Documentation / Manuel développeur
Modules disponibles
Calibration,  DataServer,  Launcher,  MetaModelOptim,  Modeler,  Optimizer,  ReLauncher,  Reliability,  ReOptimizer,  Sampler,  Sensitivity,  UncertModeler,  XmlProblem,  
Uranie / Sampler v4.9.0
|
This class creates a "One factor At a Time" design of experiment. It has been developped mainly for finite differences sensitivity computation. More...
#include <TOATSampling.h>
Public Member Functions | |
Constructor and Destructor | |
TOATSampling (URANIE::DataServer::TDataServer *tds, Option_t *option="steps=1%") | |
Constructor of the OAT sampler. | |
virtual | ~TOATSampling () |
Default destructor. | |
Getting and setting parameters | |
virtual Double_t | getStepSizeParameter () |
Get the step size parameter. | |
virtual TString | getSamplingMode () |
Get OAT sampling mode. | |
virtual Bool_t | isPercentMode () |
virtual void | setOption (Option_t *option) |
Set the step size parameter. | |
Double_t | getStepPrecision () |
getStepPrecision | |
void | setStepPrecision (Double_t dval) |
Generation of the sample | |
virtual void | createTuple () |
Create the data tree for the data server. | |
virtual void | generateSample (Option_t *option="") |
Generates the sample. | |
Printing Log | |
virtual void | printLog (Option_t *option="") |
Prints the log. | |
Public Member Functions inherited from URANIE::Sampler::TSamplerDeterminist | |
TSamplerDeterminist (URANIE::DataServer::TDataServer *tds, Option_t *option, Int_t ns) | |
Constructor with a dataserver. | |
virtual | ~TSamplerDeterminist () |
Default destructor. | |
Public Member Functions inherited from URANIE::Sampler::TSampler | |
TSampler (URANIE::DataServer::TDataServer *tds, Option_t *option, Int_t nCalcul) | |
Constructor with a TDataServer, the options and the size of the sample. | |
virtual | ~TSampler () |
Default destructor. | |
Int_t | GetID () |
Returns the ID of the class. | |
void | setMethodName (TString str) |
Sets the method name in a global variable. | |
TString | getMethodName () |
Gets the method name. | |
virtual URANIE::DataServer::TDataServer * | getTDS () |
Return the TDS filling by the sampling algorithm. | |
void | parseOption (Option_t *option) |
Parse the option. | |
virtual void | createListOfAttributes () |
Creates the List of attributes to simulate. | |
URANIE::DataServer::TDSNtupleD * | getTuple () |
Returns the TDSNtupleD of data. | |
virtual void | fillOtherAttributes () |
Fills the TDSNtupleD of data with other TFormulaAttributes. | |
void | setLog () |
void | unsetLog () |
void | changeLog () |
Bool_t | getLog () |
Private Attributes | |
Double_t | _dstepSize |
TString | _smode |
Bool_t | _bisPercent |
Double_t | _dStepPrecision |
Additional Inherited Members | |
Public Attributes inherited from URANIE::Sampler::TSampler | |
Int_t | _nS |
The size of the sample. | |
Int_t | _nX |
The size of attributes to sample. | |
URANIE::DataServer::TDSNtupleD * | _ntsample |
the tntuple of data | |
TString | _sMethod |
The title of the sampler method. | |
Bool_t | _blog |
Log Printing. | |
Bool_t | _bupdateFile |
Update the back up file when generating the attributeformula if there is some. | |
URANIE::DataServer::TDataServer * | _tds |
Pointer to a TDS. | |
TList * | _lstOfAttributesToSample |
The list of Stochastic Attributes to sample. | |
Detailed Description
This class creates a "One factor At a Time" design of experiment. It has been developped mainly for finite differences sensitivity computation.
The principle of the OAT design of experiment is to modify only one attribute at a time, all the other factors being kept at a nominal (default) value. This is the simplest way to compute partial derivatives or sensitivities. For the latter application however, it might not be the best solution as this approach does not explore multi-factorial effects.
