Documentation / Manuel développeur
Modules disponibles
Calibration,  DataServer,  Launcher,  MetaModelOptim,  Modeler,  Optimizer,  ReLauncher,  Reliability,  ReOptimizer,  Sampler,  Sensitivity,  UncertModeler,  XmlProblem,  ![]() |
Uranie / Modeler
v4.10.0
|
TANNModeler.h
Go to the documentation of this file.
75 kCR, kMinusOneOne, kZeroOne
134 static const int OPTIM_MAX_ITER = 10000; //<! Maximal number of iterations in the optimization algorithms
135 static const int OPTIM_MAX_FEVAL = 50000; //<! Maximal number of evaluations in the optimization algorithms
149 TANNModeler (URANIE::DataServer::TDataServer *tds, const char* pmmlfile, const char* ANNname, Double_t dratio = 0.80, Option_t *option ="");
287 void train(Int_t niter = 10, Int_t nInit = 10, Option_t* option = "text", Bool_t useGPU = true);
289 void train(Int_t niter = 10, Int_t nInit = 10, Option_t* option = "text", Bool_t useGPU = false);
348 // << " --- Method TANNModeler::exportModelCplusplus(ofstream * sourcefile) not yet implemented"
357 void exportModelPMML(const char* file = "", const char* name = "", Option_t *option = "") const;
Double_t _dWeightDecay
! The test quality
Definition: TANNModeler.h:92
Int_t getNOutput()
Gets the number of output.
Definition: TANNModeler.h:170
Definition: TANNModeler.h:66
Int_t _nHidden
! The number of inputs
Definition: TANNModeler.h:83
void exportModelPython(std::ofstream *sourcefile) const
Export the model in Python langage in a file (not yet implemented)
Definition: TANNModeler.h:380
Double_t getWeight(Int_t ind)
Returns the weight givent by the index.
Definition: TANNModeler.h:199
Int_t getSeed()
Returns the seed value.
Definition: TANNModeler.h:255
Definition: TModeler.h:62
Bool_t _blog
Boolean for edit the log.
Definition: TANNModeler.h:137
URANIE::DataServer::TPatternsEventList * _elAll
! The weight decay parameter - when used, favorize a smoother ANN
Definition: TANNModeler.h:93
Int_t _nNeurons
! The number of outputs
Definition: TANNModeler.h:86
const char * getInputName(Int_t i)
Return the name of input attributes indexed by i.
Definition: TANNModeler.h:260
ColumnVector _vecWeights
! The number of weights
Definition: TANNModeler.h:113
Interface of the class URANIE::Optimize::TModeler.
TString _sInput
! The architecture, e.g. "x:y:z,3,yhat" specifying inputs, number of hidden neurons, and output
Definition: TANNModeler.h:97
R__EXTERN URANIE::Modeler::TANNModeler * gUranieANNModeler
Definition: TANNModeler.h:409
ENorm getNormalization()
Get the normalisation.
Definition: TANNModeler.h:240
void setWeights(ColumnVector weights)
Sets the weigts.
Definition: TANNModeler.h:186
ENorm _nNormType
! The function tolerance for the trust region algorithm
Definition: TANNModeler.h:127
const char * getOutputName()
Get the attribute name of the output.
Definition: TANNModeler.h:267
Int_t _nInput
! Seed for the random weight initialization
Definition: TANNModeler.h:82
Double_t _dLearn
! Number of samples in the training set dedicated to validation
Definition: TANNModeler.h:90
ColumnVector _vecMaxValues
! Min values, used for normalization
Definition: TANNModeler.h:118
Int_t _nTest
! Number of samples in the training set dedicated to back-propagation
Definition: TANNModeler.h:89
Bool_t _bMix
! The mix list of patterns
Definition: TANNModeler.h:94
TString _sArchi
! True if data set must be mixed
Definition: TANNModeler.h:96
TList * _listOfAttributes
! Max values, used for normalization
Definition: TANNModeler.h:121
Int_t _nHiddenLayer
! The number of hidden neurons
Definition: TANNModeler.h:84
EProblem _nProlemType
! The normalized for input and output
Definition: TANNModeler.h:128
URANIE::DataServer::TDataServer * _tds
Definition: TANNModeler.h:138
Double_t getMaxValue(Int_t ind)
Definition: TANNModeler.h:208
EProblem getProblem()
Get the problem type.
Definition: TANNModeler.h:246
void setDataSet(URANIE::DataServer::TPatternsEventList *tel)
Definition: TANNModeler.h:219
Int_t getNAPP()
Gets the number of pure training patterns ("APPrentissage")
Definition: TANNModeler.h:175
Definition: TANNModeler.h:70
Double_t _dTest
! The learning quality
Definition: TANNModeler.h:91
Double_t getWeightDecay()
Get the weight decay parameter.
Definition: TANNModeler.h:297
Int_t getNHidden()
Gets the number of hidden neurons.
Definition: TANNModeler.h:165
Double_t * _dval
! The type of problem (Regression, Classification)
Definition: TANNModeler.h:131
Double_t getMinValue(Int_t ind)
Definition: TANNModeler.h:204
Int_t getNTest()
Gets the number of pure training patterns ("APPrentissage")
Definition: TANNModeler.h:180
Int_t _nOutput
! the number of hidden layer
Definition: TANNModeler.h:85