Documentation / Manuel utilisateur en Python :
The objective of the macro is to pass the 3 tests of fit based on Empirical Distribution Function (EDF) statistics
(Kolmogorov-Smirnov (D), Cramer-VonMises (W2)
and Anderson-Darling (A2)) on the attribute "E" in the
"youngsmodulus"
dataset. The tested law is the "normal"
distribution when both the mean (30576) and variance (1450) are set or when both are defined either from the sample.
"""
Example of distribution testing with quality criteria on data
"""
from rootlogon import ROOT, DataServer, UncertModeler
tds = DataServer.TDataServer()
tds.fileDataRead("youngsmodulus.dat")
c = ROOT.TCanvas("c1", "Test on youngsmodulus dataset", 13, 38, 1210, 1874)
pad = ROOT.TPad("pad", "pad", 0, 0.03, 1, 1)
pad.Draw()
pad.Divide(1, 3)
tks = UncertModeler.TTestKolmogorovSmirnov(tds, "E")
pad.cd(1)
tks.computeScore("normal:normal(30576,1450)")
tcvm = UncertModeler.TTestCramerVonMises(tds, "E")
pad.cd(2)
tcvm.computeScore("normal:normal(30576,1450)")
tad = UncertModeler.TTestAndersonDarling(tds, "E")
pad.cd(3)
tad.computeScore("normal:normal(30576,1450)")
The objective of the macro uncertModelerCirce is to apply the Circe method on the dataset
"jdd_circe_summerschool2006_dataserver.dat"
, which contains 150 patterns described by 4
attributes ("code","exp" and the derivative from the two parameters
"sens1" and "sens2" of the study).
#COLUMN_NAMES: code | exp | sens1 | sens2 0.853828 0.720995 1.280695 0.426961 1.420676 1.467705 2.130798 0.710554 1.986837 1.277730 2.979664 0.994010 2.552036 1.991193 3.826800 1.277273 3.116001 2.036849 4.671714 1.560289 3.678459 3.445518 5.513915 1.843002 4.239138 4.735902 6.352916 2.125359 4.797768 3.381548 7.188232 2.407304 5.354081 5.383797 8.019378 2.688784 5.907808 5.001590 8.845874 2.969742 6.458685 5.330333 9.667245 3.250125 7.006447 7.952286 10.483015 3.529879 7.550833 4.561176 11.292717 3.808950 8.091583 7.968353 12.095884 4.087283 8.628440 8.644601 12.892057 4.364824 9.161150 7.772117 13.680780 4.641520 9.689460 11.946291 14.461602 4.917317 10.213121 9.110840 15.234080 5.192162 10.731888 9.179312 15.997775 5.466002 11.245518 12.044400 16.752254 5.738783 11.753772 9.955391 17.497091 6.010453 12.256413 8.516376 18.231867 6.280959 12.753210 11.832538 18.956171 6.550249 13.243933 15.764511 19.669597 6.818270 13.728360 13.636206 20.371749 7.084971 14.206269 15.828666 21.062237 7.350300 14.677444 15.371526 21.740682 7.614206 15.141674 17.624294 22.406711 7.876637 15.598751 16.365027 23.059960 8.137543 16.048474 13.622278 23.700075 8.396873 16.490644 16.654472 24.326711 8.654577 16.925069 18.445503 24.939533 8.910605 17.351561 21.030571 25.538214 9.164908 17.769937 17.357715 26.122438 9.417436 18.180020 11.956423 26.691900 9.668140 18.581638 19.157803 27.246304 9.916972 18.974624 16.126637 27.785365 10.163884 19.358818 18.922050 28.308810 10.408827 19.734065 20.848071 28.816374 10.651755 20.100213 18.048485 29.307807 10.892620 20.457121 8.858695 29.782866 11.131376 20.804650 17.677597 30.241324 11.367976 21.142669 22.920734 30.682962 11.602375 21.471051 18.370473 31.107575 11.834528 21.789678 16.656787 31.514968 12.064388 22.098436 19.602911 31.904959 12.291912 22.397218 27.669603 32.277379 12.517056 22.685923 22.298174 32.632070 12.739777 22.964458 21.384184 32.968887 12.960030 23.232734 30.519337 