0->addAttribute(new TExponentialDistribution("expo", p1, p2));
    tds0->addAttribute(new TGammaDistribution("gamm", p1, p2, p3));
    tds0->addAttribute(new TBetaDistribution("beta", p1, p2, p3, p4));
    tds0->addAttribute(new TWeibullDistribution("weib", p1, p2, p3));
    tds0->addAttribute(new TGumbelMaxDistribution("gumb", p1, p2));
     
    // Create the sample
    TBasicSampling *fsamp = new TBasicSampling(tds0, "lhs", 200);
    fsamp->generateSample();

    // Define number of laws, their name and numbers of parameters
    unsigned int nLaws=8;
    string laws[8]={"normal", "lognormal", "uniform", "gamma", "weibull", "beta", "exponential", "gumbelmax"}; // number of parameters to put in () for the corresponding law
    int npar[8]={2, 2, 2, 3, 3, 4, 2, 2};
    
    //Create the canvas
    TCanvas *c = new TCanvas("c1","",800,1000);
    //Create the 8 pads
    TPad *apad = new TPad("apad","apad",0, 0.03, 1, 1); apad->Draw(); apad->cd();
    apad->Divide(2,4);

    // Number of points to compare theoretical and empirical values
    int nS=1000;
    double mod=0.8; // Factor used to artificially change the parameter values
    
    TString opt=""; //option of the drawPPPlot method
    stringstream sstr;
    for(unsigned int ilaw=0; ilaw<nLaws; ilaw++)
    {
        // Clean sstr
        sstr.str("");
        // Add nominal configuration
        sstr << laws[ilaw] << "("<<p1<<","<<p2<<((npar[ilaw]>=3)?Form(",%g",p3):"")<<((npar[ilaw]>=4)?Form(",%g",p4):"")<<")";
        // Changing par1
        sstr << ":" << laws[ilaw] << "("<<p1*mod<<","<<p2<<((npar[ilaw]>=3)?Form(",%g",p3):"")<<((npar[ilaw]>=4)?Form(",%g",p4):"")<<")";
        // Changing par2
        sstr << ":" << laws[ilaw] << "("<<p1<<","<<p2*mod<<((npar[ilaw]>=3)?Form(",%g",p3):"")<<((npar[ilaw]>=4)?Form(",%g",p4):"")<<")";
        // Changing par3
        if(npar[ilaw] >=3 )
            sstr << ":" << laws[ilaw] << "("<<p1<<","<<p2<<((npar[ilaw]>=3)?Form(",%g",p3*mod):"")<<((npar[ilaw]>=4)?Form(",%g",p4):"")<<")";
        // Changing par4
        if(npar[ilaw] >=4 )
            sstr << ":" << laws[ilaw] << "("<<p1<<","<<p2<<((npar[ilaw]>=3)?Form(",%g",p3):"")<<((npar[ilaw]>=4)?Form(",%g",p4*mod):"")<<")";
        cout<<sstr.str()<<endl;

        apad->cd(ilaw+1);
        // Produce the plot
        tds0->drawPPPlot( laws[ilaw].substr(0,4).c_str(), sstr.str().c_str(), nS, opt);
    }
          
}

The macro is based on the one discussed in Section XIV.2.15. The only difference is this line

tds0->drawPPPlot( laws[ilaw].substr(0,4).c_str(), sstr.str().c_str(), nS, opt);

The call of the drawing method above can be resume, for the first case, like this:

tds0->drawPPPlot( "norm", "normal(1.3,4.5):normal(1.04,4.5):normal(1.3,3.6)", nS);

The first field is the attribute to be tested, while the second one provides the three hypothesis with which our attribute under investigation will be compared. The third argument is the number of steps to be computed for probabilities. The result of this macro is shown below.

