English Français

Documentation / Manuel développeur

Modules disponibles

Calibration,  DataServer,  Launcher,  MetaModelOptim,  Modeler,  Optimizer,  ReLauncher,  Reliability,  ReOptimizer,  Sampler,  Sensitivity,  UncertModeler,  XmlProblem,   Uranie / Modeler: URANIE::Modeler::TANNModeler Class Reference
Uranie / Modeler  v4.10.0
/* @license-end */
URANIE::Modeler::TANNModeler Class Reference

#include <TANNModeler.h>

Inheritance diagram for URANIE::Modeler::TANNModeler:
Collaboration diagram for URANIE::Modeler::TANNModeler:

Public Types

enum  EProblem { kRegression, kClassification }
 
enum  ENorm { kCR, kMinusOneOne, kZeroOne }
 

Public Member Functions

Constructor and Destructor
 TANNModeler (URANIE::DataServer::TDataServer *tds, TString architecture, Double_t dratio=0.80, Option_t *option="")
 Constructor with a dataserver. More...
 
virtual ~TANNModeler ()
 Default destructor. More...
 
Setter and Getter function
Int_t getNInput ()
 Gets the number of input. More...
 
Int_t getNHidden ()
 Gets the number of hidden neurons. More...
 
Int_t getNOutput ()
 Gets the number of output. More...
 
Int_t getNAPP ()
 Gets the number of pure training patterns ("APPrentissage") More...
 
Int_t getNTest ()
 Gets the number of pure training patterns ("APPrentissage") More...
 
void setWeights (ColumnVector weights)
 Sets the weigts. More...
 
ColumnVector getWeights ()
 
Double_t getWeight (Int_t ind)
 Returns the weight givent by the index. More...
 
Double_t getMinValue (Int_t ind)
 
Double_t getMaxValue (Int_t ind)
 
Double_t * getdval ()
 
void setValue (Int_t ind, Int_t &ncrt, Double_t *xy, Bool_t normalize=true)
 
void setDataSet (URANIE::DataServer::TPatternsEventList *tel)
 
void setMix (Bool_t bmix=kTRUE)
 
void setFcnTol (Double_t dprec)
 
Double_t getFcnTol ()
 
void setNormalization (ENorm n)
 Sets the normalisation. More...
 
ENorm getNormalization ()
 Get the normalisation. More...
 
EProblem getProblem ()
 Get the problem type. More...
 
void setSeed (Int_t ind=0)
 Init the seed. More...
 
Int_t getSeed ()
 Returns the seed value. More...
 
const char * getInputName (Int_t i)
 Return the name of input attributes indexed by i. More...
 
const char * getOutputName ()
 Get the attribute name of the output. More...
 
Training
void init ()
 
void randomizeWeights ()
 randomize the weights More...
 
void train (Int_t niter=10, Int_t nInit=10, Option_t *option="text", Bool_t useGPU=false)
 
Double_t getEQM (Option_t *option="")
 Gets the EQM. More...
 
Double_t getWeightDecay ()
 Get the weight decay parameter. More...
 
void saveIfBetter (const ColumnVector &weights, Double_t eqm_app, Double_t eqm_tst)
 Save a vector of weight if the RMS on the test database is better than what we currently have. More...
 
Exports function

The exports function to save an Artificial Neural Networks in an external format

  • C/C++
  • Fortran
  • PMML

The user fonction is the exportFunction method.

tann->exportFunction("c++", "uranie_ann_flowrate.C","ANNflowrate");
tann->exportFunction("fortran", "uranie_ann_flowrate.f","ANNflowrate");
tann->exportFunction("pmml", sPMMLFile, sANNName,"new");
Todo:
Add different format in the exportFunction method
tann->exportFunction("C++,fortran,pmml", "uranie_ann_flowrate","ANNflowrate");
void exportModelCplusplus (const char *file="", const char *name="", Option_t *option="") const
 The only user interface method. More...
 
void exportModelCplusplus (std::ofstream *sourcefile) const
 
void exportModelPMML (const char *file="", const char *name="", Option_t *option="") const
 Export the TANNModeler object in a PMML File. More...
 
void exportModelFortran (const char *file, const char *name, Option_t *option="")
 Export the ANN model in a Fortran file. More...
 
void exportModelFortran (std::ofstream *sourcefile) const
 
void exportModelPython (std::ofstream *sourcefile) const
 Export the model in Python langage in a file (not yet implemented) More...
 