The first point of the design always corresponds to all the attributes set to their nominal value. Then, depending on the application, the following options are available:
- "minmax": the varying attribute will take its maximum and minimum values. All the others are given their nominal value.
- "steps=x": the varying attribute will move around its nominal value by a given step "x", usually small. "x" can either be a real value (e.g. "steps=3.1415") or a percentage of the nominal value (e.g. "steps=0.123%"). This variation step will be applied to all the attributes. Please note that if the modified value
is outside of the attribute's range of variation, the value of the relevant boundary will be used instead.
As a result, an OAT design of experiment will provide 2*n+1 realisations of the input variables, n being the number of attributes to sample.
- Note
- When the sampling is created, two attributes are added:
- nominal_set: so far it is always set to 1. This attribute will be used when the variables can vary around more than one nominal value.
- modified_att: for a given realisation of the sampling, its value is the index of the attribute that is modified. This index starts from 1. if modified_att is 0, it means that all the attributes are set to their nominal value.
Constructor & Destructor Documentation
◆ TOATSampling()
URANIE::Sampler::TOATSampling::TOATSampling | ( | URANIE::DataServer::TDataServer * | tds, |
Option_t * | option = "steps=1%" |
||
) |
Constructor of the OAT sampler.
- Parameters
-
tds (URANIE::DataServer::TDataServer*) Data server containing the attributes. option (Option_t*) If option contains "minmax", the min and max values of the attributes are used. If it contains "steps=X", the attributes values are the default value plus or minus X. If it contains "steps=X%", the attributes values are the default value plus or minus X percent of the default value (Default = "steps=1%").
- Exceptions
-
UErrorExceptions if option is "minmax" and some attributes are unbounded. UErrorExceptions if option is "steps" and some attributes have no default value.
Referenced by ClassImp().
◆ ~TOATSampling()
|
virtual |
Default destructor.
Referenced by ClassImp().
Member Function Documentation
◆ createTuple()
|
virtual |
Create the data tree for the data server.
Reimplemented from URANIE::Sampler::TSampler.
Referenced by ClassImp().
◆ generateSample()
|
virtual |
Generates the sample.
This function creates the OAT sampling data.
- Parameters
-
option (Option_t *) If option contains "in=" or "inputs=" followed by list of attribute names separated by colons, only the attributes listed will vary during the OAT sampling (provided they exist in the TDS, of course...).
Implements URANIE::Sampler::TSampler.
Referenced by ClassImp().
◆ getSamplingMode()
|
inlinevirtual |
Get OAT sampling mode.
References _smode.
◆ getStepPrecision()
|
inline |
getStepPrecision
- Returns
- (Double_t) the step precision value where to change with the step value in the TAttribute
References _dStepPrecision.
◆ getStepSizeParameter()
|
inlinevirtual |
Get the step size parameter.
References _dstepSize.
◆ isPercentMode()
|
inlinevirtual |
Get the boolean
References _bisPercent.
◆ printLog()
|
virtual |
◆ setOption()
|
virtual |
Set the step size parameter.
This function sets the values of the _dstepSize and _smode variables after parsing the option string.
- Parameters
-
option (Option_t *) If option contains "minmax", the min and max values of the attributes are used. If it contains "steps=X", the attributes values are the default value plus or minus X. If it contains "steps=X%", the attributes values are the default value plus or minus X percent of the default value (Default = "steps=1%").
Referenced by ClassImp().
◆ setStepPrecision()
|
inline |
References _dStepPrecision.
Member Data Documentation
◆ _bisPercent
|
private |
Referenced by ClassImp(), and isPercentMode().
◆ _dStepPrecision
|
private |
Referenced by ClassImp(), getStepPrecision(), and setStepPrecision().
◆ _dstepSize
|
private |
Referenced by ClassImp(), and getStepSizeParameter().
◆ _smode
|
private |
Referenced by ClassImp(), and getSamplingMode().