XIV.2.16.3. Graph

Figure XIV.7. Graph of the macro "dataserverDrawPPPlot.C"

Graph of the macro "dataserverDrawPPPlot.C"

XIV.2.17. Macro "dataserverPCAExample.C"

XIV.2.17.1. Objective

The goal of this macro is to show how to handle a PCA analysis. It is not much discussed here, as a large description of both methods and concepts is done in Section II.6.

XIV.2.17.2. Macro Uranie

{
  // Read the database
  TDataServer * tdsPCA = new TDataServer("tdsPCA", "my TDS");
  tdsPCA->fileDataRead("Notes.dat");

  // Create the PCA object precising the variables of interest
  TPCA * tpca = new TPCA(tdsPCA, "Maths:Physics:French:Latin:Music");
  tpca->compute();

  bool graphical=true; // do graphs
  bool dumponscreen=true; //or dumping results  
  bool showcoordinate=false; // show the coordinate of the points while dumping results

  if(graphical)
  {
  
      // Draw all point in PCA planes
      TCanvas *cPCA = new TCanvas("cpca", "PCA",800,800);
      TPad *apad1 = new TPad("apad1","apad1",0, 0.03, 1, 1); apad1->Draw(); apad1->cd();
      apad1->Divide(2,2);
      apad1->cd(1); tpca->drawPCA(1,2,"Pupil");
      apad1->cd(3); tpca->drawPCA(1,3,"Pupil");
      apad1->cd(4); tpca->drawPCA(2,3,"Pupil");

      // Draw all variable weight in PC definition  
      TCanvas *cLoading = new TCanvas("cLoading", "Loading Plot",800,800);
      TPad *apad2 = new TPad("apad2","apad2",0, 0.03, 1, 1); apad2->Draw(); apad2->cd();
      apad2->Divide(2,2);
      apad2->cd(1); tpca->drawLoading(1,2);
      apad2->cd(3); tpca->drawLoading(1,3);
      apad2->cd(4); tpca->drawLoading(2,3);

      // Draw the eigen values in different normalisation
      TCanvas *c = new TCanvas("cEigenValues", "Eigen Values Plot",1100,500);
      TPad *apad3 = new TPad("apad3","apad3",0, 0.03, 1, 1); apad3->Draw(); apad3->cd();
      apad3->Divide(3,1);
      TNtupleD *ntd = tpca->getResultNtupleD();
      apad3->cd(1); ntd->Draw("eigen:i","","lp");
      apad3->cd(2); ntd->Draw("eigen_pct:i","","lp"); gPad->SetGrid();
      apad3->cd(3); ntd->Draw("sum_eigen_pct:i","","lp"); gPad->SetGrid();
    
  }
  
  if(dumponscreen)
  {
      
      int nPCused=5; // 3 to see only the meaningful ones
      TString PCname="", Cosname="", Contrname="", Variable="Pupil";
      for (unsigned int iatt=1; iatt<=nPCused; iatt++)
      {
          PCname+=Form("PC_%d",iatt)+((iatt!=nPCused)?TString(":"):TString(""));
          Cosname+=Form("cosca_%d",iatt)+((iatt!=nPCused)?TString(":"):TString(""));
          Contrname+=Form("contr_%d",iatt)+((iatt!=nPCused)?TString(":"):TString(""));
      }

      cout<<endl<<"========= EigenValues ====================="<<endl;
      tpca->getResultNtupleD()->Scan("*");

      if(showcoordinate)
      {
          cout<<endl<<"========= EigenVectors ====================="<<endl;
          tpca->_matEigenVectors.Print();

          cout<<endl<<"========= New Coordinates ====================="<<endl;
          tdsPCA->scan( (Variable+":"+PCname).Data() );
      }
      
  
      TDSNtupleD *varRes  = tpca->getVariableResultNtupleD();
      cout<<endl<<"=============== Looking at variables: Quality of representation ====================="<<endl;
      varRes->Scan(("Variable:"+Cosname).Data());

      cout<<endl<<"==================== Looking at variables: Contribution to axis ====================="<<endl;
      varRes->Scan(("Variable:"+Contrname).Data());

      cout<<endl<<"================== Looking at events:  Quality of representation ===================="<<endl;
      tdsPCA->scan((Variable+":"+Cosname).Data());

      cout<<endl<<"===================== Looking at events: Contribution to axis ======================="<<endl;
      tdsPCA->scan((Variable+":"+Contrname).Data());