Printing Log
virtual void printLog (Option_t *option="")
 
- Public Member Functions inherited from URANIE::Modeler::TModeler
 TModeler (URANIE::DataServer::TDataServer *tds, TString architecture, Option_t *option="")
 Constructor with a dataserver. More...
 
 TModeler (URANIE::DataServer::TDataServer *tds, const char *varexpinput, const char *varexpoutput, Option_t *option="")
 Default constructor with input and output attributes. More...
 
virtual ~TModeler ()
 Default destructor. More...
 
TVectorD getParameters ()
 Return the parameter vector of the model. More...
 
Double_t getR2 () const
 Return the R2 quality. More...
 
const char * getInputName (Int_t i) const
 Return the name of input attributes. More...
 
const char * getOutputName (Int_t i=0)
 Return the name of output attribute. More...
 
Int_t getNInput ()
 Gets the number of input. More...
 
Bool_t getIntercept ()
 Gets the boolean attribut _bIntercept. More...
 
void setDrawProgressBar (Bool_t bbool=kTRUE)
 Set the "draw progress bar" flag. More...
 
Bool_t getDrawProgressBar ()
 Get the "draw progress bar" flag. More...
 
void train (Option_t *option="text")
 
virtual void exportFunction (const char *lang, const char *file="", const char *name="", Option_t *option="")
 Export the model in an external file with a specified langage. More...
 
void setLog ()
 
void unsetLog ()
 
void changeLog ()
 
Bool_t getLog ()
 

Public Attributes

Bool_t _blog
 Boolean for edit the log. More...
 
URANIE::DataServer::TDataServer * _tds
 
UMLP * _UMLP
 Pointeur vers un TDS. More...
 
- Public Attributes inherited from URANIE::Modeler::TModeler
Bool_t _blog
 Boolean for edit the log. More...
 
Bool_t _bdrawProgressBar
 Boolean to know if the progress bar has to be drawn. More...
 
Bool_t _bStoreYHat
 Boolean to specify if we add the {} attribute in the TDS [default kTRUE]. More...
 
URANIE::DataServer::TDataServer * _tds
 
Int_t _nS
 Pointer to a TDS. More...
 
TString _sInputAttributes
 The string of input attributes (separated by the character ":". More...
 
TString _sOutputAttributes
 The string of output attributes (separated by the character ":". More...
 
TString _sIntermediateArchitecture
 The intermediate (between the first and last character ",") information. More...
 
TList * _listOfInputAttributes
 The list of input Leaf. More...
 
TList * _listOfOutputAttributes
 The list of output Leaf. More...
 
Int_t _nX
 The number of input attributes. More...
 
Int_t _nY
 The number of output attributes. More...
 
TString _sFileName
 The name of the file when export the model without extension. More...
 
TString _sFunctionName
 The name of the function when export the model. More...
 
TVectorD _parameterValues
 The list of parameters. More...
 
Double_t _dr2
 The R2 quality. More...
 
Bool_t _bIntercept
 For certain models, add the intercept (Default is TRUE) More...
 

Protected Attributes

Int_t _nSeed
 

Private Attributes

Int_t _nInput
 ! Seed for the random weight initialization More...
 
Int_t _nHidden
 ! The number of inputs More...
 
Int_t _nHiddenLayer
 ! The number of hidden neurons More...
 
Int_t _nOutput
 ! the number of hidden layer More...
 
Int_t _nNeurons
 ! The number of outputs More...
 
Int_t _nApp
 ! The number of neurons More...
 
Int_t _nTest
 ! Number of samples in the training set dedicated to back-propagation More...
 
Double_t _dLearn
 ! Number of samples in the training set dedicated to validation More...
 
Double_t _dTest
 ! The learning quality More...
 
Double_t _dWeightDecay
 ! The test quality More...
 
URANIE::DataServer::TPatternsEventList * _elAll
 ! The weight decay parameter - when used, favorize a smoother ANN More...
 
Bool_t _bMix
 ! The mix list of patterns More...
 
TString _sArchi
 ! True if data set must be mixed More...
 
TString _sInput
 ! The architecture, e.g. "x:y:z,3,yhat" specifying inputs, number of hidden neurons, and output More...
 
TString _sHidden
 
TString _sOutput
 
Int_t _nWeight
 
ColumnVector _vecWeights
 ! The number of weights More...
 
TempSolution * _tmpSolution
 
ColumnVector _vecMinValues
 
ColumnVector _vecMaxValues
 ! Min values, used for normalization More...
 
