English Français

Documentation / Manuel développeur

Modules disponibles

Calibration,  DataServer,  Launcher,  MetaModelOptim,  Modeler,  Optimizer,  ReLauncher,  Reliability,  ReOptimizer,  Sampler,  Sensitivity,  UncertModeler,  XmlProblem,   Uranie / Modeler: TANNModeler.h Source File
Uranie / Modeler  v4.10.0
/* @license-end */
TANNModeler.h
Go to the documentation of this file.
1 // Copyright (C) 2013-2024 CEA/DES
3 //
4 // This program is free software: you can redistribute it and/or modify
5 // it under the terms of the GNU Lesser General Public License as published
6 // by the Free Software Foundation, either version 3 of the License, or any
7 // later version.
8 //
9 // This program is distributed in the hope that it will be useful,
10 // but WITHOUT ANY WARRANTY; without even the implied warranty of
11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 // GNU Lesser General Public License for more details.
13 //
14 // You should have received a copy of the GNU Lesser General Public License
15 // along with this program. If not, see <http://www.gnu.org/licenses/>.
18 // $Id$
19 // $Author$
20 // $Date$
21 // $Revision$
22 // $State$
24 
32 #ifndef TANNMODELER_H
33 #define TANNMODELER_H
34 
35 // Newmat
36 #include "newmat.h"
37 using namespace NEWMAT;
38 
39 #include <iostream>
40 
41 //ROOT
42 #include "Rtypes.h"
43 #include "TNamed.h"
44 
45 //Uranie
46 #include "Modeler.h"
47 #include "TModeler.h"
48 #include "TDataServer.h"
49 #include "TPatternsEventList.h"
50 #include "UMLP.h"
51 
52 // GPU training of ANN
53 #if defined(WITH_GPUANN) && !defined(__CINT__)
54 #include "nn_headers.h"
55 namespace NNLM = NeuralNetworkLevenbergMarquardt;
56 #endif
57 
58 
59 namespace URANIE
60 {
61 namespace Modeler
62 {
63 
64 class TempSolution;
65 
66 class TANNModeler: public TModeler
67 {
68 public:
69  enum EProblem {
70  kRegression, kClassification
71  };
72 
73  enum ENorm
74  {
75  kCR, kMinusOneOne, kZeroOne
76  };
77  // Attributes
78 protected:
79  Int_t _nSeed;
80 
81 private:
82  Int_t _nInput;
83  Int_t _nHidden;
84  Int_t _nHiddenLayer;
85  Int_t _nOutput;
86  Int_t _nNeurons;
87 
88  Int_t _nApp;
89  Int_t _nTest;
90  Double_t _dLearn;
91  Double_t _dTest;
92  Double_t _dWeightDecay;
93  URANIE::DataServer::TPatternsEventList * _elAll;
94  Bool_t _bMix;
95 
96  TString _sArchi;
97  TString _sInput;
98  TString _sHidden;
99  TString _sOutput;
100 
101  Int_t _nWeight;
102 
113  ColumnVector _vecWeights;
114  TempSolution * _tmpSolution;
115 
116 
117  ColumnVector _vecMinValues;
118  ColumnVector _vecMaxValues;
119 
120 
122  //---------------------------------------------
126  Double_t _dFcnTol;
129 
131  Double_t * _dval; // size: _nInput+1 (a full training vector = input + (a single) output)
132 
134  static const int OPTIM_MAX_ITER = 10000; //<! Maximal number of iterations in the optimization algorithms
135  static const int OPTIM_MAX_FEVAL = 50000; //<! Maximal number of evaluations in the optimization algorithms
136 public:
137  Bool_t _blog;
138  URANIE::DataServer::TDataServer *_tds;
139  UMLP *_UMLP;
140 public:
141  //---------------------------------------------
145  TANNModeler(URANIE::DataServer::TDataServer *tds, TString architecture,
147  Double_t dratio = 0.80, Option_t *option = "");
148 #ifdef WITH_LIBXML2
149  TANNModeler (URANIE::DataServer::TDataServer *tds, const char* pmmlfile, const char* ANNname, Double_t dratio = 0.80, Option_t *option ="");
151 #endif
152  virtual ~TANNModeler();
155  //---------------------------------------------
159  Int_t getNInput()
161  {
162  return _nInput;
163  }
165  Int_t getNHidden()
166  {
167  return _nHidden;
168  }
170  Int_t getNOutput()
171  {
172  return _nOutput;
173  }
175  Int_t getNAPP()
176  {
177  return _nApp;
178  }
180  Int_t getNTest()
181  {
182  return _nTest;
183  }
184 
186  void setWeights(ColumnVector weights)
187  {
188  _vecWeights = weights;
189  }
190  ColumnVector getWeights()
191  {
192  return _vecWeights;
193  }