   }
}

This first part of this macro is described in Section II.6. We will focus here on the second part, where all the numerical results are dumped on screen. These results are stored in the dataserver for the points and in a dedicated ntuple for the variable that can be retrieved by calling the method getVariableResultNtupleD. In both cases, the results can be split into two kinds:

  • the quality of the representation: it is called "cosca_X" as it is a squared cosinus of the projection of the source under study (point or subject) on the X-th PC.

  • the contribution to axis: it is called "contr_X" as it is the contribution of the source under study (point or subject) to the definition of the X-th PC.

We start by defining the list of variables that one might want to display

int nPCused=5; // 3 to see only the meaningful ones
TString PCname="", Cosname="", Contrname="", Variable="Pupil";
for (unsigned int iatt=1; iatt<=nPCused; iatt++)
{
//list of PC: PC_1:PC_2:PC_3:PC_4:PC_5
PCname+=Form("PC_%d",iatt)+((iatt!=nPCused)?TString(":"):TString(""));
//list of quality coeff: cosca_1:cosca_2:cosca_3:cosca_4:cosca_5
Cosname+=Form("cosca_%d",iatt)+((iatt!=nPCused)?TString(":"):TString(""));
//list of contribution: contr_1:contr_2:contr_3:contr_4:contr_5
Contrname+=Form("contr_%d",iatt)+((iatt!=nPCused)?TString(":"):TString(""));
}

From there, once the variable ntuple is retrieved, one can dump both the quality and contribution coefficients for the variable, here the subjects (it leads to the second and third block in the output shown in Section XIV.2.17.3).

TDSNtupleD *varRes  = tpca->getVariableResultNtupleD();
cout<<endl<<"=============== Looking at variables: Quality of representation ====================="<<endl;
varRes->Scan(("Variable:"+Cosname).Data());

cout<<endl<<"==================== Looking at variables: Contribution to axis ====================="<<endl;
varRes->Scan(("Variable:"+Contrname).Data());

Finally, one can do the same for the data points, with the same Scan method (which lead to the fourth and fifth block in the output shown in Section XIV.2.17.3).

cout<<endl<<"================== Looking at events:  Quality of representation ===================="<<endl;
tdsPCA->scan((Variable+":"+Cosname).Data());

cout<<endl<<"===================== Looking at events: Contribution to axis ======================="<<endl;
tdsPCA->scan((Variable+":"+Contrname).Data());

XIV.2.17.3. Console

========= EigenValues =====================
************************************************************
*    Row   *       i.i * eigen.eig * eigen_pct * sum_eigen *
************************************************************
*        0 *         1 * 2.8618175 * 57.236350 * 57.236350 *
*        1 *         2 * 1.1506811 * 23.013622 * 80.249973 *
*        2 *         3 * 0.9831407 * 19.662814 * 99.912787 *
*        3 *         4 * 0.0039371 * 0.0787424 * 99.991530 *
*        4 *         5 * 0.0004234 * 0.0084696 *       100 *
************************************************************

=============== Looking at variables: Quality of representation =====================
************************************************************************************
*    Row   *  Variable *   cosca_1 *   cosca_2 *   cosca_3 *   cosca_4 *   cosca_5 *
************************************************************************************
*        0 *     Maths *  0.649485 *   0.32645 * 0.0235449 * 0.0003614 * 0.0001582 *
*        1 *   Physics *  0.804627 *  0.185581 * 0.0086212 * 0.0010515 * 0.0001193 *
*        2 *    French *  0.574697 *  0.373378 * 0.0509446 * 0.0008976 * 8.252e-05 *
*        3 *     Latin *  0.828562 *  0.157999 * 0.0117556 * 0.0016205 * 6.335e-05 *
*        4 *     Music * 0.0044470 *  0.107272 *  0.888274 * 5.976e-06 * 8.299e-08 *
************************************************************************************