TList * _listOfAttributes
 ! Max values, used for normalization More...
 
Parameters of algorithm
Double_t _dFcnTol
 
ENorm _nNormType
 ! The function tolerance for the trust region algorithm More...
 
EProblem _nProlemType
 ! The normalized for input and output More...
 
Double_t * _dval
 ! The type of problem (Regression, Classification) More...
 

Static Private Attributes

static const int OPTIM_MAX_ITER = 10000
 
static const int OPTIM_MAX_FEVAL = 50000
 

Member Enumeration Documentation

◆ ENorm

Enumerator
kCR 
kMinusOneOne 
kZeroOne 

◆ EProblem

Enumerator
kRegression 
kClassification 

Constructor & Destructor Documentation

◆ TANNModeler()

URANIE::Modeler::TANNModeler::TANNModeler ( URANIE::DataServer::TDataServer *  tds,
TString  architecture,
Double_t  dratio = 0.80,
Option_t *  option = "" 
)

Constructor with a dataserver.

◆ ~TANNModeler()

virtual URANIE::Modeler::TANNModeler::~TANNModeler ( )
virtual

Default destructor.

Member Function Documentation

◆ exportModelCplusplus() [1/2]

void URANIE::Modeler::TANNModeler::exportModelCplusplus ( const char *  file = "",
const char *  name = "",
Option_t *  option = "" 
) const

The only user interface method.

Parameters
lang(const char*) the keyword for the external format [c++|fortran|pmml]
file(const char*) the filename. If empty, it is the name of the TDS with the good extension.[""]
name(const char*) name of the function.
option(const char*) option parameter.
  • NEW : create a new PMML file
  • UPDATE : Write the current ANN in the PMML file and if already exist an ANN in the PMML file, erase it.
  • BACKUP : Write the current ANN in the PMML file and if already exist ANNs in the PMML file with modelname "name_I", rename the old with "name_I+1"Export the ANN model in a ROOT macro file

◆ exportModelCplusplus() [2/2]

void URANIE::Modeler::TANNModeler::exportModelCplusplus ( std::ofstream *  sourcefile) const
virtual
Todo:
Write this method as a TModeler method

Implements URANIE::Modeler::TModeler.

◆ exportModelFortran() [1/2]

void URANIE::Modeler::TANNModeler::exportModelFortran ( const char *  file,
const char *  name,
Option_t *  option = "" 
)

Export the ANN model in a Fortran file.

◆ exportModelFortran() [2/2]

void URANIE::Modeler::TANNModeler::exportModelFortran ( std::ofstream *  sourcefile) const
virtual
Todo:
Write this method as a TModeler method

Implements URANIE::Modeler::TModeler.

◆ exportModelPMML()

void URANIE::Modeler::TANNModeler::exportModelPMML ( const char *  file = "",
const char *  name = "",
Option_t *  option = "" 
) const
virtual

Export the TANNModeler object in a PMML File.

Implements URANIE::Modeler::TModeler.

◆ exportModelPython()

void URANIE::Modeler::TANNModeler::exportModelPython ( std::ofstream *  sourcefile) const
inlinevirtual

Export the model in Python langage in a file (not yet implemented)

Warning
Don't use this method. Use the main method TModeler::exportFunction.
Parameters
sourcefile(ofstream *) the pointer to the file to export the modeler.

Implements URANIE::Modeler::TModeler.

◆ getdval()

Double_t* URANIE::Modeler::TANNModeler::getdval ( )
inline

Referenced by ClassImp().

◆ getEQM()

Double_t URANIE::Modeler::TANNModeler::getEQM ( Option_t *  option = "")

Gets the EQM.

Parameters
option["learn|test"] give the Mean Square Error (MSE ) on the learn database ("learn") or on the test database ("test").

◆ getFcnTol()

Double_t URANIE::Modeler::TANNModeler::getFcnTol ( )
inline

◆ getInputName()

const char* URANIE::Modeler::TANNModeler::getInputName ( Int_t  i)
inline

Return the name of input attributes indexed by i.

◆ getMaxValue()

Double_t URANIE::Modeler::TANNModeler::getMaxValue ( Int_t  ind)
inline

Referenced by ClassImp().

◆ getMinValue()

Double_t URANIE::Modeler::TANNModeler::getMinValue ( Int_t  ind)
inline

Referenced by ClassImp().