194 
196 
199  Double_t getWeight(Int_t ind)
200  {
201  return _vecWeights(ind + 1);
202  }
203 
204  Double_t getMinValue(Int_t ind)
205  {
206  return _vecMinValues(ind);
207  }
208  Double_t getMaxValue(Int_t ind)
209  {
210  return _vecMaxValues(ind);
211  }
212  Double_t * getdval()
213  {
214  return _dval;
215  }
216 
217  void setValue(Int_t ind, Int_t &ncrt, Double_t *xy, Bool_t normalize=true);
218 
219  void setDataSet(URANIE::DataServer::TPatternsEventList* tel)
220  {
221  _elAll = tel;
222  }
223 
224  void setMix(Bool_t bmix = kTRUE)
225  {
226  _bMix = bmix;
227  }
228  void setFcnTol(Double_t dprec)
229  {
230  _dFcnTol = dprec;
231  }
232  Double_t getFcnTol()
233  {
234  return _dFcnTol;
235  }
236 
238  void setNormalization(ENorm n);
241  {
242  return _nNormType;
243  }
244 
246  EProblem getProblem() { return _nProlemType;}
248 
253  void setSeed(Int_t ind = 0);
255  Int_t getSeed()
256  {
257  return _nSeed;
258  }
260  const char * getInputName(Int_t i)
261  {
262  URANIE::DataServer::TAttribute *att;
263  att = (URANIE::DataServer::TAttribute *) _listOfAttributes->At(i);
264  return att->GetName();
265  }
267  const char * getOutputName()
268  {
269  return _sOutput.Data();
270  }
272 
273  //---------------------------------------------
277  // Init the ANN
278  void init();
280  void randomizeWeights();
286 #ifdef WITH_GPUANN
287  void train(Int_t niter = 10, Int_t nInit = 10, Option_t* option = "text", Bool_t useGPU = true);
288 #else
289  void train(Int_t niter = 10, Int_t nInit = 10, Option_t* option = "text", Bool_t useGPU = false);
290 #endif
291 
295  Double_t getEQM(Option_t* option = "");
297  Double_t getWeightDecay()
298  {
299  return _dWeightDecay;
300  }
301 
303  void saveIfBetter(const ColumnVector & weights, Double_t eqm_app, Double_t eqm_tst);
304 
306 
307  //---------------------------------------------
327 
337 // void exportFunction(const char* lang, const char* file = "",
338 // const char* name = "", Option_t *option = "");
340  void exportModelCplusplus(const char* file = "", const char* name = "",
341  Option_t *option = "") const;
342 // /*!
343 // \todo Write this method as a TModeler method
344 // */
345  void exportModelCplusplus(std::ofstream * sourcefile) const;
346 // {
347 // cerr
348 // << " --- Method TANNModeler::exportModelCplusplus(ofstream * sourcefile) not yet implemented"
349 // << endl;
350 // cerr
351 // << " --- Then using the method TANNModeler::exportModelCplusplus(file, name, option)"
352 // << endl;
353 // }
354 // ;
355 
357  void exportModelPMML(const char* file = "", const char* name = "", Option_t *option = "") const;
359  void exportModelFortran(const char* file, const char* name, Option_t *option = "") ;
363  void exportModelFortran(std::ofstream * sourcefile) const;
364 // {
365 // std::cerr
366 // << " --- Method TANNModeler::exportModelFortran(ofstream * sourcefile) not yet implemented"
367 // << endl;
368 // std::cerr
369 // << " --- Then using the method TANNModeler::exportModelFortran(file, name, option)"
370 // << endl;
371 // }
372 // ;
373 
374 
376 
380  void exportModelPython(std::ofstream * sourcefile) const
381  {
382  UNUSED(sourcefile);
383  std::cerr
384  << " --- Method TANNModeler::exportModelPython(ofstream * sourcefile) not yet implemented"
385  << endl;
386  };
388 
389  //---------------------------------------------
393  virtual void printLog(Option_t *option = "");
395  ClassDef(URANIE::Modeler::TANNModeler, ID_MODELER)
396  //Classe def
397 
398 private:
399  void train_cpu(Int_t niter, Int_t nInit, Bool_t randomizeweights);
400 
401 #if defined(WITH_GPUANN)
402  void train_gpu(NNLM::NeuronType T, Int_t niter, Int_t nInit, Bool_t randomizeweights);
403 #endif
404 
405 };
406 } // Fin du namespace Modeler
407 } // Fin du namespace URANIE
408 
410 
411 #endif
ROOT.
Definition: TAnisp.h:163
Double_t _dWeightDecay
! The test quality
Definition: TANNModeler.h:92
Int_t getNOutput()
Gets the number of output.