33.287695 13.177773 23.490671 15.001831 33.588376 13.392965 23.738192 25.366767 33.870822 13.605563 23.975231 23.949371 34.134936 13.815527 24.201726 13.391711 34.380637 14.022815 24.417621 21.553269 34.607854 14.227387 24.622868 26.531200 34.816530 14.429205 24.817425 20.392323 35.006621 14.628229 25.001258 32.189940 35.178096 14.824419 25.174337 20.032718 35.330935 15.017740 25.336642 26.195740 35.465133 15.208152 25.488157 30.414972 35.580695 15.395619 25.628873 29.119988 35.677642 15.580104 25.758789 32.045293 35.756006 15.761573 25.877910 21.195366 35.815830 15.939990 25.986247 28.350611 35.857174 16.115319 26.083817 38.814487 35.880105 16.287529 26.170646 31.542012 35.884708 16.456584 26.246764 26.275016 35.871075 16.622452 26.312208 38.313217 35.839315 16.785102 26.367023 28.568492 35.789546 16.944501 26.411259 31.091609 35.721899 17.100619 26.444972 16.263460 35.636518 17.253425 26.468224 21.124831 35.533558 17.402891 26.481085 33.708891 35.413184 17.548986 26.483629 24.250273 35.275576 17.691683 26.475938 35.046525 35.120922 17.830954 26.458098 24.052985 34.949423 17.966773 26.430201 34.135678 34.761291 18.099112 26.392347 27.700029 34.556749 18.227946 26.344640 32.737134 34.336029 18.353251 26.287189 28.450629 34.099376 18.475001 26.220109 23.829647 33.847044 18.593174 26.143522 27.528282 33.579297 18.707747 26.057552 36.671849 33.296408 18.818696 25.962331 26.930743 32.998661 18.926002 25.857996 32.444448 32.686349 19.029643 25.744687 28.236267 32.359775 19.129598 25.622549 22.031751 32.019249 19.225849 25.491734 21.495018 31.665091 19.318378 25.352397 21.132186 31.297629 19.407165 25.204696 19.217357 30.917198 19.492194 25.048797 26.490158 30.524145 19.573449 24.884866 21.316733 30.118819 19.650913 24.713076 25.592418 29.701580 19.724572 24.533603 19.577027 29.272793 19.794412 24.346625 34.922599 28.832833 19.860418 24.152327 35.735641 28.382076 19.922578 23.950895 19.302306 27.920910 19.980881 23.742519 22.246825 27.449724 20.035314 23.527392 27.026746 26.968916 20.085868 23.305709 22.656735 26.478887 20.132532 23.077671 15.588268 25.980044 20.175297 22.843477 26.051802 25.472798 20.214156 22.603332 26.182246 24.957565 20.249100 22.357443 38.381341 24.434763 20.280123 22.106018 22.768312 23.904816 20.307219 21.849267 26.030200 23.368151 20.330382 21.587402 15.635641 22.825196 20.349609 21.320639 18.753400 22.276382 20.364895 21.049191 20.947923 21.722145 20.376237 20.773276 24.642890 21.162919 20.383634 20.493113 14.828323 20.599142 20.387083 20.208919 17.455233 20.031254 20.386585 19.920916 16.168686 19.459693 20.382139 19.629322 15.843812 18.884899 20.373745 19.334360 18.983964 18.307313 20.361407 19.036251 20.541221 17.727376 20.345126 18.735215 14.704089 17.145526 20.324904 18.431475 27.724483 16.562203 20.300747 18.125252 20.854847 15.977844 20.272659 17.816766 15.890789 15.392886 20.240646 17.506238 16.750030 14.807764 20.204712 17.193888 10.107342 14.222909 20.164866 16.879934 15.763192 13.638752 20.121116 16.564594 27.922521 13.055719 20.073469 16.248084 14.705787 12.474234 20.021934 15.930621 9.417969 11.894719 19.966523 15.612417 13.446139 11.317589 19.907245 15.293685 13.532392 10.743257 19.844112 14.974634 20.769703 10.172131 19.777137 14.655473 17.227635 9.604615 19.706331 14.336409 12.008431 9.041108 19.631710 14.017644 17.118440 8.482001 