◆ getNAPP()

Int_t URANIE::Modeler::TANNModeler::getNAPP ( )
inline

Gets the number of pure training patterns ("APPrentissage")

Referenced by ClassImp().

◆ getNHidden()

Int_t URANIE::Modeler::TANNModeler::getNHidden ( )
inline

Gets the number of hidden neurons.

Referenced by ClassImp().

◆ getNInput()

Int_t URANIE::Modeler::TANNModeler::getNInput ( )
inline

Gets the number of input.

Referenced by ClassImp().

◆ getNormalization()

ENorm URANIE::Modeler::TANNModeler::getNormalization ( )
inline

Get the normalisation.

Referenced by ClassImp().

◆ getNOutput()

Int_t URANIE::Modeler::TANNModeler::getNOutput ( )
inline

Gets the number of output.

Referenced by ClassImp().

◆ getNTest()

Int_t URANIE::Modeler::TANNModeler::getNTest ( )
inline

Gets the number of pure training patterns ("APPrentissage")

Referenced by ClassImp().

◆ getOutputName()

const char* URANIE::Modeler::TANNModeler::getOutputName ( )
inline

Get the attribute name of the output.

◆ getProblem()

EProblem URANIE::Modeler::TANNModeler::getProblem ( )
inline

Get the problem type.

Referenced by ClassImp().

◆ getSeed()

Int_t URANIE::Modeler::TANNModeler::getSeed ( )
inline

Returns the seed value.

◆ getWeight()

Double_t URANIE::Modeler::TANNModeler::getWeight ( Int_t  ind)
inline

Returns the weight givent by the index.

the index begins to 0 and ends to nW-1

◆ getWeightDecay()

Double_t URANIE::Modeler::TANNModeler::getWeightDecay ( )
inline

Get the weight decay parameter.

Referenced by ClassImp().

◆ getWeights()

ColumnVector URANIE::Modeler::TANNModeler::getWeights ( )
inline

Referenced by ClassImp().

◆ init()

void URANIE::Modeler::TANNModeler::init ( )

◆ printLog()

virtual void URANIE::Modeler::TANNModeler::printLog ( Option_t *  option = "")
virtual

Reimplemented from URANIE::Modeler::TModeler.

◆ randomizeWeights()

void URANIE::Modeler::TANNModeler::randomizeWeights ( )

randomize the weights

◆ saveIfBetter()

void URANIE::Modeler::TANNModeler::saveIfBetter ( const ColumnVector &  weights,
Double_t  eqm_app,
Double_t  eqm_tst 
)

Save a vector of weight if the RMS on the test database is better than what we currently have.

Referenced by ClassImp().

◆ setDataSet()

void URANIE::Modeler::TANNModeler::setDataSet ( URANIE::DataServer::TPatternsEventList *  tel)
inline

◆ setFcnTol()

void URANIE::Modeler::TANNModeler::setFcnTol ( Double_t  dprec)
inline

◆ setMix()

void URANIE::Modeler::TANNModeler::setMix ( Bool_t  bmix = kTRUE)
inline

◆ setNormalization()

void URANIE::Modeler::TANNModeler::setNormalization ( ENorm  n)

Sets the normalisation.

◆ setSeed()

void URANIE::Modeler::TANNModeler::setSeed ( Int_t  ind = 0)

Init the seed.

If the value is zero, the seed is initialized with the hour in milliseconds

Parameters
ind(Int_t) the seed value

◆ setValue()

void URANIE::Modeler::TANNModeler::setValue ( Int_t  ind,
Int_t &  ncrt,
Double_t *  xy,
Bool_t  normalize = true 
)

Referenced by ClassImp().

◆ setWeights()

void URANIE::Modeler::TANNModeler::setWeights ( ColumnVector  weights)
inline

Sets the weigts.

◆ train()

void URANIE::Modeler::TANNModeler::train ( Int_t  niter = 10,
Int_t  nInit = 10,
Option_t *  option = "text",
Bool_t  useGPU = false 
)

Launch the training of the ANN. This potentially uses the GPU if available.

Parameters
niternumber of times (a random permutation of) the test base will be presented for training
nInitnumber of times the ANN is trained (from random start weights) with a given permutation of the test database

Member Data Documentation

◆ _blog

Bool_t URANIE::Modeler::TANNModeler::_blog

Boolean for edit the log.