Definition: TANNModeler.h:170
Definition: TANNModeler.h:66
Int_t _nHidden
! The number of inputs
Definition: TANNModeler.h:83
void exportModelPython(std::ofstream *sourcefile) const
Export the model in Python langage in a file (not yet implemented)
Definition: TANNModeler.h:380
Double_t getWeight(Int_t ind)
Returns the weight givent by the index.
Definition: TANNModeler.h:199
Int_t getSeed()
Returns the seed value.
Definition: TANNModeler.h:255
TString _sOutput
Definition: TANNModeler.h:99
Definition: TModeler.h:62
ENorm
Definition: TANNModeler.h:73
Double_t * getdval()
Definition: TANNModeler.h:212
Bool_t _blog
Boolean for edit the log.
Definition: TANNModeler.h:137
URANIE::DataServer::TPatternsEventList * _elAll
! The weight decay parameter - when used, favorize a smoother ANN
Definition: TANNModeler.h:93
void setMix(Bool_t bmix=kTRUE)
Definition: TANNModeler.h:224
Int_t _nNeurons
! The number of outputs
Definition: TANNModeler.h:86
const char * getInputName(Int_t i)
Return the name of input attributes indexed by i.
Definition: TANNModeler.h:260
ColumnVector _vecWeights
! The number of weights
Definition: TANNModeler.h:113
Interface of the class URANIE::Optimize::TModeler.
TString _sInput
! The architecture, e.g. "x:y:z,3,yhat" specifying inputs, number of hidden neurons, and output
Definition: TANNModeler.h:97
Double_t _dFcnTol
Definition: TANNModeler.h:126
R__EXTERN URANIE::Modeler::TANNModeler * gUranieANNModeler
Definition: TANNModeler.h:409
TempSolution * _tmpSolution
Definition: TANNModeler.h:114
ENorm getNormalization()
Get the normalisation.
Definition: TANNModeler.h:240
Int_t _nWeight
Definition: TANNModeler.h:101
Int_t _nApp
! The number of neurons
Definition: TANNModeler.h:88
TString _sHidden
Definition: TANNModeler.h:98
void setWeights(ColumnVector weights)
Sets the weigts.
Definition: TANNModeler.h:186
ENorm _nNormType
! The function tolerance for the trust region algorithm
Definition: TANNModeler.h:127
const char * getOutputName()
Get the attribute name of the output.
Definition: TANNModeler.h:267
Int_t _nInput
! Seed for the random weight initialization
Definition: TANNModeler.h:82
Double_t _dLearn
! Number of samples in the training set dedicated to validation
Definition: TANNModeler.h:90
ColumnVector _vecMaxValues
! Min values, used for normalization
Definition: TANNModeler.h:118
Double_t getFcnTol()
Definition: TANNModeler.h:232
Int_t _nTest
! Number of samples in the training set dedicated to back-propagation
Definition: TANNModeler.h:89
Bool_t _bMix
! The mix list of patterns
Definition: TANNModeler.h:94
TString _sArchi
! True if data set must be mixed
Definition: TANNModeler.h:96
EProblem
Definition: TANNModeler.h:69
TList * _listOfAttributes
! Max values, used for normalization
Definition: TANNModeler.h:121
Int_t _nSeed
Definition: TANNModeler.h:79
Int_t _nHiddenLayer
! The number of hidden neurons
Definition: TANNModeler.h:84
EProblem _nProlemType
! The normalized for input and output
Definition: TANNModeler.h:128
URANIE::DataServer::TDataServer * _tds
Definition: TANNModeler.h:138
Double_t getMaxValue(Int_t ind)
Definition: TANNModeler.h:208
EProblem getProblem()
Get the problem type.
Definition: TANNModeler.h:246
void setFcnTol(Double_t dprec)
Definition: TANNModeler.h:228
UMLP * _UMLP
Pointeur vers un TDS.
Definition: TANNModeler.h:139
ColumnVector _vecMinValues
Definition: TANNModeler.h:117
void setDataSet(URANIE::DataServer::TPatternsEventList *tel)
Definition: TANNModeler.h:219
Int_t getNAPP()
Gets the number of pure training patterns ("APPrentissage")
Definition: TANNModeler.h:175
Definition: TANNModeler.h:70
Double_t _dTest
! The learning quality
Definition: TANNModeler.h:91
Double_t getWeightDecay()
Get the weight decay parameter.
Definition: TANNModeler.h:297
Int_t getNHidden()
Gets the number of hidden neurons.
Definition: TANNModeler.h:165
Double_t * _dval
! The type of problem (Regression, Classification)
Definition: TANNModeler.h:131
Double_t getMinValue(Int_t ind)
Definition: TANNModeler.h:204
Int_t getNTest()
Gets the number of pure training patterns ("APPrentissage")
Definition: TANNModeler.h:180
ColumnVector getWeights()
Definition: TANNModeler.h:190
Int_t _nOutput
! the number of hidden layer
Definition: TANNModeler.h:85