19.553287 13.699381 14.424335 7.927684 19.471078 13.381817 14.105580 7.378537 19.385098 13.065150 8.072573 6.834935 19.295364 12.749572 10.533065 6.297249 19.201894 12.435272 11.022880 5.765839 19.104706 12.122439 12.865744 5.241061 19.003818 11.811257 10.789248 4.723263 18.899250 11.501904 5.134292 4.212786 18.791022 11.194558 11.284947 3.709961 18.679155 10.889392 10.426379 3.215113 18.563671 10.586576 8.555081 2.728559 18.444593 10.286274 10.517881 2.250605 18.321943 9.988648 12.657006 1.781552 18.195744 9.693856 9.822359 1.321689 18.066023 9.402049 9.082523 0.871296 17.932802 9.113378 12.983850 0.430646 17.796110 8.827985 6.205202 -2.89e-15 17.655971
"""
Example of Circe method application
"""
from rootlogon import DataServer, UncertModeler
tds = DataServer.TDataServer()
tds.fileDataRead("jdd_circe_summerschool2006_dataserver.dat")
# tds.addAttribute("uexp", "0.05*exp")
# tds.addAttribute("sens3", "sens1*sens2")
# Create the TCirce object from the TDS and specify Experimental attribute
# but also Code attribute and sensitivity attributes
tc = UncertModeler.TCirce(tds, "exp", "code", "sens1,sens2")
# tc.setTolerance(1e-5)
# tc.setYStarSigma("uexp")
# tc.setNCMatrix(5)
# TMatrixD initCMat(2,2)
# initCMat.Zero(); initCMat(0,0) = 0.042737; initCMat(1,1) = 0.525673
# tc.setCMatrixInitial(initCMat)
# TVectorD initBVec(2)
# initBVec(0) = -1.436394; initBVec(1) = -1.501561
# tc.setBVectorInitial(initBVec)
tc.estimate()
# Post-treatment
vBiais = tc.getBVector()
print(" ** vBiais rows["+str(vBiais.GetNrows())+"]")
vBiais.Print()
matC = tc.getCMatrix()
print(" ** matC rows["+str(matC.GetNrows())+"] col ["+str(matC.GetNcols())+"]")
matC.Print()
Processing uncertModelerCirce.py... --- Uranie v0.0/0 --- Developed with ROOT (6.32.02) Copyright (C) 2013-2024 CEA/DES Contact: support-uranie@cea.fr Date: Tue Jan 09, 2024 ********* ** addData from an another TDS [jdd_circe_summerschool2006_dataserver] ** YStar[exp] YStarSigma[]YHat[code] ** Sensitivity Attributes[sens1 sens2] ** nparameter [sens1 sens2] size[2] ** List Of TDS size[1] Collection name='TList', class='TList', size=1 OBJ: URANIE::DataServer::TDataServer jdd_circe_summerschool2006_dataserver _title_ ** List Of Informations size[3] Collection name='TList', class='TList', size=3 OBJ: TNamed __Circe_YStar_jdd_circe_summerschool2006_dataserver_1__ exp OBJ: TNamed __Circe_YHat_jdd_circe_summerschool2006_dataserver_1__ code OBJ: TNamed __Circe_Sensitivity_jdd_circe_summerschool2006_dataserver_1__ sens1,sens2 ** End Of addData from an another TDS [jdd_circe_summerschool2006_dataserver] ********* ********************************** ** Begin Of Initial Matrix C [1/1] ** CIRCE HAS CONVERGED ** iter[90] ** Likelihood[-2.729559333111159] ***** Selected :: iter[0] Likelihood[-2.729559333111159] ** matrix C1 2x2 matrix is as follows | 0 | 1 | ------------------------------- 0 | 0.01612 0 1 | 0 0.03616 ** vector XM1 Vector (2) is as follows | 1 | ------------------ 0 |-0.0131705 1 |0.0106155 ** End Of Initial Matrix C [1/1] ********************************** ** Residual :: Mean [-0.007054035043120376] Std[1.003324966600461] ** vBiais rows[2] Vector (2) is as follows | 1 | ------------------ 0 |-0.0131705 1 |0.0106155 ** matC rows[2] col [2] 2x2 matrix is as follows | 0 | 1 | ------------------------------- 0 | 0.01612 0 1 | 0 0.03616