◆ _bMix

Bool_t URANIE::Modeler::TANNModeler::_bMix
private

! The mix list of patterns

◆ _dFcnTol

Double_t URANIE::Modeler::TANNModeler::_dFcnTol
private

◆ _dLearn

Double_t URANIE::Modeler::TANNModeler::_dLearn
private

! Number of samples in the training set dedicated to validation

◆ _dTest

Double_t URANIE::Modeler::TANNModeler::_dTest
private

! The learning quality

◆ _dval

Double_t* URANIE::Modeler::TANNModeler::_dval
private

! The type of problem (Regression, Classification)

Temporary array used during training

◆ _dWeightDecay

Double_t URANIE::Modeler::TANNModeler::_dWeightDecay
private

! The test quality

◆ _elAll

URANIE::DataServer::TPatternsEventList* URANIE::Modeler::TANNModeler::_elAll
private

! The weight decay parameter - when used, favorize a smoother ANN

◆ _listOfAttributes

TList* URANIE::Modeler::TANNModeler::_listOfAttributes
private

! Max values, used for normalization

◆ _nApp

Int_t URANIE::Modeler::TANNModeler::_nApp
private

! The number of neurons

◆ _nHidden

Int_t URANIE::Modeler::TANNModeler::_nHidden
private

! The number of inputs

◆ _nHiddenLayer

Int_t URANIE::Modeler::TANNModeler::_nHiddenLayer
private

! The number of hidden neurons

◆ _nInput

Int_t URANIE::Modeler::TANNModeler::_nInput
private

! Seed for the random weight initialization

◆ _nNeurons

Int_t URANIE::Modeler::TANNModeler::_nNeurons
private

! The number of outputs

◆ _nNormType

ENorm URANIE::Modeler::TANNModeler::_nNormType
private

! The function tolerance for the trust region algorithm

◆ _nOutput

Int_t URANIE::Modeler::TANNModeler::_nOutput
private

! the number of hidden layer

◆ _nProlemType

EProblem URANIE::Modeler::TANNModeler::_nProlemType
private

! The normalized for input and output

◆ _nSeed

Int_t URANIE::Modeler::TANNModeler::_nSeed
protected

◆ _nTest

Int_t URANIE::Modeler::TANNModeler::_nTest
private

! Number of samples in the training set dedicated to back-propagation

◆ _nWeight

Int_t URANIE::Modeler::TANNModeler::_nWeight
private

◆ _sArchi

TString URANIE::Modeler::TANNModeler::_sArchi
private

! True if data set must be mixed

◆ _sHidden

TString URANIE::Modeler::TANNModeler::_sHidden
private

◆ _sInput

TString URANIE::Modeler::TANNModeler::_sInput
private

! The architecture, e.g. "x:y:z,3,yhat" specifying inputs, number of hidden neurons, and output

◆ _sOutput

TString URANIE::Modeler::TANNModeler::_sOutput
private

◆ _tds

URANIE::DataServer::TDataServer* URANIE::Modeler::TANNModeler::_tds

◆ _tmpSolution

TempSolution* URANIE::Modeler::TANNModeler::_tmpSolution
private

◆ _UMLP

UMLP* URANIE::Modeler::TANNModeler::_UMLP

Pointeur vers un TDS.

Referenced by ClassImp().

◆ _vecMaxValues

ColumnVector URANIE::Modeler::TANNModeler::_vecMaxValues
private

! Min values, used for normalization

◆ _vecMinValues

ColumnVector URANIE::Modeler::TANNModeler::_vecMinValues
private

◆ _vecWeights

ColumnVector URANIE::Modeler::TANNModeler::_vecWeights
private

! The number of weights

! The vector of weights, stored like this: [a][b(1) b(2) b(3).... b(_nInput+2)][c(1) c(2) c(3).... c(_nInput+2)][ ... ] a: scalar value giving the weight of the output biais (link betw. single output and biais neuron in hidden layer) b, c, d, ...: _nHidden blocks of (_nInput+2) scalars representing: b(1): weight link between second hidden neuron and output (c(1) for the 3rd hidden neuron, d(1) for the 4th, etc ...) b(2): weight between biais input neuron and second hidden neuron b(2+i): weight between i-th (real) input neuron and second hidden neuron See impl. of UMPL::evaluateInput().

◆ OPTIM_MAX_FEVAL

const int URANIE::Modeler::TANNModeler::OPTIM_MAX_FEVAL = 50000
staticprivate

◆ OPTIM_MAX_ITER

const int URANIE::Modeler::TANNModeler::OPTIM_MAX_ITER = 10000
staticprivate