==================== Looking at variables: Contribution to axis =====================
************************************************************************************
*    Row   *  Variable *   contr_1 *   contr_2 *   contr_3 *   contr_4 *   contr_5 *
************************************************************************************
*        0 *     Maths *  0.226948 *  0.283702 * 0.0239486 * 0.0917987 *  0.373602 *
*        1 *   Physics *  0.281159 *   0.16128 * 0.0087691 *  0.267082 *   0.28171 *
*        2 *    French *  0.200815 *  0.324485 * 0.0518182 *  0.228004 *  0.194878 *
*        3 *     Latin *  0.289523 *  0.137309 * 0.0119572 *  0.411598 *  0.149613 *
*        4 *     Music * 0.0015539 * 0.0932252 *  0.903507 * 0.0015180 * 0.0001959 *
************************************************************************************

================== Looking at events:  Quality of representation ====================
************************************************************************************
*    Row   *     Pupil *   cosca_1 *   cosca_2 *   cosca_3 *   cosca_4 *   cosca_5 *
************************************************************************************
*        0 *      Jean * 0.8854534 * 0.0522119 * 0.0619429 * 0.0002655 * 0.0001260 *
*        1 *     Aline * 0.7920409 * 0.0542262 * 0.1530381 * 0.0006354 * 5.916e-05 *
*        2 *     Annie * 0.4784294 * 0.4813342 * 0.0384099 * 0.0018007 * 2.560e-05 *
*        3 *   Monique * 0.8785990 * 0.0024790 * 0.1180158 * 0.0009035 * 2.557e-06 *
*        4 *    Didier * 0.8515216 * 0.1382946 * 0.0079754 * 0.0021718 * 3.640e-05 *
*        5 *     Andre * 0.2465355 * 0.3961581 * 0.3567663 * 9.471e-05 * 0.0004451 *
*        6 *    Pierre * 0.0263090 * 0.7670958 * 0.2060832 * 0.0004625 * 4.925e-05 *
*        7 *  Brigitte * 0.1876629 * 0.5897686 * 0.2211409 * 0.0013390 * 8.836e-05 *
*        8 *   Evelyne * 0.0583185 * 0.3457931 * 0.5953786 * 0.0004600 * 4.957e-05 *
************************************************************************************

===================== Looking at events: Contribution to axis =======================
************************************************************************************
*    Row   *     Pupil *   contr_1 *   contr_2 *   contr_3 *   contr_4 *   contr_5 *
************************************************************************************
*        0 *      Jean * 0.3012931 * 0.0441856 * 0.0613538 * 0.0656820 * 0.2897335 *
*        1 *     Aline * 0.0618830 * 0.0105370 * 0.0348056 * 0.0360894 * 0.0312404 *
*        2 *     Annie * 0.0401366 * 0.1004284 * 0.0093797 * 0.1098075 * 0.0145176 *
*        3 *   Monique * 0.3784615 * 0.0026558 * 0.1479781 * 0.2828995 * 0.0074454 *
*        4 *    Didier * 0.1484067 * 0.0599446 * 0.0040461 * 0.2751439 * 0.0428726 *
*        5 *     Andre * 0.0348742 * 0.1393737 * 0.1469047 * 0.0097384 * 0.4255425 *
*        6 *    Pierre * 0.0041001 * 0.2973223 * 0.0934888 * 0.0524003 * 0.0518702 *
*        7 *  Brigitte * 0.0157710 * 0.1232678 * 0.0540974 * 0.0817989 * 0.0501849 *
*        8 *   Evelyne * 0.0150734 * 0.2222843 * 0.4479453 * 0.0864396 * 0.0865925 *
************************************************************************************
/language/en